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Abstract

An important approach to game theory is to examine the consequences
of beliefs that rational agents may have about each other. This paper
considers respect for public preferences. Consider an agent A who believes
that B strictly prefers an option a to an option b. Then A respects B’s
preference if A considers the choice of a “infinitely more likely” than the
choice of B; equivalently, if A assigns probability 1 to the choice of a given
that B chooses a or b. Respect for public preferences requires that if it is
common belief that B prefers a to b, then it is common belief that all other
agents respect that preference. Along the lines of Blume, Brandenburger
and Dekel [4] and Asheim [1], I treat respect for public preferences as a
constraint on lexicographic probability systems. The main result is that
if respect for public preferences and perfect recall obtains, then players
choose in accordance with Iterated Backward Inference. Iterated Back-
ward Inference is a procedure that generalizes standard backward induc-
tion reasoning for games of both perfect and imperfect information. From
Asheim’s characterization of proper rationalizability [1] it follows that
properly rationalizable strategies are consistent with respect for public
preferences; hence strategies eliminated by Iterated Backward Inference
are not properly rationalizable.

1 Introduction and Overview
Game theory provides a general formalism for representing social and economic
interactions. The question arises what we can predict about the behaviour
of the agents in a given situation. A solution concept gives a formal answer
to this question, by associating a set of game plays–the “solution set”–with
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a given game matrix or game tree. An important line of research examines
epistemic assumptions that validate a given solution concept (cf. [19]). What
conditions imply that the predictions of the solution concept are correct, in
the sense that players will choose in accordance with the solution concept?
For example, in their seminal work on rationalizability, Pearce and Bernheim
examined the assumption that it is common knowledge among the agents that
they each maximize subjective expected utility [14], [2]. Their work showed that
iteratively eliminating strictly dominated strategies is a procedure that derives
the predictions of this assumption exactly, in the sense that an outcome of the
game is consistent with common knowledge of expected utility maximization if
and only if the outcome is not eliminated.
This paper examines the implications of respect for public preferences. Blume

et al. introduced the concept of respect for preferences [4, Def. 4] to characterize
Myerson’s “proper equilibrium” [12]. Let us assume that each agent’s choices
are based on a lexicographic probability system (LPS) ρ = (ρ1, .., ρk), where
each ρi is a probability measure over the choices of other agents. According to
Blume, Brandenburger, and Dekel, “the first component of the LPS [i.e., ρ1]
can be thought of as representing the player’s primary theory...” [4, page 82].
In a lexicographic probability system, the probability of an event E may be
defined even conditional on an event E0 that the agent believes not to obtain.
If ρB is the LPS of agent B, then for any choice of an agent A between two
options a and b, we may consider the conditional LPS ρB|{a, b}. According to
Blume et al., B respects the preferences of A if [ρ1B|{a, b}](a) = 1 whenever A
strictly prefers option a to b. Intuitively, the “primary hypothesis” of B is that
A chooses a, given that A chooses either a or b and prefers a. For example,
suppose that agent A has three options, $300, $200, $100. Then if A prefers
$200 to $100, respect for preferences requires that [ρ1B|{$200, $100}]($200) = 1.
Asheim [1] introduced a weaker condition: according to his definition, B

respects the preferences of A if [ρ1B|{a, b}](a) = 1 whenever B believes (with
certainty - see Section 5.2) that A strictly prefers option a to b. We may think
of the definition of Blume et al. as a special case where B’s beliefs about A’s
preferences are true–as they well may be at equilibrium.
Respect for public preferences requires common belief that [ρ1B |{a, b}](a) = 1

whenever it is common belief among all agents that A strictly prefers option
a to b. An event is common belief among the agents if all agents believe that
it obtains, all agents believe all agents believe that it obtains, etc. Preferences
that are common belief are “public” in the sense that all agents are aware of
them. Assuming that agents know their own preferences, then if A believes that
she prefers a to b, this is indeed the case, and hence public preferences are true
preferences.
This paper is a formal investigation of what respect for public preferences

implies about agents’ behaviour. More specifically, I derive consequences of
common belief in the following assumptions:

Respect for Public Preferences If it is common belief that player A strictly
prefers option a over b, then it is common belief that [ρ1B |{a, b}](a) = 1
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for each player B 6= A.
Full Lexicographic Rationality It is common belief that each player max-

imizes lexicographic expected utility, with respect to an LPS with full
support. A lexicographic probability system ρ has full support if every
nonempty event receives positive probability at some measure in ρ.

For short, in this introduction I refer to these two assumptions as Respect for
Public Preferences. I specify an iterated elimination procedure that computes
consequences of Respect for Public Preferences, which I term Iterated Back-
ward Inference (IBI). In two special cases, IBI coincides with other well-known
algorithms. First, in a game of perfect information with a unique backward
induction solution, the result of IBI is that solution. Second, suppose we rep-
resent a strategic form game as a game tree with two information sets, one for
each player with moves corresponding to strategies. Then IBI amounts to the
following procedure: First, eliminate all weakly dominated strategy. Then it-
eratively eliminate all strictly dominated strategies. This procedure is known
as the Dekel-Fudenberg procedure [6]. Thus Iterated Backward Inference gen-
eralizes at once both standard backward induction and the Dekel-Fudenberg
procedure.
The argument for these results, and more generally for the validity of IBI

for computing consequences of Respect for Public Preferences, rests on two key
facts. First, lexicographic rationality implies Sequential Admissibility. I define
the notion “admissibility at an information set” precisely in Section 10 below.
It turns out that sequential admissibility follows from lexicographic rationality
in the sense that if a strategy is inadmissible at an information set, then it does
not maximize lexicographic expected utility. The only assumption required for
this result is that each player has perfect recall.
Second, lexicographic beliefs satisfy Backward Inference. Loosely speaking,

the principle of backward inference is that agents “look ahead and reason back”.
More precisely, I consider the following principle: Think of players as following
a strategy at various information sets. Let I, IB be two information sets such
that IB belongs to player B and IB follows I; that is, there is a play sequence on
which I is reached before IB. Then if player A “looks ahead” to IB and believes
that player B is unlikely to follow a certain strategy s at information set IB,
then player A “reasons back” and believes that player B is unlikely to follow the
strategy s at information set I. In terms of lexicographic probability systems,
we have that if [ρ1A|IB ](s) = 0, then [ρ1A|I](s) = 0. I show that lexicographic
probability systems satisfy the backward inference principle, provided that each
player has perfect recall. Thus rather than being a separate, additional principle,
backward inference follows from the structure of lexicographic beliefs.
Applying Asheim’s characterization of Schumacher’s concept of proper ra-

tionalizability [1], [16] it is easy to show that properly rationalizable strategies
are consistent with Respect for Public Preferences. Hence if IBI eliminates a
strategy si, then si is not properly rationalizable. So IBI can be used to find
strategies that are not properly rationalizable.
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The paper is organized as follows. Sections 2 and 3 define standard game-
theoretic notions such as game trees and strategies, and review definitions per-
taining to lexicographic probability systems. Sections 4 and 5 formalize a num-
ber of epistemic assumptions, particulary Respect for Public Preferences, and
discuss the relationship between this principle and proper rationalizability. The
remainder of the paper investigates the consequences of these assumptions. Sec-
tions 6 and 7 define Iterated Backward Inference, establish its correctness (i.e.,
soundness) and show existence for finite games–that is, in finite games some
strategy profile is guaranteed to survive Iterated Backward Inference. Section 8
demonstrates that in games of perfect information in which backward induction
provides a unique solution, Iterated Backward Inference agrees with backward
induction. Next I prove a number of auxilliary results required for establish-
ing the soundness of Iterated Backward Inference. Perfect recall is crucial for
reasoning from an extensive form of a game to its normal form; Section 9 estab-
lishes a number of basic properties of game trees with perfect recall. Sections
10 shows that under perfect recall, lexicographic rationality entails sequential
admissibility.
Unless otherwise stated, proofs appear in Section 13.

2 Preliminaries: Game Trees and Strategies
This section gives the standard definition of sequential games; I also use the
terms extensive form games or game trees. I employ the formulation from [13].
A key notion in what follows is that of a sequence. Almost all the sequences I
consider in this paper are sequences of actions. I denote actions throughout by
the letter a and variants. I write x = a1, ..., an to indicate the finite sequences
whose i-th member is ai, and similarly I write h = a1, .., an, ... for infinite
sequences. If x = a1, ..., an is a finite sequence of n actions, the concatenation
x ∗ a = a1, ..., an, a yields a finite sequence of length n+ 1. The relation “x is a
prefix of x0” is a partial ordering of sequences. I write x ≤ x0 to indicate that
sequence x is a prefix of x0, and x0 < x to indicate that x ≤ x0 and x 6= x0. The
notation x0 ≥ x and x0 > x denotes the dual notions (x is a prefix of x0, or x0
extends x).
Now we are ready to define a sequential game.

Definition 1 A sequential game T is a tuple hN,H, player, {Ii}, {ui}i whose
components are as follows.

1. A finite set N (the set of players).

2. A set of H of sequences (histories) that satisfies the following three prop-
erties.

(a) The empty sequence ∅ is a member of H.
(b) If x is in H, then every initial segment of x is in H.
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Figure 1: The 3-move version of the Centipede game with players A and B.

(c) If h is an infinite sequence such that every finite initial segment of h
is in H, then h is in H.

Each component of a history in H is an action taken by a player. A finite
member of H is a node. A node x ∈ H is terminal if there is no history
x0 ∈ H such that x0 > x. All infinite histories are terminal as well. The
set of terminal histories is denoted by Z. The set of actions available at
a node x is denoted by A(x) = {a : x∗a ∈ H}.

3. A function player that assigns to each nonterminal node a member of N .
The function player determines which player takes an action at node x.

4. For each player i ∈ N an information partition Ii defined on {x ∈
H : player(x) = i}. An element Ii of Ii is called an information set of
player i. We require that if x, x0 are members of the same information set
Ii, then A(x) = A(x0). For each information set Ii, I let A(Ii) be the set of
actions available at the nodes in Ii. I let Ai =df ∪{A(x) : player(x) = i}
denote the set of actions of player i.

5. For each player i ∈ N a payoff function ui : Z → R that assigns a real
number to each terminal node.

Though the general notion of an extensive form game permits “chance”
moves by “nature”, Definition 1 does not include chance moves. Another sim-
plification that I make throughout the paper is to consider only 2-player games,
that is, I take N = {1, 2}. It is straightforward to generalize the results in this
paper to games with chance moves and any finite number of players, but doing
so gives rise to technical complications that do not illuminate the main issues.
I illustrate Definition 1 in two extensive form games, the three-move version

of the well-known Centipede Game (Figure 1) and a game due to Kohlberg
(Figure 2) [10]. In my notation, the 7 nodes in the Centipede Game are
∅, take, leave, leave∗ take, leave∗ leave, leave∗ leave∗ take, leave∗ leave∗ leave.
The terminal nodes comprise leave ∗ leave ∗ leave and all sequences ending
in take. Each of the three information sets I1, I2, I3 is a singleton, which
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Figure 2: An extensive form game due to Kohlberg

makes the Centipede game a game of perfect information; for example,
I2 = {leave ∗ leave}. Kohlberg’s game is a game of imperfect information
because we have that I4 = {D ∗ n ∗ T,D ∗ n ∗B}.
If i denotes a player, I write −i for the opponent of player i; so −1 = 2

and −2 = 1 when 1, 2 refer to players. A strategy for player i is a function
si : {x ∈ H : player(x) = i} → Ai, such that (1) si(x) ∈ A(x) for all nodes
x belonging to player i, and (2) if I(x) = I(x0), then si(x) = si(x

0). I write
Si(T ) for the set of strategies of player i in T . A strategy pair (s1, s2) of
players 1 and 2 respectively determines a unique terminal history that I denote
by play(s1, s2). I extend the utility functions ui to strategy pairs by defining
ui(s1, s2) =df ui(play(s1, s2)).
I assume throughout the paper that every node is reachable by some pair of

strategies. That is, I assume that for all nodes x ∈ H, there is a strategy pair
(s1, s2) such that x is reached along play(s1, s2) (cf. [9, Sec.2.1]).
To illustrate, in the Centipede Game there are two strategies for player 2,

which I denote by l2 and t2 where l2(∅∗ leave) = leave, and t2(∅∗ leave) = take;
thus if T denotes the Centipede Game, then S2(T ) = {l2, t2}. Player 1 has
four strategies, specifying choices at I1 and I3. We may use the tuples in
{l, t}×{l, t} to denote these strategies, such that for example lt(∅) = leave, and
lt(∅ ∗ leave ∗ leave) = take. The play sequence resulting from the strategy pair
(lt, t2) is ∅∗leave∗leave∗take; in my notation play(lt, t2) = ∅∗leave∗leave∗take.
Thus u1(lt, t2) = 0, and u2(lt, t2) = 2.
A matrix whose rows correspond to strategies for player 1 and columns to
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1/2 l2 t2
tt 1,0 1,0
tl 1,0 1,0
lt 3,1 0,2
ll 2,4 0,2

Table 1: The strategic form of the Centipede Game

I/II UL UR DL DR
yT 0,2 0,2 2,0 2,0
yB 0,2 0,2 2,0 2,0
nT 0,2 0,2 4,1 0,0
nB 0,2 0,2 0,0 1,4

