
FACTORBASE : SQL for Multi-Relational Model
Learning

Zhensong Qian⇤

School of Computing Science
Simon Fraser University

Vancouver-Burnaby, Canada
zqian@sfu.ca

Oliver Schulte
School of Computing Science

Simon Fraser University
Vancouver-Burnaby, Canada

oschulte.ca

Abstract

We describe FACTORBASE , a new framework that leverages a relational database
management system (RDBMS) to support multi-relational graphical model learn-
ing. The basic insight behind our approach is that an RDBMS can be leveraged to
manage not only big data, but also to manage big models [1, 2]: First, model struc-
ture and model parameters can be managed efficiently without having to be stored
in main memory. Second, the Structured Query Language (SQL) supports con-
structing, storing, and transforming structured statistical objects. The FACTOR-
BASE system uses SQL as a high-level scripting language for statistical-relational
learning of a graphical model structure. Our implementation shows how the SQL
constructs in FACTORBASE facilitate fast, modular, and reliable program develop-
ment. Empirical evidence from six benchmark databases indicates that leveraging
database system capabilities achieves scalable model structure learning.

1 Introduction

Multi-relational data have a complex structure, that integrates heterogeneous information about dif-
ferent types of entities (customers, products, factories etc.) and different types of relationships
among these entities. A statistical-relational model provides an integrated statistical analysis of the
heterogeneous and interdependent complex data resources maintained by the database system. Ma-
chine learning researchers have developed a number of formalisms for statistical-relational models
that combine ideas from graphical models with first-order logic. These include Probabilistic Re-
lational Models, Markov Logic Networks, and Probabilistic Soft Logic [3]. Statistical-relational
models have achieved state-of-the-art performance in a number of application domains, such as nat-
ural language processing, ontology matching, information extraction, entity resolution, link-based
clustering etc. [4, 2]. Database researchers have noted the usefulness of statistical-relational models
for knowledge discovery and for representing uncertainty in (probabilistic) databases [5, 1, 6].

Multi-relational graphical model learning raises new challenges that require system support, such
as:

1. A description language for specifying metadata about structured random variables.
2. Efficient mechanisms for constructing, storing, and transforming complex statistical ob-

jects, such as cross-table sufficient statistics, parameter estimates, and model selection
scores.

3. Computing model prediction scores for relational test instances.
⇤This paper is based on material presented at the DSAA 2015 conference in October. Supported by a

Discovery grant to Oliver Schulte from the Natural Sciences and Engineering Research Council of Canada, and
by a grant to Zhensong Qian from the China Scholarship Council.

1

We describe the FACTORBASE system that leverages RDBMS capabilities to solve these system
challenges. The name FACTORBASE indicates that our system supports learning a set of (par)-
factors for a log-linear multi-relational model, typically represented in a graphical model [3]. FAC-
TORBASE adopts a system architecture, developed by database researchers, where statistical mod-
els are stored as first-class citizens inside a relational database management system [1, 2]. Our
system applies SQL as a scripting language to implement database services that provide system
capabilities for relational learning. The theoretical basis for SQL is relational algebra [7]; FACTOR-
BASE shows that relational algebra provides a unified language for both representing and computing
with statistical-relational objects, much as linear algebra does for traditional single-table machine
learning.

1.1 Related Work

Qian and Schulte discuss related work in detail [8]. The idea of managing big structured models
inside an RDBMS, in addition to managing big data, has been developed in the database community
[1, 2]. These systems focus on inference given a statistical-relational model, not on learning the
model from the data stored in the RDBMS. Our FACTORBASE system complements the in-database
probabilistic inference systems with an in-database probabilistic model learning system.

There are several previous systems that leverage RDBMS support for learning [9, 10], but they
apply to traditional learning where the data are represented in a single table or data matrix. The novel
contribution of FACTORBASE is supporting graphical model learning for multi-relational data stored
in different interrelated tables. The Sindbad system [11] provides support for some multi-relational
knowledge discovery tasks in an inductive database, but not for graphical model construction.