Table 2: The strategic form of Kohlberg’s game

strategies for player 2 gives the normal form, or strategic form, of a game
tree. Table 1 shows the strategic form of the Centipede game. In Kohlberg’s
game, each player has four strategies. Table 2 shows the normal form of
Kohlberg’s game.
A crucial question in the developments below is how player i ranks the

strategies of her opponent −i given the information in some information set
I. To describe this formally, I map information sets into sets of strategies
as follows. First, define [I] = {(s1, s2) : play(s1, s2) intersects I}; thus [I]
denotes the set of strategy pairs that are consistent with the information I. With
respect to player i’s uncertainty space S−i, the information in an information
set I corresponds to the set of strategies [I]−i of player −i that are consistent
with I; formally I define [I]−i = {s−i : ∃si.(si, s−i) ∈ [I]}. It is useful to
consider, for a strategy si of player i, the set of strategies of the other player
that are consistent with si at a given information set. Accordingly, I define
cons(si, I) = {s−i : (si, s−i) ∈ [I]}. To illustrate, in the Centipede game of
Figure 1, [I2] = {(ll, l2), (lt, l2), (ll, t2), (lt, t2)}, so [I2]1 = {ll, lt} and [I2]2 =
{l2, t2}. For information set I3 we have that cons(tt, I3) = ∅, and cons(lt, I3) =
{l2}, while for player 2 cons(t2, I3) = ∅ and cons(l2, I3) = {ll, lt}.
Following Kaneko and Kline [9, Sec.2.1], I define I > I 0 iff there is x ∈ I, x0 ∈

I 0 such that x > x0, and I ≥ I 0 by I > I 0 or I = I 0. Thus I > I 0 holds just
in some play sequence reaches I 0 and then I. I also employ the dual notions
I < I 0 and I ≤ I 0. For example, in the Kohlberg game of Figure 2, we have
that Ij > I4 for all information sets Ij 6= I4.
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ρiB/X $100 $200 $300
ρ3B 1 0 0
ρ2B 0 1 0
ρ1B 0 0 1

Table 3: A lexicographic probability system ρB of length 3, with states of the
world X = $100, $200, $300

ρi2/X tt tl lt ll
ρ32 0 0 1/2 1/2
ρ22 0 0 1 0
ρ12 1/2 1/2 0 0

Table 4: A lexicographic probability system ρ2 representing the beliefs of player
2 about the strategies of player 1 in the Centipede Game

3 Preliminaries: Lexicographic Expected Util-
ity

Let X be a finite set of points. A lexicographic probability system over X
is a finite sequence or vector ρ = (ρ1, ρ2, ..., ρk), where each ρj is a probability
measure over X. As indicated, for a given LPS ρ I write ρj for the j-th proba-
bility measure in the sequence ρ. I let |ρ| denote the length of ρ. I also write
ρ(j) for the support of ρj , that is ρ(j) = {x ∈ X : ρj(x) > 0}. An LPS ρ has
full support iff ∪{ρ(i) : 1 ≤ i ≤ |ρ|} = X. Thus if ρ has full support, then
every point x is in the support of some probability measure in ρ.
Following Blume et al. [4, Definition 2], I write x ≥ρ x0 if min{j : x ∈

ρ(j)} ≤ min{j : x0 ∈ ρ(j)}, and x >ρ x
0 if the inequality is strict. Informally,

x >ρ x
0 means that the agent considers x more plausible than x0, in that x is

consistent with a “lower-order” belief than x0.
To illustrate these definitions, let X = {$100, $200, $300} as in the simple

choice problem from Section 1. Then a probability measure p corresponds to a
ternary vector (e.g., if p($100) = 1, then p corresponds to (1, 0, 0)), and we may
have the LPS ρB = [(0, 0, 1), (0, 1, 0), (0, 0, 1)] representing the beliefs of agent
B–see Table 3. Then $300 >ρB $200 >ρB $100. Table 4 shows an LPS ρ2 that
might represent player 2’s beliefs about 1’s strategies in the Centipede Game.
Here tt >ρ2 lt >ρ2 ll. Both lexicographic systems ρB and ρ2 have full support.
Let S be a set of acts, and let u : S × X → R be a utility function. The

expected utility of an act s with respect to probability p and utility u is de-
noted by EU(s, p, u) and defined to be EU(s, p, u) =df Σx∈Xp(x) × u(s, x).
The lexicographic expected utility of an act s with respect to an LPS ρ
is a vector of real numbers (expected utilities) defined as LEU(s, ρ, u) =df
(EU(s, ρ1, u), EU(s, ρ2, u), ..., EU(s, ρk, u)) where k = |ρ|. For two vectors
u,u0 of real numbers, I let u ≥ u0 denote the lexicographic ordering of the
two vectors. Then an act s maximizes lexicographic expected utility
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ρi2/X tt tl lt ll EU(l2, ρ2, u2) EU(t2, ρ2, u2)
ρ32 0 0 1/2 1/2 2.5 2
ρ22 0 0 1 0 1 2
ρ12 1/2 1/2 0 0 0 0

Table 5: The lexicographic expected utility of player 2’s strategies in the Cen-
tipede game with utility function u2 for player 2, given LPS ρ2 from Table 4

given ρ, u if LEU(s, ρ, u) ≥ LEU(s0, ρ, u) for all s0 ∈ S. A preference or-
dering º over S is represented by a pair (ρ, u) if for all options s, s0 we
have that s º s0 ⇐⇒ LEU(s, ρ, u) ≥ LEU(s0, ρ, u). I say that an agent
with preference ordering º is a maximizer of lexicographic expected utility if
º is represented by some pair (ρ, u). To illustrate, Table 5 shows the lexico-
graphic expected utility of the strategies l2 and t2 for Player 2 in the Cen-
tipede game, given ρ2. In this example, LEU(l2, ρ2, u2) = (0, 1, 2.5), and
EU(t2, ρ2, u2) = (0, 2, 2), so if (ρ2, u2) represent the preferences of Player 2,
then t2 Â l2 because EU(t2, ρ22, u2) = 2 > 1 = EU(l2, ρ22, u2).
Many decision theorists [3] view it as an attractive feature of lexicographic

probability systems with full support that they enforce the principle of weak
dominance: if an act s weakly dominates another act s0, then the lexicographic
expected utility of s is greater than the lexicographic expected utility of s0. For
future reference, I record this fact as a formal lemma. Given a utility function
u : S × X → R, I say that an act s weakly dominates an act s0 if (1)
for all points x, we have u(s, x) ≥ u(s0, x), and for some point x0, we have
u(s, x0) > u(s0, x0). For example, in the Centipede game, lt weakly dominates ll
(see Table 1). The following lemma is proven in [3, Theorem 4.2].

Lemma 2 Let ρ be a lexicographic probability system over X with full support.
Suppose that act s weakly dominates s0 with respect to utility function u : S ×
X → R. Then LEU(s, ρ, u) > LEU(s0, ρ, u).

3.1 Conditional Lexicographic Beliefs and Preferences

I next define the conditional LPS ρ|P given a nonempty event P . As usual, if
p is a probability measure over X, and P ⊆ X an event such that support(p)∩
P 6= ∅, the conditional probability p|P is defined by [p|P ](x) = p(x)/p(P ) if
x ∈ P , and [p|P ](x) = 0 otherwise. Intuitively, to obtain the conditionalized
probability system ρ|P , we first delete all probability measures ρj such that
support(ρj) ∩ P = ∅, and condition the remaining probability measures on P .
For example, conditioning ρ2 on {lt, ll} yields ρ2|{lt, ll} displayed in Table 6.
The formal definition of ρ|P is as follows.

1. o(1) = min{1 ≤ k ≤ |ρ| : ρ(k) ∩ S 6= ∅}. If ρ has full support, o(1) is
well-defined. And (ρ|P )1 = (ρo(1))|P .
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[ρi2|{lt, ll}]/X tt tl lt ll
[ρ22|{lt, ll}] 0 0 1/2 1/2
[ρ12|{lt, ll}] 0 0 1 0

Table 6: The result of conditioning ρ2 in Table 4 on {lt, ll}

2. o(n+ 1) = min{o(n) < k ≤ |ρ| : ρ(k)∩ S 6= ∅}. If there is no such n, then
|ρ|P | = n. Otherwise (ρ|P )n+1 = (ρo(n+1))|P .

If ρ|P does not have full support, the conditional probability ρ|P may not
be well-defined. According to decision theorists, another attractive feature of
lexicographic probability systems with full support is that conditional probabil-
ities are well-defined for any event [3]. We can use conditional probabilities to
represent conditional preferences.

Definition 3 Let X be a set of states of the world and O a set of options.
Suppose that (ρ, u) represent a preference ordering º over O, where ρ has full
support. Then for each nonempty event P ⊆ X, the conditional preference º|P
is defined by: a º|P b ⇐⇒ LEU(a, ρ|P, u) ≥ LEU(b, ρ|P, u).

For an event P ⊆ X, I write P for the complement of P in X. I remark that
in the paper of Blume, Brandenburger and Dekel [3], conditional preference is
defined differently, namely in the standard decision-theoretic manner: to com-
pare a and b conditional on event P , compare two acts a0, b0 that yield the same
outcome in all states of the world in P , and that agree with a and b respec-
tively on states of the world in P . Blume, Brandenburger and Dekel then prove
that for an LPS with full support, conditional lexicographic expected utility
characterizes conditional preferences as indicated in Definition 3 [3, Th.4.3].
I will make use of the fact that lexicographic preferences satisfy the “sure

thing” principle: improving the expected payoff of an option a over a range of
possibilities P without affecting the expected payoff over P yields an option a0

that is preferred to a overall. Formally, we have the following result.

Proposition 4 (Blume, Brandenburger and Dekel) Suppose that (ρ, u) rep-
resent a preference ordering º, where ρ has full suppport, and let P be a non-
empty event. For all options a, b, if a Â|P b and a ∼|P b, then a Â b.

The proposition is an immediate consequence of Theorem 4.1 (i) in [3].

3.2 Revision of Lexicographic Beliefs

I introduce a new operation ρ ∗ P = [ρ|P ](1), which assigns to each event P
the support of the first probability measure in ρ|P . I refer to this operation
as the revision of ρ on P . For example, in the LPS ρ2 above, we have that
ρ2∗{lt, ll} = {lt} (see Table 6). A revision on P can be thought of as representing
the “primary theory” or “first-order beliefs” of the agent given the information
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P . The following simple lemma provides an intuitive interpretation of revision:
the revision of ρ on P selects exactly the states of the world x in P that are
maximal in the “plausibility” ordering ≥ρ. I omit the straightforward proof.

Lemma 5 Let ρ be an LPS over X, and let P ⊆ X. Then for all points x ∈ P ,
it is the case that x ∈ (ρ ∗ P ) ⇐⇒ ∀x0 ∈ P.x ≥ρ x0.

As Stalnaker has noted [20, fn.12], lexicographic probability systems are
closed related to belief revision structures that feature in the well-known AGM
belief revision theory [7], [17]. Each LPS induces a revision operator + defined
by ρ(1)+P =df ρ ∗P . If we interpret this operation as a revision of the agent’s
“primary theory” ρ(1) on the information P , it is easy to verify that the revision
satisfies the well-known AGM axioms for minimal belief change. A difference
is that in the AGM theory, a belief revision operator is a binary function from
“current beliefs” K and “new information” P to new beliefs; in contrast, the
revision associated with an LPS is a unary function of information P . (Hans
Rott discusses advantages and disadvantages of unary vs. binary belief revision
operators [15].)

4 General Epistemic Assumptions
Consider a 2-player game G = hS1, S2, u1, u2i, with sets of options S1 and S2,
and utility functions u1, u2 defined on S1 × S2. Let W be a set of states of the
world. A given state of the world w associates the following elements with each
player i:

1. a strategy choice choicewi ∈ Si
2. a preference ordering ºwi over the options Si
3. a LPS ρwi over S−i, and hence a weak ordering ≥wρiover S−i; I write more
concisely ≥wi =df≥wρi .

4. a belief operator Bwi . If A is an assertion about the game G, then Bi(A)
expresses the fact that in w, player i believes A.

One may take the belief operator Bi as given or interpret it in various ways,
for example such that Bi(A) represents probability 1 belief in A [18], or that
Bi(A) is the “first-order belief” of an agent in a lexicographic probability system,
for example an LPS over a type space [11], [5], or that Bi(A) corresponds to
“certain belief” [1] (A receives probability 0 in every probability measure of
an LPS of player i; see Section 5.2.) For both simplicity and generality, I do
not interpret the belief operator further, but instead state axiomatically my
assumptions about it. The theorems in this paper hold for any concept of belief
that satisfies my axioms.
In what follows, I consider the implications of various conditions on the

epistemic elements listed above. Using the techniques of epistemic logic, it would
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be possible to develop a precise formal language for stating such assumptions
[8]. For most of this paper, a semi-formal understanding is sufficient. I begin
with a number of basic epistemic principles. I will indicate throughout the paper
which of my results depends on which of these principles.

Definition 6 Basic Epistemic Principles

1. (Lexicographic rationality) ρi, ui represent ºi.
2. (Full Support) ρi has full support.

3. (Preference Maximization) If choicei = si, then ∀s0i.si ºi s0i.
4. (Preference Introspection) If Bi(si º s0i), then si º s0i.

I use the notion of common belief. If A is an assertion about the game
G, I write CB(A) to denote that A is common belief among the players. Define
the set of belief assertions about A, denoted by F (A), as follows.

1. Bi(A) and B−i(A) are in F .

2. If F 0 is in F (A), then Bi(F 0) and B−i(F 0) are in F (A).

3. No other expression is in F (A).

Then CB(A) holds in a state of the world iff all belief assertions F (A) about
A hold. Note that it follows from the definition that if CB(A) holds, then so
does CB(Bi(A)) for each player i. I make the following assumptions about
common belief throughout this paper.

1. Common belief is closed under implication, that is, if CB(if A then B)
and CB(A) hold, then CB(B) holds as well.

2. Mathematical and logical truths are common belief.

3. All aspects of the game, or game tree for extensive form games, are com-
mon belief among the players. In particular, the utility functions are
common belief, and thus there is no uncertainty about payoffs.

5 Respect for Preferences
This section formalizes my key assumption, respect for public preferences, and
clarifies its relationship with previous work, particularly with Asheim’s notion
of respect for preferences and proper consistency.

12



5.1 Respect for Public Preferences

Let us return to the example of Section 1 in which an agent A has three op-
tions, $300, $200, $100. Suppose that an agent B believes that A’s preference
ranking is $300 Â $200 Â $100. Then if B respects preferences, the first-order
probability measure of B’s lexicographic belief system conditional on the event
{$200, $100} assigns probability 1 to $200. In terms of the revision of lexico-
graphic beliefs described in Section 3, the revision of B’s beliefs on the event
{$200, $100} entails that A chooses $100. As a general principle, we have the
following axiom.

Axiom 7 For each agent i, if Bi(s−i Â s0−i), then ρi ∗ ({s−i, s0−i}) = {s−i}.

Axiom 7 constrains revisions on binary choices of another agent, which in the
game-theoretic setting are revisions on a set containing two states of the world;
it is easy to see that the >ρ ordering associated with an LPS ρ determines the
result of such revisions. Hence we have the following lemma.

Lemma 8 Let ρ be a lexicographic probability system ρ, and let x, x0 be any two
states of the world. Then ρ ∗ {x, x0} = {x} ⇐⇒ x >ρ x

0.

If Bi(s−i Â s0−i), then by Axiom 7, ρi ∗ ({s−i, s0−i}) = {s−i}. So by Lemma
8, Bi(s−i Â s0−i) implies that s−i >i s0−i. Thus if agent i believes that agent −i
prefers option s−i to s0−i, then agent i ranks s−i higher than s

0
−i, or “considers

s−i infinitely more likely than s0−i”. A weaker assumption is that this principle
holds only for preferences that are public, in the sense that they are common
belief among the agents. My next axiom asserts that for public preferences that
are common belief, it is also common belief that the preferred option is ranked
above the dispreferred one.

Axiom 9 (Respect for Public Preferences) For each agent i, if CB(si Âi s0i),
then CB(si >−i s0i).

Axiom 9 is the crucial assumption for deriving the validity of the Iterated
Backward Inference procedure that I describe in Section 6; I refer to Axom 9 as
Respect for Public Preferences. Given our assumptions about common belief,
it is possible to derive Axiom 9 from common belief in Axiom 7.

Lemma 10 Common belief in Axiom 7 implies Respect for Public Preferences.
In other words, common belief in Axiom 7 implies Axiom 9.

The remainder of this paper investigates the consequences of Respect for
Public Preferences, combined with the general epistemic assumptions laid out
in Section 4. Before I start this investigation, I clarify the relationship between
my epistemic assumptions and previous work, particularly Schuhmacher and
Asheim’s results on proper rationalizability. Reading the next subsection can
be omitted without loss of continuity.

13



5.2 Proper Rationalizability and Respect for Preferences

Axiom 7 is very closely related to Asheim’s definition of “respecting preferences”
[1, Sec. 4.1]. I outline Asheim’s definition to clarify the precise relationship; for
more details see [1]. The definition is given in a semantic framework with types.
A state of the world is a tuple (s1, s2, t1, t2) where si is a pure strategy for player
i and ti is a type of player i from the set Ti of types of player i. In Asheim’s
framework, there are only finitely many types for each player [1, Def.1]. For
each type ti ∈ Ti there is a preference relation ºtiover the pure strategies of
player i, and an LPS ρti over the points in S−i×T−i. For a given lexicographic
system ρ over points X, define certain belief Bρ by Bρ(E) iff supp(ρ) ∩E = ∅.
In other words, E is certain belief given ρ iff E receives probability 0 in every
measure in ρ. The dual possibility operator Pρ associated with an LPS ρ is given
by Pρ(E) ⇐⇒ ¬Bρ(E). Finally, define the events [ti] = {(si, ti) : si ∈ Si} and
[si] = {(si, ti) : ti ∈ Ti}, where the events are in the space Si × Ti.
Asheim introduces a cautiousness condition for players’ beliefs. The event

that player i is cautious is defined by: (s1, s2, z1, z2) ∈ caui ⇐⇒ for all types
t−i ∈ T−i, if Pρzi ([t−i]), then Pρzi ({(s−i, t−i)}) for all s−i ∈ S−i. So player i
is cautious if for each type t−i that i considers epistemically possible, we have
that i considers all strategies s−i ∈ S−i (i.e., all pairs (s−i, t−i)) epistemically
possible.
In this notation, Asheim’s definition of the event that player i respects prefer-

ences corresponds to: (s1, s2, z1, z2) ∈ respi ⇐⇒ for all pairs (s−i, t−i), (s0−i, t−i) ∈
S−i × T−i, if Pρzi ([t−i]) and s−i Ât−i s0−i, then (s−i, t−i) >ρzi (s

0
−i, t−i). To

illustrate, suppose that player 1 considers epistemically possible a type t2 of
player 2 (i.e., Pρt1 ([t2])), and that type t2 prefers strategy s2 to s02. Then player
1 ranks the pair (s2, t2) higher than (s02, t2) in his LPS ρt1 . The intuition is very
close to that behind Axiom 7: given that player 2’s prefers s2 to s02 (i.e., given
that his type is t2), player 1 ranks s2 higher than s02.
To see how my results relate to Asheim’s axioms, interpret the belief operator

Bi as certain belief Bρti , and the lexicographic probability system ρi as the
marginal ρtim of ρti , which is defined by (ρtim)

j(s−i) =df Σt−i∈T−i(ρ
ti)j(s−i).

With this interpretation, cautiousness and respect for preferences imply Axiom
7. To verify the implication, let [si Âi s0i] = {(ri, ti) : si Âti s0i} be the event in
Si × Ti corresponding to player i’s preference for si over s0i, for each player i.
Assume cautiousness and respect for preference and suppose that Bi(s−i Â s0−i)
holds in a state of the world (s1, s2, t1, t2), that is, Bρti ([s−i Â−i s0−i]) holds.
Consider the revision ρtim ∗ ({s−i, s0−i}). Let r−i ∈ ρtim ∗ ({s−i, s0−i}); then there
is a type t−i such that (t−i, r−i) ∈ ρti ∗([s−i]∪ [s0−i]), and r−i = si or r−i = s0−i.
Since player i believes with certainty that s−i Â−i s0−i (i.e., Bρti ([s−i Â−i s0−i])),
it follows that s−i Ât−i s0−i. By cautiousness, both (s−i, t−i) and (s0−i, t−i) are in
the support of some measure in ρti . Since s−i Ât−i s0−i, respect for preferences
implies that (s−i, t−i) >ρti (s

0
−i, t−i). Hence by Lemma 5, (s

0
−i, t−i) /∈ ρti ∗

([s−i] ∪ [s0−i]), and so r−i = s−i. Thus for all r−i ∈ ρtim ∗ ({s−i, s0−i}), we have
that r−i = s−i, as required by Axiom 7.
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From a strict logical point of view, the converse is false: It is possible for
Axiom 7 to hold even given cautiousness and respect for preferences. For ex-
ample, if player i does not certainly believe in any preference of player −i, then
Axiom 7 holds vacuously even if player i does not respect preferences. However,
conceptually there appears to be very little difference between the two princi-
ples. For player i to respect preferences basically requires that conditional on
the information that player −i has some (epistemically possible) type t−i, and
hence a preference ordering ºti , the LPS of player i satisfies Axiom 7 with re-
spect to ºti . It seems therefore that in any state in which Axiom 7 is common
belief, respect for preferences ought to be common belief as well.
It is easy to see that cautiousness implies my principle of Full Support (Defi-

nition 6): if ρti is cautious, then ρtim has full support over S−i. It is interesting to
note, however, that certain belief in cautiousness is much stronger than certain
belief in Full Support. Indeed, certain belief in cautiousness is inconsistent with
certain belief in Preference Maximization (Definition 6), for any pair (ti, si) such
that si is not maximally preferred by type ti violates Preference Maximization.
Hence certain belief in Preference Maximization implies that −i considers (ti, si)
impossible (i.e., ¬Pρt−i ({ti, si}), which violates cautiousness for any type ti that
is subjectively possible for −i (i.e., Pρt−i ([ti]) holds). Intutively, if all mistakes
are subjectively possible, then it cannot be subjectively impossible that an agent
makes no mistake. One may of course have certain belief in cautiousness to-
gether with a weaker form of belief in Preference Maximization, for example
“first-order belief” in the sense that (ρt−i)1 assigns probability 1 to Preference
Maximization.
Respect for public preferences (Axiom 9) is both logically and conceptually

weaker than respect for preferences because it applies only to preferences that
are common belief among the agents. Thus even if, for example, player 1 has
certain belief that player 2 prefers s2 to s02, but this fact is not common (certain)
belief, then Axiom 9 does not require player 1 to respect the preference of s2
over s02 (i.e., the Axiom allows that s

0
2 >ρt1 s2). As it turns out, the weak condi-

tion of respect for public preferences is sufficient to validate Iterated Backward
Inference, the elimination procedure presented in this paper.
Asheim refers to the conjunction of cautiousness and respect for preferences

(plus knowledge of the game structure) as proper consistency [1, Sec. 4.1]. A
strategy si is properly rationalizable if si maximizes preferences in a state of the
world in which there is common (certain) belief of proper consistency [1, Def. 2].
Asheim proves that this definition of proper rationalizability is equivalent to the
previous one by Schuhmacher [1, Prop. 3], [16]. Since common belief in proper
consistency entails common belief in Axiom 7, which in turn entails respect
for public preferences, the upshot is that Iterated Backward Inference can be
used to compute properly rationalizable strategies: if the procedure eliminates
a strategy si, then si is not properly rationalizable.
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6 An Iterated Elimination Procedure for Re-
spect for Public Preferences

My iterated elimination procedure for deriving consequences of Respect for Pub-
lic Preferences combines two principles: “local” dominance at an information
set, and backward inference. We will see that these two principles are conse-
quences of lexicographic rationality. I begin with dominance at an information
set.

6.1 Sequential Admissibility

To compare two strategies si, s0i at an information set Ii, I compare their payoffs
against strategies s−i that reach Ii. To ensure comparability, I require that si
and s0i are consistent with exactly the same strategies s−i at Ii (in symbols,
cons(si, Ii) = cons(s

0
i, Ii)). In Section 9 we shall see that in games with perfect

recall, cons(si, Ii) = [Ii]−i for any strategy si that reaches Ii. Hence in games
with perfect recall, the condition that cons(si, Ii) = cons(s0i, Ii) can be replaced
by the condition that si and s0i are both consistent with Ii. This yields the
following definition of dominance at an information set.

Definition 11 Let T be a game tree with perfect recall with information set Ii
belonging to player i.

1. si weakly dominates s0i at Ii ⇐⇒

(a) si and s0i are each consistent with Ii (i.e., si, s
0
i ∈ [Ii]i), and

(b) there is a strategy s−i consistent with Ii (i.e., s−i ∈ [Ii]−i) such that
ui(si, s−i) > ui(s0i, s−i), and

(c) for all s−i consistent with Ii, we have that ui(si, s−i) ≥ ui(s0i, s−i).

2. si strictly dominates s0i at Ii given Σ−i ⊆ S−i(T ) ⇐⇒

(a) si and s0i are each consistent with Ii, and

(b) Ii is consistent with Σ−i (i.e., [Ii]−i ∩Σ−i 6= ∅), and
(c) for all s−i ∈ [Ii]−i ∩Σ−i, we have that ui(si, s−i) > ui(s0i, s−i).

According to the first part of this definition, a strategy si weakly dominates
s0i at an information set Ii if si weakly dominates s

0
i if we restrict the space of

strategies of the other player −i to those that reach information set Ii. The
definition of strict dominance at an information set is similar to that of weak
dominance, but has an extra parameter Σ−i to represent the result of previous
rounds of elimination. To illustrate, in the Centipede game (Figure 1) for player
1 the strategy lt weakly dominates ll at information set I1 (and hence in the
entire game), and strictly dominates ll at I3 given {l2, t2} (that is, no matter
what player 2 chooses). The strategy tt strictly dominates both lt and ll at I1
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given {t2}. For player 2, the strategy t2 strictly dominates l2 at I2 given {lt}.
In Kohlberg’s game (Figure 2), for player II the strategy UL strictly dominates
DL at information set I1 given SI(T ) (that is, no matter what player I does).
At I2, the strategy yT strictly dominates nB given SII(T ), and yT strictly
dominates nT given {DR}. Finally, at I4 the strategy nB strictly dominates
nT given {DR}.
A simple but important fact is that strict dominance is robust in the sense

that if a strategy si strictly dominates another strategy s0i, given some restriction
Σ−i, dominance still obtains under a stricter restriction Σ0−i ⊂ Σ−i, provided of
course that Σ0−i is consistent, that is, not empty. The next lemma records this
fact for future reference.

Lemma 12 Let T be a game tree with perfect recall. Suppose that a strategy si
strictly dominates s0i given Σ−i ⊆ S−i(T ) at information Ii. Let Σ0−i ⊆ Σ−i be
such that [Ii]−i ∩Σ0−i 6= ∅. Then si strictly dominates s0i at Ii given Σ0−i.
The proof is immediate from Definition 11.

6.2 Entailment Inference and Backward Inference

In addition to local dominance at an information set, the second component of
the iterated elimination procedure draws inferences from the results of elimi-
nation at one information set I to eliminate strategies at another information
set I 0. Consider two information sets I, I 0 such that all strategies si for player
i consistent with I are also consistent with I 0. Let us say that in this case I
entails I 0 for player i; so I entails I 0 for player i iff [I]i ⊆ [I 0]i. The general
principle is this: if a strategy si consistent with I is considered unlikely given
the information in the set I, and I entails I 0 for player i, then si is considered
unlikely given the information in the set I 0. Intuitively, if si is considered un-
likely given I, then there is a possibility s0i consistent with I that is considered
more likely than si. Since I entails I 0, the possibility s0i is consistent with I

0 and
hence si is not among the most likely possibilities given I 0. To give the principle
a precise formulation, I interpret “si is considered unlikely at information set
I” to mean that the revision on I rules out the strategy si. Then in symbols,
the entailment inference principle is that

if [I]i ⊆ [I 0]i, and si ∈ [I]i,but si /∈ ρ−i ∗ [I]i, then si /∈ ρ−i ∗ [I 0]i. (1)

Or contrapositively: If I entails I 0 for player i, then (ρ−i ∗ [I 0]i) ∩ [I]i ⊆
ρ−i ∗ [I]i. For example, in the Centipede game, if lt /∈ ρ2 ∗ [I3]1, then the
entailment inference principle implies that lt /∈ ρ2 ∗ [I2]1. In Kohlberg’s game,
if nT /∈ ρI ∗ [I4]II , then the principle implies that nT /∈ ρI ∗ [I2]II . On the
other hand, in Kohlberg’s game it is not the case that [I1]2 ⊆ [I2]2 (since for
example UL is consistent with I1 but not with I2), so even if DL is considered
unlikely at I1, the principle does not allow us to infer that DL is considered
unlikely at I2. For example, we may have that ρ1 ∗ [I1]2 = {UL,UR} and

17



ρ1 ∗ [I2]2 = {DL,DR}. Thus Principle 1 does not in general license “forward
induction” arguments.1

Lexicographic revision satisfies Principle 1. The next Lemma shows that
this is due to a very general property of lexicographic probability systems which
holds independent of a particular game structure.

Lemma 13 Let ρ be an LPS with full support, and suppose that P ⊆ P 0. Then
(ρ ∗ P 0) ∩ P ⊆ ρ ∗ P .
Proof. Let x0 ∈ (ρ ∗ P 0) ∩ P . Then x0 is minimal in P 0, that is, x∗ ≤ρ x0 for

all x∗ ∈ P 0. Since P ⊆ P 0, it follows that x0 is minimal in P . Hence x0 ∈ ρ ∗ P .

If we set [I]i = P , and [I 0]i = P 0, it is apparent that Principle 1 is an
instance of (the contrapositive of) Lemma 13. Standard backward inference can
be seen as an instance of Principle 1. Intuitively, in backward inference a player
“looks ahead” and “reasons back”. Suppose that we have an information set
Ii belonging to player i that follows some other information set I, which may
belong to player −i (in symbols, Ii ≥ I). In Clause 3 of Lemma 25 in Section
9 below I show that in this case Ii entails I for player i (given perfect recall).
So by Principle 1, we have that if a strategy si consistent with I is considered
unlikely given the information in the set Ii, then it is considered unlikely given
the information in the set I. In symbols, we have that for games with perfect
recall :

if Ii > I, and si ∈ [I]i,but si /∈ ρ−i ∗ [Ii]i, then si /∈ ρ−i ∗ [I]i. (2)

I refer to the instance 2 of Principle 1 as the backward inference princi-
ple. Given that [Ii]i ⊆ [I]i, Principle 2 is an instance of Principle 1. Note that
the backward inference principle generalizes standard backward induction for
games of perfect recall but imperfect information . This is especially clear when
we have two information sets Ii, I−i such that Ii > I−i and I−i > Ii (which is
impossible in games of perfect information, but possible in games with perfect
recall). In this case neither Ii nor I−i is “lower than” the other, so traditional
backward induction does not apply, but Principle 2 does.
Backward inference is the typical application of Principle 1. A different

case in which the principle applies occurs when we have two information sets
I, I 0 such that I < I 0, and all strategies consistent with information set I are
consistent with I 0–that is, [I] ⊆ [I 0], and hence [I]i ⊆ [I 0]i. This special case
arises in a game with just two information sets, such as results from transcribing
a game matrix directly into a game tree. For example, Figure 3 shows a game
tree in which players’ options are just their strategies in the Centipede game.
If for example l2 /∈ ρ1 ∗ [I1]2, then l2 /∈ ρ1 ∗ [I2]2; in general, we have that
ρ1 ∗ [I2]2 ⊆ ρ1 ∗ [I1]2.

1The following principle comes close to forward induction arguments: if si ∈ [I]i−ρ−i ∗ [I],
and ρ−i ∗ [I]i ∩ [I0]i 6= ∅, then si /∈ ρ−i ∗ [I0]i. This implies that if ρ1 ∗ [I1]2 = {UL,UR,DR},
then ρ1 ∗ [I2]2 = {DR} as required by forward induction. Lexicographic revisions satisfy this
principle; note however that it does not depend on I or I0 being ordered in any particular
way.
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Figure 3: A game tree corresponding to the strategic form of the Centipede
game

6.3 Iterated Backward Inference: Definition and Exam-
ples

Now I define the iterated elimination procedure, which I refer to as Iterated
Backward Inference, or IBI for short.

Definition 14 (Iterated Backward Inference) Let T be a game tree. Then
define for all players i, for all information sets Ii, strategies si ∈ Si(T ), s−i ∈
S−i(T ):

1. si ∈ Γ0i (I) ⇐⇒

(a) si is consistent with I (i.e., si ∈ [I]i), and
(b) for all information sets Ii belonging to player i such that [Ii]i ⊆ [I]i,

we have that si is not weakly dominated at Ii given S−i(T ).

2. si ∈ Γn+1i (I) ⇐⇒

(a) si ∈ Γni (I), and
(b) for all information sets Ii belonging to player i such that [Ii]i ⊆ [I]i,

we have that si is not strictly dominated at Ii given Γn−i(Ii).

We may think of round n of Iterated Backward Inference as assigning a set of
uneliminated strategies Γni (I) and Γ

n
−i(I) for each player, to each information

set I. To begin with, if strategy si is not eliminated at round n at I, then
si must be consistent with I. Furthermore, in round 0, si is eliminated at an
information set I if there is another information set Ii that entails I for i, such
that si is weakly dominated at Ii. In a later round n + 1, a strategy si is
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information set/
surviving strategies

I1 I2 I3

Γ01 tt, tl, lt lt lt
Γ02 l2, t2 l2, t2 l2

Γ11 tt, tl, lt lt lt
Γ12 t2 t2 l2

Γ21 tt, tl lt lt
Γ22 t2 t2 l2

Table 7: Iterated Backward Inference in the Centipede Game (see Figure 1)

eliminated at I if there is an information set Ii that entails I for i, such that si
is strictly dominated at Ii given the result of previous rounds of elimination.
Iterated Backward Inference assigns a set of strategies to an information set

I rather than computing predictions for the game tree T as a whole. However,
we may take the strategies that survive Iterated Backward Inference at every
information set at stage n to be those that survive IBI for the game as a whole at
stage n. Accordingly, define Γni (T ) =df {si : ∀Ii. if si ∈ [Ii]i, then si ∈ Γni (Ii)}.
The set of strategy profiles consistent with IBI at stage n is then given by
Γn(T ) = Γn1 × Γn2 . It is immediate from the definition of the Γ procedure that
at stage n+ 1, the strategy set surviving for each player i at each information
set I becomes smaller or stays the same. In a finite game, in which there are
only finitely many strategies and information sets, this entails that eventually
no more strategies will be eliminated at any information set. Let max(T ) be the
least stage m at which no additional strategy is eliminated at any information
set. I write Γ∞i (I) for Γ

max
i (I), and similarly Γ∞(T ) for Γmax(T ). Similarly I

write Γ∞i (I) for Γ
max
i (I), and similarly Γ∞(T ) for Γmax(T ). The upshot is that

we may treat Γ∞(I) as the prediction of Iterated Backward Inference for play
reaching the information set I, and treat Γ∞(T ) as the prediction of Iterated
Backward Inference for the game tree T .
To illustrate the procedure, I show its computations on the games of Figures

1, 3 and 2. The columns correspond to information sets in the game and the
rows show the set of strategies Γni ,Γ

n
−i surviving at each round of elimination,

for each player. Table 7 shows that the final result of the computation in the
Centipede game is for Player 1 to take at all his information sets, and for player
2 to take at his. Formally, we have that Γ∞1 (T ) = {tt, tl} and Γ∞2 (T ) = {t2}.
This result agrees with standard backward induction; in Section 8 I establish
that Iterated Backward Inference agrees with backward induction in all perfect
information games with a unique subgame-perfect equilibrium, of which the
Centipede game is an example.
Table 8 shows that Iterated Backward Inference eliminates just one strategy

in the matrix tree (normal form) of the Centipede game, namely ll which is
weakly dominated by lt. After ll is dominated, there is no strict dominance,
and the procedure terminates.
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information set/
surviving strategies

I1 I2

Γ01 tt, tl, lt tt, tl, lt
Γ02 l2, t2 l2, t2

Table 8: Iterated Backward Inference in a matrix game tree for the Centipede
game (see Figure 3)

information set/
surviving strategies

I1 I2 I3 I4

Γ01 yT, yB, nT yT, yB, nT nT, nB nT, nB
Γ02 UL,UR,DR DL,DR DL,DR DL,DR

Γ11 yT, yB, nT yT, yB, nT nT, nB nT, nB
Γ12 UL,UR DL,DR DL,DR DL,DR

Table 9: Iterated Backward Inference in Kohlberg’s game (Figure 2)

This example illustrates two main points. First, in games with two informa-
tion sets, which are essentially just another representation of the strategic form
of a game, Iterated Backward Inference coincides with the Dekel-Fudenberg pro-
cedure: First eliminate all weakly dominated strategies, then iteratively elimi-
nate strictly dominated strategies. In light of Theorem 15 below, it follows that
the Dekel-Fudenberg procedure is valid for deriving consequences of Respect for
Public Preferences. The second point is that Iterated Backward Inference can
yield different results for game trees that have the same normal form, as the
two game trees for the Centipede Game do. In each case, the output of Iterated
Backward Inference is valid in the sense that Respect for Public Preferences
entails that eliminated strategies will not be played. In our examples, applying
IBI in the game tree of Figure 3 yields the result that Player 1 does not choose
ll, and applying IBI in the game tree of Figure 1 yields the result that Player 1
chooses neither ll nor lt. This illustrates how in some game trees IBI provides
more information than in others, in that the procedure finds more of the conse-
quences of Respect for Public Preferencess. Thus although my main epistemic
principle, Respect for Public Preferences, pertains to the strategic form of a
game, and hence is independent of any particular extensive form, the compu-
tational procedure that I investigate in this paper does depend on a particular
choice of game tree. For a given game G in strategic form, we would like to have
a canonical game tree T (G) such that a strategy si is consistent with Respect
for Public Preferences just in case si survives IBI in T (G). The most impor-
tant formal question left open in this paper is the existence and construction of
canonical game trees for IBI.
Table 9 shows the computation of Iterated Backward Inference in Kohlberg’s

game. This example illustrates two points. First, even though Kohlberg’s game
is not a game of perfect information, Iterated Backward Inference yields a unique

21



outcome prediction: that player II will choose U immediately, resulting in pay-
offs (0, 2). (For Γ∞II(T ) = {UL,UR}.) Second, the game shows how Iterated
Backward Inference incorporates backward reasoning but not forward reason-
ing. At information set I2, both yT and yB strictly dominate nB, so nB is
eliminated at I2 at round 0, and hence by backward inference, nB is also elim-
inated at I1 at round 0. After nB is eliminated, UL and UR strictly dominate
DR at information set I1 in round 1, leaving U as the only choice for player
II. By contrast, there are two forward induction arguments that IBI does not
incorporate. First, since DL is eliminated at I1, one might take forward induc-
tion to imply that DL should be eliminated at I2 as well. Second, since nB is
eliminated at I2, one might take forward induction to imply that nB should be
eliminated at I3 as well.

7 Soundness of Iterated Backward Inference and
Existence of Solution

This section contains the main theorems of this paper. First, I show my key
result: For finite games with perfect recall, if Respect for Public Preferences
obtains and lexicographic rationality (with full support) is common belief, then
it is common belief that each player believes that play follows Iterated Backward
Inference, at each information set I. Second, I establish existence: in finite
games there are some predictions consistent with Iterated Backward Infernence.

7.1 Soundness

Theorem 15 Let T be a finite game tree with perfect recall and assume that
Lexicographic Rationality and Full Support are common belief (see Definition
6). Then Respect for Public Preferences (Axiom 9) implies that for all n, i, I:

1. if a strategy si is strictly dominated at an information set I given Γn−i(I),
then CB(∃s0i ∈ [I]i.s0i Âi si), and

2. CB(ρ−i ∗ [I]i ⊆ Γni (I)).

Recall that choicei denotes the strategy choice of player i. The strategy pro-
file chosen is then given by choice =df choice1× choice2. It is a simple corollary
from Theorem 15 that Iterated Backward Inference makes correct predictions
about the choices of the players, given Respect for Public Preferences and the
standard epistemic assumptions.

Corollary 16 Let T be a finite game tree with perfect recall and assume that
Lexicographic Rationality and Full Support are common belief. Then Respect for
Public Preferences (Axiom 9), Preference Maximization and Preference Intro-
spection (see Definition 6) imply that choice ∈ Γn(T ) for all n.
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7.2 Existence of Solution

At a given information set I, the set of possible strategy combinations consistent
with Iterated Backward Inference is given by Γn(I) =df Γn1 (I)×Γn2 (I). The next
lemma says that under perfect recall, the set of strategy profiles consistent with
IBI decreases as we move down the game tree from one information set Ii to
another I 0i.

Lemma 17 Let T be a game tree with perfect recall. Then for all players i,
information sets Ii, I 0i belonging to i, if I

0
i ≥ Ii, then Γn(Ii) ∩ [I 0i] ⊆ Γn(I 0i).

The inclusion is not an equality because it may be the case that Γn(Ii)∩[I 0i] =
∅. For example, in the Centipede game we have that Γ1(I1) = {(tt, t2), (tl, t2), (lt, t2)},
and Γ1(I3) = {(lt, t2)}; here [I3] = {(ll, l2), (lt, l2)} so Γ1(I1) ∩ [I3] = ∅. Given
Lemma 17, we can establish that in finite games with perfect recall, Iterated
Backward Inference returns a nonempty result.

Proposition 18 Let T be a finite game tree with perfect recall. Then Γn(T ) 6= ∅
for all n.

It is easy to see that in infinite games existence may fail. The simplest
example is a 1-player game in which the player may choose any natural number
k, and the utility function is just u1(k) = k. Since each option is strictly
dominated in this game, IBI eliminates all options. For finite games, we have
the following characterization of strategies that survive all rounds of elimination.

Lemma 19 Let T be a finite game tree with perfect recall. A strategy si is in
Γ∞i (I) ⇐⇒ for all information sets Ii such that si is consistent with Ii and Ii
entails I for I:

1. si is admissible at Ii given S−i(Ii), and

2. si is not strictly dominated at Ii given Γ∞−i(Ii).

8 Backward Induction
Backward inference is more general than traditional backward induction in that
it applies to games with imperfect information (cf. Section 6.2). In this section
I show that in finite perfect information games or repeated stage games in
which backward induction yields a unique solution, Iterated Backward Inference
agrees with the backward induction solution. In such games Iterated Backward
Inference includes backward induction as a special case.

8.1 Preliminaries

A game tree T has perfect information just in case each information set in
T is a singleton. For game trees with perfect information I write x instead of
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{x} to denote an information set. In a game of perfect information, each node
x is the root of a subgame of perfect information, which I denote by Tx. I write
ui(si, s−i, x) for the payoff to player i that results if the game begins at node x
and follows strategies si and s−i. A strategy pair (si, s−i) is a subgame perfect
equilibrium in T iff for each player i, we have ui(si, s−i, x) ≥ ui(s0i, s−i, x) for
all strategies s0i and all nodes x in T . If a game tree has a unique subgame
perfect equilibrium, I write bi(x) for the payoff that player i receives in the
subgame Tx in the unique subgame perfect equilibrium. Note that a game tree
with perfect information has a unique subgame perfect equilibrium just in case
each subgame Tx has a unique subgame perfect equilibrium.
For example, in the Centipede game of Figure 1, the unique subgame perfect

equilibrium is (tt, t2), and b1(∅) = 1, b1(leave) = 0, b1(leave ∗ leave) = 3, while
b2(∅) = 0, b2(leave) = 2, b2(leave ∗ leave) = 1.
Suppose that player i moves first in a game tree T with root r, and that T

has a unique subgame perfect equilibrium (si, s−i). I say that move a for player
i is a BI-maximizer iff bi(r ∗ a) ≥ bi(r ∗ a0) for all other moves r ∗ a0 in T . It is
easy to see that si(r) must be a BI-maximizer.

Lemma 20 Let T be a game tree of perfect information with a unique sub-
game perfect equilibrium (si, s−i). Then a strategy profile (s0i, s

0
−i) is equal to

(si, s−i) ⇐⇒

1. s0i(r) is a BI-maximizer, and

2. (s0i, s
0
−i) is an SPE in each subtree Tr∗a.

8.2 Iterated Backward Inference and Backward Induction

The main difference between Iterated Backward Inference and subgame perfec-
tion is that IBI does not consider the behaviour of a strategy si at an informa-
tion set Ii that is unreachable with si. For example, in the Centipede game,
the strategy profile (tl, t2) survives IBI (i.e., (tl, t2) ∈ Γ∞(T )), but tl, t2 is not
a subgame perfect equilibrium because tl chooses l at the node leave ∗ leave,
which is not a BI-maximizer. However, I show that if si survives IBI, then
at all reachable information sets, si agrees with subgame perfection (backward
induction). I say that a profile (si, s−i) is extendible to an SPE (subgame
perfect equilibrium) in a tree T iff there is a strategy profile (s0i, s

0
−i) such that

1. (s0i, s
0
−i) is an SPE in T , and

2. for all x in T : if player(x) = i and si ∈ [x]i, then si(x) = s0i(x), and
likewise for player −i.

For example, in the Centipede game (tt, t2) extends (tl, t2). I observe that
if (s0i, s

0
−i) extends (si, s−i), then play(si, s−i) = play(s

0
i, s

0
−i). In terms of ex-

tendibility, the fact that a strategy si surviving IBI agrees with backward induc-
tion at any information set Ii consistent with si amounts to the requirement that
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si can be extended to a subgame perfect strategy s0i by setting si(Ii) = s0i(Ii)
whenever Ii is inconsistent with si. The next proposition verifies that this is
the case for strategies surviving Iterated Backward Inference.

Proposition 21 Let T be a finite game tree with perfect information and a
unique subgame perfect equilibrium. Then for each node x, for each strategy
profile (si, s−i) ∈ Γ∞(x), we have that

1. (si, s−i) is extendible to an SPE in Tx, and

2. ui(si, s−i, x) = bi(x).

Proposition 21 implies that the play consistent with IBI is exactly the back-
ward induction play. For if r is the root of the game tree T , then it is easy
to see that Γ∞(r) = Γ∞(T )–a strategy survives IBI just in case it survives
each round of elimination at the root. So by Proposition 21, every strategy
pair (si, s−i) ∈ Γ∞(T ) is extendible to the unique SPE in Tr = T . So the play
sequence of every strategy pair surviving IBI is the backward induction path.
In addition to game trees with perfect information, subgame perfection yields

a unique outcome in a finite repetition of a stage game with a unique Nash equi-
librium. A well-known example is the Prisoner’s Dilemma. We can show that if
IBI yields a unique outcome prediction for a game G, its prediction for the re-
peated game Gk is that each repetition will have the same outcome as predicted
for the stage game. Thus in a finitely iterated Prisoner’s Dilemma, IBI predicts
defection at each stage, as backward induction does. The demonstration of this
observation is similar to the proof for Proposition 21; I sketch the definitions
and omit the proofs.
Say that a game G is solvable by Iterated Backward Inference just in

case for all strategy profiles (si, s−i) and (s0i, s
0
−i) ∈ Γ∞(G), and each player i,

we have ui(si, si) = ui(s0i, s
0
−i). Let G

k be the k-repetition of G. I say that an
information set I in Gk is at stage m if m−1 repetitions of the game have been
played before I. Then we have the following proposition.

Proposition 22 Let si ∈ Γ∞(Gk). For all stages m ≤ k, for all information
sets I, if I is at stage m, then si(Gm) ∈ Γ∞(G).

For further discussion of the relationship between backward induction, re-
spect for preferences and proper rationalizability see [16] and [1].

9 Perfect Recall: Basic Lemmas and the Com-
bination Principle

This section establishes some lemmas about game trees with perfect recall that
relate the sequential information structure of a game tree to what players know
about their opponents’ strategies given the information sets in the game. The
main result in this section is to establish that the following fact–which I call the
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Combination Principle–holds under perfect recall: Given two strategies si, s0i
for player i that both reach an information set Ii, there is a third strategy s∗i
that agrees with si on all play sequences that reach Ii, and that agrees with s0i
on all play sequences that do not reach Ii.
For a given game tree T , I follow [13, p.203] and define the epistemic

history Ei(x) for player at node x as follows.2

1. Ei(∅) = ∅.
2. Ei(x ∗ a) = Ei(x) ∗ I(x) ∗ a if player(x) = i, and
3. Ei(x ∗ a) = Ei(x) if player(x) 6= i.

Thus the epistemic history of player i at node x contains the information
that player i learned before reaching node x. For example, in the Kohlberg
game E2(D ∗ n ∗ T ) = E2(D) = hI1,Di.

Definition 23 (Osborne and Rubinstein) A game tree T has perfect re-
call if for each player i, for all information sets Ii, for all nodes x, x0 ∈ Ii, we
have Ei(x) = Ei(x0).

I now establish a number of lemmas that relate the sequential structure of
information sets to differences in player’s knowledge at different information
sets; they can be skipped without loss of continuity. Proofs are in Section 13.

Lemma 24 Let T be a game tree with perfect recall. Then

1. for all nodes x, x0 if x < x0 then I(x) 6= I(x0).
2. if si ∈ [Ii]i and (s0i, s−i) ∈ Ii, then Ii ∩Play(si, s−i) = Ii ∩Play(s0i, s−i).
3. if (si, s−i) ∈ [Ii] and (s0i, s0−i) ∈ [Ii], then (si, s0−i) ∈ [Ii].

The next lemma mainly concerns the ≥ ordering among information sets.

Lemma 25 Let T be a game tree with perfect recall. Let Ii be an information
set belonging to player i. Then

1. for all si ∈ [Ii]i we have that cons(si, Ii) = [Ii]−i.
2. for all information sets I 0i, if Ii ≥ I 0i, then [Ii] ⊆ [I 0i].
3. for all information sets I, if Ii ≥ I then [Ii]i ⊆ [I]i.
4. for all information sets Ii, I 0i of player i it is the case that: Ii = I

0
i ⇐⇒

(Ii ≥ I 0i and I 0i ≥ Ii).
2Osborne and Rubinstein use a slightly different definition which, however, yields an equiv-

alent notion of perfect recall.

26



Lemmas 24 and 25 allow us to establish the following Combination Principle.
Let si, s0i be two strategies for player i. I say that s

∗
i agrees with s

0
i on Ii if for

all strategies s−i, if (si, s−i) ∈ [Ii], then play(s∗i , s−i) = play(s0i, s−i). Similarly,
s∗i agrees with si outside of Ii if for all strategies s−i, if (si, s−i) /∈ [Ii], then
play(s∗i , s−i) = play(si, s−i)). The Combination Principle says that if si, s

0
i are

each consistent with an information set Ii, then si and s0i can be combined to
yield a third strategy s∗i that agrees with si on Ii and agrees with s

0
i outside

of Ii. Intuitively, the following instructions define the combined strategy s∗i :
First, follow si until either information set Ii is reached or play arrives at an
information set I 0i from which Ii is unreachable. In the latter case, follow s0i.
In the former case, follow si. These instructions require an agent to remember
whether Ii has been reached or not–hence the importance of perfect recall.
The next proposition is a formal statement of the Combination Principle.

Proposition 26 (Combination Principle) Let T be a game tree with perfect
recall. Let si, s0i be two strategies consistent with an information set Ii (i.e.,
si, s

0
i ∈ [Ii]i). Then there is a strategy s∗i such that

1. s∗i agrees with s
0
i on Ii (i.e., for all strategies s−i if (s

0
i, s−i) ∈ [Ii], then

play(s∗i , s−i) = play(s
0
i, s−i)), and

2. s∗i agrees with si outside of Ii (i.e., for all strategies s−i, if (si, s−i) /∈ [Ii],
then play(s∗i , s−i) = play(si, s−i)).

10 Lexicographic Rationality and Sequential Ad-
missibility

A common principle of rational choice in extensive form game holds that a ratio-
nal strategy should be sequentially rational, that is, rational at each information
set. As Blume, Brandenburger and Dekel point out, lexicographic rationality
satisfies this principle to a considerable extent: if ρ is an LPS with full support
that maximizes lexicographic expected utility, then it follows from Proposition 4
that ρ must maximize lexicographic expected utility on each “information cell”
[3, p.61/62]. From the point of view of individual decision theory, this is a more
or less immediate consequence of the sure thing principle or the Independence
Axiom of decision theory. In games that satisfy the Combination Principle from
the previous section, the Independence Axiom implies that strategies that max-
imize lexicographic expected utility must do so at each information set; that
is, they must be sequentially rational. For suppose that some strategy si fails
to maximize lexicographic expected utility given the information in some in-
formation set Ii; let s0i be preferred to si given Ii. Then by the Combination
Principle, there is a third strategy s∗i that agrees with s

0
i on Ii and with si

outside of Ii. Thus s∗i yields higher expected lexicographic utility than si condi-
tional on Ii and yields the same outcomes as si outside of Ii. So it follows from
the sure thing principle (Proposition 4) that s∗i is preferred to si. To illustrate,
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in the Centipede game, the strategy lt for player 1 is strictly preferred to ll at
information set I3. On all play sequences that don’t reach I3 (i.e., if player 2
doesn’t choose “leave”), the strategies lt and ll yield the same payoff. Hence if
player 1 maximizes lexicographic expected utility (with full support), it follows
that player 1 prefers lt to ll. This is not the same as assuming that player 1 is
“substantively rational”, meaning that she would maximize expected payoffs at
every information set that the play might arrive at. Instead I derive this fact
from the assumption of lexicographic rationality, which pertains to the strategic
form of the game, not its normal form.
The general connection between dominance and lexicographic rationality is

this: if in a game of perfect recall, a strategy si is weakly dominated at an
information set Ii, or strictly dominated given the revision ρi ∗ [Ii]−i, then
si does not maximize lexicographic expected utility. For by the Combination
Principle, there is a strategy s0i that is preferred “locally” at information set Ii,
and that behaves the same as si outside of Ii. By the sure thing principle, s0i is
then preferred to si. The next proposition formalizes this observation.

Proposition 27 Let T be a finite game tree with perfect recall. Let ρi be an
LPS for player i (i.e., ρi defines the preferences of player i over strategies)
with full support. Consider any information set Ii. Suppose that (1) si is
weakly dominated at Ii, or (2) si is strictly dominated at Ii given Σ−i and
ρi ∗ [Ii]−i ⊆ Σ−i. Then there is a strategy s0i such that

1. s0i ∈ [Ii]i and

2. s0i ∼|[Ii]−i si, and
3. s0i Â|[Ii]−i si, and
4. s0i Âi si.

11 Conclusion
An important approach to developing and understanding solution concepts for
game theory is to examine the epistemic assumptions that underlie predictions
about the outcome of a game. In this paper I considered the consequences of
Respect for Public Preferences: if it is common belief that an agent A prefers
option a to option b, then it is common belief that in a binary choice between a
and b, the agent A chooses a. Following previous work by Blume et al. [4] and
Asheim [1], I propose to capture Respect for Public Preferences by requiring
that each agent B 6= A assigns probability 1 to A’s choosing a, conditional on
A choosing a or b, whenever A’s preference for a over b is common belief. We
can employ lexicographic probability systems to ensure that this conditional
probability is well-defined.
Iterated Backward Inference (IBI) is a procedure for computing the conse-

quences of common belief in Revealed Preference in a given game G. Iterated
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Backward Inference eliminates strategies in a game tree T . My main result
is that the procedure is valid given common belief in Revealed Preference, in
the following sense: if T is an extensive form of the strategic game G, and IBI
eliminates a strategy s, then s is not chosen in the game G. Iterated Back-
ward Inference generalizes two well-known algorithms for solving games: the
Dekel-Fudenberg procedure (first eliminate weakly dominated strategies, then
iteratively strictly dominates ones), and standard backward induction for game
trees with perfect information; IBI yields predictions that are at least as strong
as those given by these two algorithms.
It follows from Asheim’s characterization of proper rationalizability [1] that

properly rationalizable strategies are consistent with Respect for Public Prefer-
ences. Hence IBI can be used to find strategies that are not properly rational-
izable.
IBI is valid for computing consequences of Respect for Public Preferences

because of two key facts. First, given perfect recall, lexicographic rationality
enforces sequential admissibility (admissibility at reachable information sets).
Second, lexicographic rationality satisfies the entailment inference principle:
Consider two information sets I, I 0 such that all strategies consistent with I
are consistent with I 0. Then if a strategy s is considered unlikely at I, the
strategy s is also considered unlikely at I 0. In the case in which the information
set I is a successor of I 0, the entailment inference principle yields a backward
inference principle.
I mention two open questions for future research. In different game trees

with the same strategic form G, Iterated Backward Inference may give stronger
results. We would like to apply IBI to a canonical game trees T (G) in which
the procedures gives complete results, eliminating all and only those strategies
inconsistent with Respect for Public Preferences. Whether canonical game trees
exist for an arbitrary game and how to construct them is perhaps the most
important open formal question for understanding the computational aspects of
Respect for Public Preferences, and perhaps proper rationalizability as well. The
example of the game trees for the Centipede game (Figures 1 and 3) suggest that
canonical game trees are those that in some sense have “as many information
sets as possible” consistent with the given strategic form.
Respect for Public Preferences does not validate typical forward induction

arguments (for example, it does not entail the forward induction solution in the
well-known Burning Dollar game). We would like to know further epistemic
principles that underlie forward induction arguments. Is there a “best rational-
ization” principle based on Respect for Public Preferences that validates forward
induction?
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13 Proofs
I introduce some additional notation to facilitate the proofs. It is useful to write
I(x) = Ii to express the fact that finite history x belongs to the cell Ii of player
i’s information partition. For a finite action sequence x = (a1, ..., an, ...), let
move(x, n) =df an. If a node x precedes a node x0 (i.e., x < x0), then there is
a unique move a at x such that x ∗ a ≤ x0; I denote this move by move(x, x0).
For example, in the Centipede Game, move(∅, leave ∗ leave ∗ leave) = leave.
Since a strategy si assigns the same move to all nodes in the same information

set, a strategy can be viewed as a function of the information sets of player i
as well as a function of the nodes belonging to player I; I write both si(x) and
si(I(x)) depending on what is most concise in context. Similarly, under perfect
recall, all nodes in an information set I share the same epistemic history; in that
case I will sometimes write Ei(I) for the shared epistemic history at information
set I.
It is sometimes useful to consider a history not as a sequence of actions

but as a set of finite action sequences; therefore I write Play(x) =df {x0 :
x0 ≤ x} and similarly Play(h) =df {x : x < h} for an infinite history h. To
shorten notation, let Play(s1, s2) =df Play(play(s1, s2)). For example, in the
Centipede game, the set of nodes reached during the play of hl, ti and t2 is given
by Play(hl, ti, t2) = {∅, ∅ ∗ leave, ∅ ∗ leave ∗ take}.

Lemma 10 Common Belief in Axiom 7 implies Axiom 9.

Proof. If Axiom 7 is common belief, then (a) CB(Bi(s−i Â s0−i) → ρi ∗
{s−i, s0−i}) = {s−i}). Since Lemma 8 is a theorem, it is common belief and hence
we have (b) CB([ρi ∗ {s−i, s0−i) = {s−i}]→ [si >−i s0−i]). Given that common
belief is closed under implication, (a) and (b) imply that (c) CB([B−i(si Âi
s)]→ [si >−i s0−i]). Since common belief is closed under implication, it follows
that (d) if CB(B−i(si Âi s), then CB(si >−i s0−i). We also have that (e) if
CB(si Âi s0i), then CB(B−i(si Âi s0i)) from the definition of common belief.
Combining (d) and (e) yields Axiom 9.

Theorem 15 Let T be a finite game tree with perfect recall and assume that
Lexicographic Rationality and Full Support are common belief (see Axiom 6).
Then Respect for Public Preferences (Axiom 9) implies that for all n, i, I:

1. if a strategy si is strictly dominated at an information set I given Γn−i(I),
then CB(∃s0i ∈ [I]i.s0i Âi si), and

2. CB(ρ−i ∗ [I]i ⊆ Γni (I)).

Proof. Base Step, n = 0. Part 1: Consider an information set Ii with
player(Ii) = i.
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First I consider ρ−i ∗ [Ii]i. I show that (a) for each si, if si /∈ Γ0i (Ii), then
CB(si /∈ ρ−i ∗ [Ii]i). Suppose that si /∈ Γ0i (Ii). If si /∈ [Ii]i, then it is immediate
that si /∈ ρ−i ∗ [Ii]i. Otherwise there is a strategy bsi and an information set I 0i
such that (1) [I 0i]i ⊆ [Ii]i and (2) bsi weakly dominates si at I 0i given S−i(T ).
By Proposition 27, there is s0i such that s

0
i is consistent with I

0
i and s

0
i Âi si.

Since this is a logical consequence of the game structure, which is common
belief, we have that CB(s0i Âi si) for some s0i. By Axiom 9 it follows that (b)
CB(s0i >−i si). Since s

0
i ∈ [I 0i]i, it follows from (1), which is common belief as

part of the game structure, that s0i ∈ [Ii]i. So CB(∃s∗i .s∗i >−i si and s∗i ∈ [Ii]i),
and thus CB(si /∈ ρ−i ∗ [Ii]i). This establishes (a). Since (a) holds for all
strategies si of player i, it follows that ∀si /∈ Γ0i (Ii)[CB(si /∈ ρ−i ∗ [Ii]i)]. Hence3
CB(∀si /∈ Γ0i (Ii)[si /∈ ρ−i ∗ [Ii]i]), which is equivalent to CB(ρ−i ∗ [Ii]i ⊆ Γ0i (Ii))
given the assumption that common belief is closed under implication.
Second, consider ρi ∗ [Ii]−i. Let s−i ∈ ρi ∗ [Ii]−i. It is immediate that s−i ∈

[Ii]−i. I show that (*) for all information sets I−i such that [I−i]−i ⊆ [Ii]−i:
if s−i ∈ [I−i]−i, then s−i ∈ Γ0[I−i]−i. If s−i ∈ (ρi ∗ [Ii]−i) ∩ [I−i]−i, we can
apply the entailment inference Principle 1 to conclude that s−i ∈ ρi ∗ [I−i]−i.
In the first part of the argument I established that ρi ∗ [I−i]−i ⊆ Γ0−i(I−i).
So s−i ∈ Γ0−i(I−i), which establishes (*). From (*) it follows that s−i is not
weakly dominated at any information set I−i such that [I−i] ⊆ [Ii]−i. Hence
s−i ∈ Γ0−i(Ii), and in general ρi ∗ [Ii]−i ⊆ Γ0−i(Ii).
Part 2: Suppose that si is strictly dominated at some I 0i given Γ

0
−i(I

0
i) where

I 0i entails Ii for i. By Proposition 27, it follows that there is s0i ∈ I 0i such
that for all ρi, if ρi ∗ [I 0i]−i ⊆ Γ0−i(I 0i), then s0i Âi si. Since this conclusion
depends only on the game structure, which is common belief, we have that
CB(ρi ∗ [I 0i]−i ⊆ Γ0−i(I 0i) → s0i Âi si). By Part 1 of the current theorem,
CB(ρi ∗ [I 0i]−i ⊆ Γn−i(I 0i)). Since CB is closed under implication, it follows that
CB(s0i Âi si).
Inductive Step: Assume the hypothesis for n and consider n+ 1.
Part 1: Consider information set Ii with player(Ii) = i.
Again we begin with ρ−i ∗ [Ii]i and show the contrapositive: if si /∈ Γn+1i (Ii),

then CB(si /∈ ρ−i ∗ [Ii]i). Suppose that si /∈ Γn+1i (Ii).
Case 1: si /∈ [Ii]i. As before, the conclusion is immediate.
Case 2: si ∈ [Ii]i − Γni (Ii). Then it follows from the inductive hypothesis

that CB(si /∈ ρ−i ∗ [Ii]i).
Case 3: si ∈ [Ii]i ∩ Γni (Ii). Then there is some information set I 0i entailing

Ii for i such that si is strictly dominated at I 0i given Γ
n
−i(I

0
i). By Part 2 of

the inductive hypothesis, there is a strategy s0i ∈ [I 0i]i such that CB(∃s0i.s0i Âi
si). Moreover, since [I 0i]i ⊆ [Ii]i we have that s0i ∈ [Ii]i. Hence by Axiom 9,
we obtain that (d) CB(∃s0i ∈ [Ii]i.s0i >−i si). From Lemma 8, we have (e)
CB([∃s0i ∈ [Ii].s0i >−i si] → si /∈ ρ−i ∗ [Ii]). Combining (e) and (d) yields that
CB(si /∈ ρ−i ∗ [Ii]i).

3 Interchanging the order of CB and ∀ is unproblematic because in a finite game, there are
only finitely many strategies for each player and hence a statement of the form ∀si.CB(p(si))
is equivalent to a finite conjuction of the form CB(p(s1i ))∧ ...∧CB(p(ski )), which is equivalent
to CB(p(s1i ) ∧ ... ∧ p(ski )) and hence to CB(∀si.p(si)).
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Using the same argument as in the base case, I conclude that ρi ∗ [Ii]−i ⊆
Γn+1−i (Ii).
Part 2: Same as in the base case.

Corollary 16 Let T be a finite game tree with perfect recall and assume that
Lexicographic Rationality and Full Support are common belief. Then Respect for
Public Preferences (Axiom 9), Preference Maximization and Introspection (see
Axiom 6) imply that choice ∈ Γn(T ) for all n.

Proof. It suffices to show the contrapositive version: for each i, for all
strategies si, we have that if si /∈ Γni (T ), then si 6= choicei.
Base Case, n = 0. Suppose that si /∈ Γ0i (Ii) for some information set Ii

where si ∈ [Ii]i. Then there is a strategy s∗i and an information set I 0i entailing
Ii for i such that s∗i weakly dominates si. So by Proposition 27, there is a
strategy s0i such that s

0
i Âi si. Preference Maximization (see Axiom 6) says that

∃s0i.s0i Âi si → si 6= choicei. Hence si 6= choicei.
Inductive step, n+ 1. Suppose that si 6∈ Γn+1i (T ). If si /∈ Γni (T ), the claim

follows from the inductive hypothesis. Otherwise si ∈ Γni (Ii) − Γn+1i (Ii) for
some Ii. Then si is strictly dominated at some I 0i given Γ

n
−i(I

0
i), where I

0
i entails

Ii for i. As in Part 2 of Theorem 15, there is s0i such that CB(∃s0i.s0i Â si).
By Definition of common belief, we have Bi(∃s0i.s0i Â si). So by Preference
Introspection, s0i Â si and so by Preference Maximization, si 6= choicei. Since
this is true for all i, n, we have that ∀n.choice ⊆ Γn.

Lemma 17 Let T be a game tree with perfect recall. Then for all players i,
information sets Ii, I 0i, if I

0
i ≥ Ii, then Γn(Ii) ∩ [I 0i] ⊆ Γn−i(I 0i).

Proof. If I 0i ≥ Ii, then by Clause 3 of Lemma 25, we have that [I 0i]i ⊆ [Ii]i.
I show the contrapositive of the consequent. Suppose that si /∈ Γni (I 0i). If
si /∈ [I 0i]i, the claim follows immediately. So suppose that si ∈ [I 0i]i − Γni (I 0i).
Case 1: n = 0. Suppose that si /∈ Γ0i (I 0i). Then there is an information set

I∗i entailing I
0
i for player i such that si is weakly dominated at I

∗
i given S−i(T ).

Since [I∗i ]i ⊆ [I 0i]i ⊆ [Ii]i, we have that I∗i entails Ii for i, and so si /∈ Γ0i (Ii).
Case 2: n > 0. Suppose that si /∈ Γni (I 0i). Then there is an information set

I∗i such that si is strictly dominated at I
∗
i given Γ

n−1
−i (I

∗
i ) and I

∗
i entails I

0
i for i.

As in the previous case, it follows that I∗i entails Ii for i, and so si /∈ Γni (Ii).

Proposition 18 Let T be a finite game tree with perfect recall. Then Γn(T ) 6= ∅
for all n.

Proof. Case 1: n = 0. In a finite game tree T , there is clearly a strategy
si for player i that is not weakly dominated in T since weak dominance is
transitive. If si is not weakly dominated in T , then si is not weakly dominated
at any information set. For if si is weakly dominated at Ii, we may apply Case
1 of Proposition 27 to conclude that si is weakly dominated in T , contrary to
supposition. Hence si ∈ Γ0i (T ).
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Case 2: n > 0. For each information set Ii, there is unique history Ei(Ii)
shared by all nodes in Ii. Thus we may define heighti(Ii) = |Ei(Ii)|. Let
H = max{heighti(Ii) : Ii belongs to i}. I note that if I 0i > Ii, then heighti(I 0i) >
heighti(Ii). For n > 0, say that si is n-acceptable at Ii if for all I 0i ≥ Ii, the
strategy si is not strictly dominated at Ii given Γ

n−1
−i (I

0
i). I argue by induction

on k = H −height(Ii) that if H −height(Ii) = k there there is an n-acceptable
strategy si at Ii.
Base Case, k = 0. Then height(Ii) = H, and so there is no I 0i such that

I 0i > Ii. Suppose that si is strictly dominated at Ii given Γ
n−1
−i (Ii). Since T

is finite, and strict dominance is transitive, there clearly is a strategy s0i that
strictly dominates si given Γ

n−1
−i (Ii) such that s

0
i is not strictly dominated at Ii

given Γn−1−i (Ii). So s
0
i is n-acceptable at Ii.

Inductive Step: Assume the hypothesis for k0 < k and consider k = H −
height(Ii). Suppose that si is strictly dominated at Ii given Γ

n−1
−i (Ii). Choose

a strategy s0i such that s
0
i strictly dominates si given Γ

n−1
−i (Ii) and s

0
i is not

strictly dominated at Ii given Γ
n−1
−i (Ii). If s

0
i is n-acceptable, the inductive

claim is established. Otherwise let I 0i > Ii be an information set such that (a)
s0i is strictly dominated at I

0
i given Γ

n−1
−i (I

0
i) and (b) I

0
i is of maximal height, i.e.

if I 0i > I
∗
i , then s

0
i is not strictly dominated at I

∗
i given Γ

n−1
−i (I

∗
i ). By inductive

hypothesis, we may choose a strategy s∗i such that s
∗
i strictly dominates s

0
i

given Γn−1−i (I
0
i) and s

∗
i is n-acceptable at I

0
i. Applying the combination principle

(Proposition 26) we may modify s0i to obtain a strategy bsi such that bsi agrees
with s∗i on I

0
i and agrees with s

0
i outside of I

0
i. From Lemma 17 it follows that bsi

strictly dominates si at Ii given Γ
n−1
−i (Ii). Finally, I note that if I

1
i , I

2
i , .. are the

maximal height information sets such that Iji > Ii and si is strictly dominated
at Iji , then we may successively construct bsi for I1i , then bsi for I2i , until we
obtain a strategy bsi such that bsi strictly dominates si given Γn−1−i (Ii) and bsi is
n-acceptable at Ii. This establishes the inductive claim.
To complete the proof of the proposition, let I1i , I

2
i , .. be the information sets

belonging to player i of maximal height, that is, for all Ii we have that I
j
i ≤ Ii.

Proceeding as in the inductive step, we may choose strategies sji such that s
j
i

is n-acceptable at Iji . Note that for each information set Ii, there is a unique
predecessor Iji such that I

j
i ≤ Ii. So we may define si(Ii) = sji (Ii) where Iji is

the unique predecessor of Ii. Then si is n-acceptable at all information sets Ii
in T , and hence si ∈ Γn(T ), as required.
Lemma 19 Let T be a finite game tree with perfect recall. A strategy si is in
Γ∞i (I) ⇐⇒ for all information sets Ii such that si is consistent with Ii and Ii
entails I for I:

1. si is admissible at Ii given S−i(Ii), and

2. si is not strictly dominated at Ii given Γ∞−i(Ii).

Proof. (⇒) If si is not admissible at Ii given S−i(Ii), then si is not in Γ0i (I)
and hence not in Γ∞i (I). And if si is strictly dominated at Ii given Γ

∞(Ii)
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then si must have been eliminated at a round before max(T ), for otherwise the
elimination procedure does not terminate at stage max(T ).
(⇐) If si is admissible at all information sets Ii entailing I for i given S−i(T ),

and si ∈ [Ii]i, then si ∈ Γ0i (I). At later stages n > 0, suppose for reductio that
si ∈ [I]i − Γni (I). Then si is strictly dominated at some information Ii given
Γn−1i (Ii) where Ii entails I for i. Now by Proposition 18, we have Γ∞−i(Ii) 6=
∅. Also, Γ∞−i(Ii) ⊆ Γn−1i (Ii). So by Lemma 12 it follows that si is strictly
dominated at Ii given Γ∞−i(Ii), which is a contradiction. Hence si ∈ Γni (Ii) for
all n, and thus si ∈ Γ∞i (Ii).
Lemma 20 Let T be a game tree of perfect information with a unique sub-
game perfect equilibrium (si, s−i). Then a strategy profile (s0i, s

0
−i) is equal to

(si, s−i) ⇐⇒
1. s0i(r) is a BI-maximizer, and

2. (s0i, s
0
−i) is an SPE in each subtree Tr∗a.

Proof. (⇒) It is immediate that (si, s−i) must be an SPE in each subtree.
Now if si(r) is not a BI-maximizer, consider the strategy s0i that chooses a
maximizer a such that s0i(r) = a and sets s0i(x) = si(x) for all x 6= r. Then
by the second clause, (s0i, s−i) is an SPE in each subgame Tr∗a0 . Since T has a
unique subgame perfect equilibrium, this implies in particular that ui(s0i, s−i, r∗
a) = bi(r ∗ a). And clearly ui(s0i, s−i, r ∗ a) = ui(s

0
i, s−i). By hypothesis,

bi(r ∗ a) > bi(r ∗ si(r)) = ui(si, s−i). So si is not a best response to s−i in T ,
contrary to the hypothesis that (si, s−i) is in equilibrium.
(⇐) Since (s0i, s0−i) is an SPE in each subtree Tr∗a, we have that ui(s0i, s0−i, r∗

a) = bi(r∗a) for all moves a at r. Since s0i(r) is a BI-maximizer, we have therefore
that ui(s0i, s

0
−i, r∗s0i(r)) ≥ ui(s0i, s0−i, r∗a) for all moves a at r. For every strategy

s∗i , we have that ui(s
∗
i , s

0
−i) = ui(s

∗
i , s

0
−i, r ∗ s∗i (r)) ≤ ui(s0i, s0−i, r ∗ s0i(r)), since

(s0i, s
0
−i) is an equilibrium at s0i(r). All together, it follows that ui(s

0
i, s

0
−i) ≥

ui(s
∗
i , s

0
−i). So s

0
i is a best reply to s

0
−i in T . Also s

0
−i is a best reply to s

0
i iff

s0−i is a best reply to s
0
i in Ts0i(r), which is the case by Part 2. Hence (s

0
i, s

0
−i)

form a Nash equilibrium in each subgame. Since by supposition (si, s−i) is the
only SPE in T , it follows that (si, s−i) = (s0i, s

0
−i).

Proposition 21 Let T be a finite game tree with perfect information and a
unique subgame perfect equilibrium. Then for each node x, for each strategy
profile (si, s−i) ∈ Γ∞(x), we have that
1. (si, s−i) is extendible to an SPE in Tx, and

2. ui(si, s−i, x) = bi(x).

Proof. The proof is by induction on the height h of node x. Part 1 immedi-
ately follows from Part 2.
Base Case, h = 1. Define max(i, x) = max{ui(x∗a) : x∗a is in T}. Suppose

that player(x) = i. A move a for player i is a maximizer iff x ∗ a = max(i, x).
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Then si is strictly dominated at x given any subset of S−i(T ) iff si(x) is not a
maximizer. Hence by Lemma 19, (si, s−i) ∈ Γ∞(x) ⇐⇒ si(x) is a maximizer,
and si ∈ [x]i and s−i ∈ [x]−i. This implies that each pair (si, s−i) ∈ Γ∞(x) is a
subgame perfect equilibrium in Tx.
Inductive Step: Assume the hypothesis for h and consider h+1. Let x be a

node of height h + 1; by inductive hypothesis, we have for all successors x ∗ a,
for all profiles (si, s−i) ∈ Γ∞(x ∗ a), that the payoff ui(si, s−i) equals bi(x ∗ a).
Note that all successors x ∗ a entail x both for i and −i. Hence it follows that
(a) if s−i ∈ Γ∞(x), then s−i ∈ Γ∞(x ∗ a) for all moves x ∗ a in T , and (b) if
(si, s−i) ∈ Γ∞(x), then (si, s−i) ∈ Γ∞(x ∗ si(x)).
Let si ∈ Γ∞i (x). As before, define max(i, x) = max{bi(x ∗ a) : x ∗ a is in T},

and say that a move a for player i is a maximizer iff x∗a = max(i, x). Suppose for
reductio that si(x) is not a maximizer, and let a be a maximizer. By Proposition
18, Γ∞i (x∗a) 6= ∅; let s0i ∈ Γ∞i (x∗a). I argue that s0i strictly dominates si given
Γ∞−i(x). Let s−i ∈ Γ∞−i(x). Then by (a) ui(s0i, s−i, x) = ui(s

0
i, s−i, x ∗ s0i(x)) =

bi(x ∗ s0i(x)) by inductive hypothesis. And by (b), (si, s−i) ∈ Γ∞(x ∗ si(x)),
and so ui(si, s−i, x) = bi(x ∗ si(x)). Since s0i(x) is a maximizer and si(x) is not,
we have that ui(s0i, s−i, x) > ui(si, s−i, x). As this holds for all s−i ∈ Γ∞−i(x),
it follows that s0i strictly dominates si at x given Γ

∞
−i(x), and so by Lemma

19, si /∈ Γ∞i (x), contrary to assumption. So if si(x) ∈ Γ∞(x), then si(x) is a
maximizer.
Now let any profile (si, s−i) ∈ Γ∞(x) be given. Choose a strategy s0i such

that for each a 6= si(x) we have that (s0i, s−i) ∈ Γ∞(x∗a). Define s∗i (x0) = si(x)
if x0 > x ∗ si(x), and s∗i (x0) = s0i(x

0) otherwise. Then (s∗i , s−i) ∈ Γ∞(x ∗ a)
for all moves a at x; hence by inductive hypothesis we may choose strategies
(bsi, cs−i) such that in each subtree Tx∗a: bs∗i extends s∗i and cs−i extends s−i and
(bsi, cs−i) is an SPE in Tx∗a. So provided that bsi(x) = si(x), it follows from
Lemma 2 that (bsi, cs−i) is an SPE in Tx. So (bsi, cs−i) satisfies the requirements
of the Proposition. This concludes the inductive step and establishes the claim.

Lemma 24 Let T be a game tree with perfect recall. Then

1. for all nodes x, x0 if x < x0 then I(x) 6= I(x0).
2. if si ∈ [Ii]i and (s0i, s−i) ∈ Ii, then Ii ∩ Play(si, s−i) = Ii ∩ Play(s0i, s−i).
3. if (si, s−i) ∈ [Ii] and (s0i, s0−i) ∈ [Ii], then (si, s0−i) ∈ [Ii].

Proof. Part 1. Suppose otherwise. Then let x, x0 be such that x < x0 and
I(x) = I(x0). Let a = move(x, x0). Then Ei(x0) extends Ei(x) ∗ a. Hence
Ei(x

0) 6= Ei(x), contrary to the hypothesis that T is a game tree with perfect
recall.
Part 2. From part 1 it follows that Play(s0i, s−i) intersects Ii in exactly

one node; let Ii ∩ Play(s0i, s−i) = {x}. Let si ∈ [Ii]i; then there is a strategy
s0−i such that play(si, s

0
−i) reaches Ii. Let y ∈ Play(si, s0−i) ∩ Ii. I now argue

by induction that Play(si, s−i) contains all prefixes of x. Base Case: Clearly
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∅ ∈ Play(si, s−i). Inductive Step: Suppose that x0 < x ∈ Play(si, s−i); let
a = move(x, x0). Case 1: player(x0) = −i. Then a = s−i(x0), and so x0 ∗ a ∈
Play(si, s−i). Case 2: player(x0) = i. Then Ei(x) is of the form Ei(x

0) ∗
I(x0) ∗ s0i(x0) ∗ .... By perfect recall, Ei(x) = Ei(y) and so Ei(y) begins with
Ei(x

0)∗I(x0)∗s0i(x0)∗.... Since y ∈ Play(si, s0−i), it follows that si(x0) = s0i(x0) =
a. Hence x0 ∗ a ∈ Play(si, s0−i). This shows that all prefixes of x, including x
itself, are in Play(si, s−i).
Part 3. Suppose that (si, s−i) ∈ [Ii] and (s0i, s0−i) ∈ [Ii]. Then by Part 2,

Ii∩Play(si, s0−i) = Ii∩Play(s0i, s0−i). Since Play(s0i, s0−i)∩Ii 6= ∅, we have that
Ii ∩ Play(si, s0−i) 6= ∅; hence (si, s−i) ∈ [Ii], as required.

Lemma 25 Let T be a game tree with perfect recall. Let Ii be an information
set belonging to player i. Then

1. for all si ∈ [Ii]i we have that cons(si, Ii) = [Ii]−i
2. for all information sets I 0i, if Ii ≥ I 0i, then [Ii] ⊆ [I 0i]
3. for all information sets I, if Ii ≥ I then [Ii]i ⊆ [I]i
4. for all information sets Ii, I 0i of player i it is the case that: Ii = I

0
i ⇐⇒

(Ii ≥ I 0i and I 0i ≥ Ii)

Proof. Part 1. Let si ∈ [Ii]i be a strategy consistent with Ii; then there is
a strategy s−i such that (si, s−i) ∈ [Ii]. Let s0−i be any strategy for player −i
consistent with Ii; then there is a strategy s0i such that (s

0
i, s

0
−i) ∈ [Ii]. Hence by

Part 3 of Lemma 24, (si, s−i) ∈ [Ii]. Since s−i was chosen arbitrarily, it follows
that cons(si, Ii) = [Ii]−i.
Part 2. If Ii = I 0i, the claim follows immediately. Otherwise choose nodes

x ∈ Ii, x0 ∈ I 0i such that x > x0. Let (si, s−i) ∈ [Ii] and let y be some node
in Play(si, s−i) ∩ Ii. Then by perfect recall Ei(y) = Ei(x), so I 0i appears in
Ei(y). Hence there is a node y0 ∈ I 0i such that y0 < y, which implies that
y0 ∈ play(si, s−i). So (si, s−i) ∈ [I 0i], which establishes that [Ii] ⊆ [I 0i].
Part 3. If Ii = I it follows immediately that [Ii]i = [I]i. So suppose

that Ii > I. Let x > x0 where x ∈ Ii, x0 ∈ I. Let si ∈ [Ii]i. By the ba-
sic reachability assumption (cf. Section 2), there is a strategy pair (s0i, s−i)
such that x ∈ Play(s0i, s−i). By Part 1 of the current lemma, it follows that
s0−i ∈ cons(si, Ii) and hence (si, s−i) ∈ [Ii]. By Part 2 of Lemma 24, it fol-
lows that Ii ∩ Play(si, s−i) = Ii ∩ Play(s0i, s−i). Hence x ∈ Play(si, s−i), and
therefore x0 ∈ Play(si, s−i). So si ∈ [I(x0)]i = [I]i.
Part 4. (⇒) Immediate. (⇐) Suppose that Ii > I 0i and I 0i > Ii but Ii 6= I 0i.

So there is x, y ∈ Ii and x0, y0 ∈ I 0i such that x > x0 and y0 > y. Then I(x) = Ii
appears in the epistemic history Ei(x0). Since I(x0) = I(y0) = I 0i, by perfect
recall it follows that Ei(x0) = Ei(y

0). Hence Ii appears in Ei(y0) and thus in
Ei(y) since y0 > y and hence Ei(y) is of the form Ei(y

0) ∗ .... Thus there is a
node y0 > y0 > y such that I(y0) = I(y) = Ii. By Part 1 of Lemma 24, this
contradicts perfect recall.
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Proposition 26 (Combination Principle) Let T be a game tree with perfect
recall. Let si, s0i be two strategies consistent with an information set Ii (i.e.,
si, s

0
i ∈ [Ii]i). Then there is a strategy s∗i such that
1. s∗i agrees with s

0
i on Ii (i.e., for all strategies s−i if (si, s−i) ∈ [Ii], then

play(s∗i , s−i) = play(s
0
i, s−i)), and

2. s∗i agrees with si outside of Ii (i.e., for all strategies s−i, if (si, s−i) /∈ [Ii],
then play(s∗i , s−i) = play(si, s−i)).

Proof. Define s∗i :

s∗i (I
0
i) =

½
s0i(I

0
i) if I 0i ≥ Ii

si(I
0
i) o.w.

.

Part 1. Suppose that (si, s−i) ∈ [Ii]. I show that play(s∗i , s−i) = play(s0i, s−i).
By Part 1 of Lemma 24, play(si, s−i)∩I = {x} for some node x ∈ I. So from

Part 2 of Lemma 24, we have that (*) Play(s0i, s−i)∩I = Play(si, s−i)∩I = {x}.
I show that x ∈ Play(s∗i , s−i). Let x0 < x such that player(x0) = i. Then
I(x0) 6= I(x) by Part 1 of Lemma 24. Also, I(x) ≥ I(x0). So by Part 4 of
Lemma 25, I(x0) 6≥ I(x) = Ii. Hence from the definition of s∗i , it follows
that s∗i (I(x

0)) = si(I(x
0)). Since this holds for all x0 < x, it follows that x ∈

Play(s∗i , s−i). Given (*), this shows that play(s
∗
i , s−i) agrees with play(s

0
i, s−i)

up to x.
I now show that x0 ∈ Play(s∗i , s−i) for all x0 > x such that x0 ∈ Play(s0i, s−i).
Base Case, x0 = x ∗ a. Since I(x) = Ii, it follows from the definition of s∗i

that s∗i (I(x)) = s
0
i(I(x)) = a and hence x

0 ∈ Play(s∗i , s−i).
Inductive Step: Assume the hypothesis for x∗ and consider x0 = x∗ ∗ a.
Case 1: player(x∗) 6= i. Then s−i(x∗) = a, and so x∗ ∗ a ∈ Play(s∗i , s−i).
Case 2: player(x∗) = i. Since x∗ ≥ x, it follows that I(x∗) ≥ I(x) = Ii.

So by definition of s∗i , we have that s
∗
i (I(x

∗)) = s0i(I(x
∗)) = a. Hence x∗ ∗ a ∈

Play(s∗i , s−i). This completes the inductive step and establishes Part 1.
For Part 2, I show the contrapositive. Suppose that play(si, s−i) 6= play(s∗i , s−i)

for some strategy s−i. Since ∅ ∈ Play(si, s−i)∩Play(s∗i , s−i), there is a greatest
x such that x ∈ Play(si, s−i) ∩ Play(s∗i , s−i). (The sequences play(si, s−i) and
play(s∗i , s−i) agree up to x and then diverge.) Then player(x) = i for other-
wise s−i would choose the same action at x against both si and s∗i , that is,
x ∗ s−i(x) ∈ Play(si, s−i)∩Play(s∗i , s−i). Similarly, si(I(x)) 6= s∗i (I(x)). So by
definition of s∗i , it follows that I(x) ≥ Ii. So by Part 2 of Lemma 25, it follows
that [I(x)] ⊆ [Ii]. Since x ∈ play(si, s−i), it follows that (si, s−i) ∈ [I(x)] and
thus (si, s−i) ∈ [Ii]. So if play(si, s−i) 6= play(s∗i , s−i), then (si, s−i) ∈ [Ii].
Hence s∗i agrees with si outside of Ii, which was to be shown.

Proposition 27 Let T be a game tree with perfect recall. Let ρi be an LPS
for player i (i.e., ρi defines the preferences of player i over strategies) with
full support. Consider any information set Ii. Suppose that (1) si is weakly
dominated at Ii, or (2) si is strictly dominated at Ii given Σ−i and ρi ∗ [Ii]−i ⊆
Σ−i. Then there is a strategy s0i such that
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1. s0i ∈ [Ii]i and

2. s0i ∼|[Ii]−i si, and
3. s0i Â|[Ii]−i si, and
4. s0i Âi si.

Proof. Part 1. Suppose that s∗i weakly dominates si at Ii or strictly dom-
inated si at Ii given Σ−i. Then Definition 11 implies that si, s∗i ∈ [Ii]i. So by
Proposition 26, there is a strategy s0i that agrees with s

∗
i on Ii and agrees with

si outside of Ii. Since s0i agrees with s
∗
i on Ii, it follows that s

0
i ∈ [Ii]i, which

establishes Part 1.
Part 4 follows from Parts 2, 3 and Proposition 4.
To establish Part 2, let s−i ∈ [Ii]−i be given. By Clause 1 of Lemma 24,

[Ii]−i = cons(si, s−i) and so (si, s−i) /∈ [Ii]. Since s0i agrees with si outside of Ii,
it follows that play(s0i, s−i) = play(si, s−i). Hence for all s−i ∈ [Ii]−i we have
ui(si, s−i) = ui(s0i, s−i), so s

0
i ∼[Ii]−i si as required.

For Part 3, I consider two cases.
Case 1: s∗i weakly dominates si at Ii. Let s−i ∈ [Ii]−i. Then by Clause

1 of Lemma 24, (s∗i , s−i) ∈ [Ii]. Since s0i agrees with s∗i on Ii, it follows that
ui(s

0
i, s−i) = ui(s

∗
i , s−i). Moreover, ui(s

∗
i , s−i) ≥ ui(si, s−i) since s∗i weakly

dominates s0i at Ii. For the same reason, there is some strategy s
0
−i ∈ [Ii]−i such

that ui(s∗i , s
0
−i) > ui(si, s

0
−i). As before we have that ui(s

∗
i , s

0
−i) = ui(s

0
i, s−i),

so s0i weakly dominates si in the space reduced to [Ii]−i. It therefore follows
from Lemma 2 that s0i Â[Ii]i si.
Case 2: s∗i strictly dominates si at Ii given Σ−i. Then for any s−i ∈ Σ−i such

that (si, s−i) ∈ [Ii], we have that ui(s0i, s−i) = ui(s∗i , s−i) = ui(si, s−i). Hence
s0i strictly dominates si at Ii given Σ−i. Now suppose that ρi ∗ [Ii]−i ⊆ Σ−i.
Since ρi has full support, it follows that ρi ∗ [Ii]−i 6= ∅, and so by Lemma 12, we
have that (*) s∗i strictly dominates si given ρi ∗ [Ii]−i, which is the support of
(ρi|[Ii]−i)1. So (*) implies that EU((ρ|[Ii]−i)1, s0i, ui) > EU((ρ|[Ii]−i)1, si, ui),
which implies that s0i Âi si.
Hence in either case s0i Âi si, which establishes the Proposition.
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