1.2 Evaluation

Our system is fully implemented and source code is available on-line [12]. We summarize the eval-
uation of FACTORBASE on six benchmark databases. For each benchmark database, the system
applies the learn-and-join algorithm, a state-of-the-art SRL algorithm that constructs a statistical-
relational Bayesian network model [13]. The learned Bayes net structure can be converted to a
Markov Logic network structure or a set of clauses [14]. The same SQL scripts work for all bench-
mark databases, which demonstrates the generality of our approach.

Our experiments show that FACTORBASE pushes the scalability boundary: Learning scales to
databases with over 106 records, compared to less than 105 for previous systems. At the same
time it is able to discover more complex cross-table correlations than previous SRL systems. The
scalability improvement is mainly due to the efficient computation and caching of sufficient statistics
supported by SQL. Our experiments focus on two key services for an SRL client: (1) Computing
and caching sufficient statistics, (2) computing model predictions on test instances. The system
can handle as many as 15M sufficient statistics. SQL facilitates block-prediction for a set of test
instances, which leads to a 10 to 100-fold speedup compared to a simple loop over test instances.

1.3 Benefits

We advocate using SQL as a high-level scripting language for statistical-relational learning, because
of the following advantages.

1. Extensibility and modularity, which support rapid prototyping. Algorithm development can
focus on statistical issues and rely on the RDBMS for data access and processing.

2. Increased scalability, in terms of both the size and the complexity of the statistical objects
that can be handled.

3. Generality and portability: standardized database operations support “out-of-the-box”
learning with a minimal need for user configuration.

2 Log-linear Template Models for Relational Data

FACTORBASE supports learning log-linear multi-relational graphical models based on par-factors.
We briefly describe this model class; for more details see the survey of Kimmig et al.[3]. Par-factor

2

stands for “parametrized factor”. A par factor represents an interaction among parametrized random
variables, or par-RVs for short. We employ the following notation for par-RVs [3, 2.2.5]. Constants
are expressed in lower-case, e.g. joe , and are used to represent entities. A type is associated with
each entity, e.g. joe is a person. A first-order variable is also typed, e.g. Person denotes some
member of the class of persons. A functor f maps a tuples of entities to a value. We assume that the
range of possible values is finite. A term is an expression of the form f(⌧1, . . . , ⌧a) where each ⌧i is
either a constant or a first-order variable. If all of ⌧1, . . . , ⌧a are constants, f(⌧1, . . . , ⌧a) is a ground
term or random variable (RV), otherwise a first-order term or a par-RV. A par-RV is instantiated
to an RV by grounding, i.e. substituting a constant of the appropriate domain for each first-order
variable.

Examples. The standard single-table attribute-value representation is a special case where all func-
tors map exactly one entity to an attribute value. For instance, in a single table Student , an attribute
gender can be represented as a function that takes as input a single student and returns W or M .
A ground term such as gender(joe) represents the gender of a specific individuals. A parametrized
random variable gender(S) is a template for a set of ground terms, as shown in the plate notation
of Figure 3 [3]. A characteristic of relational data is that they include functions of more than one
entity. For instance, grade(Student ,Course) is a par-RV based on a function that takes as input a
student and a course and returns the grade of the student in that course.

A par-factor is a pair � = (A,�), where A is a set of par-RVs, and � is a function from the values
of the par-RVs to the non-negative real numbers.1 Intuitively, a grounding of a par-factor represents
a set of random variables that interact with each other locally. SRL models use parameter tying,
meaning that if two groundings of the same par-factor are assigned the same values, they return
the same factor value. A set of parfactors F defines a joint probability distribution over the ground
par-RVs as follows. Let I(�i) denote the set of all ground par-RVs in par-factor �i. Let x be a
joint assignment of values to all ground random variables. Notice that this assignment determines
the values of all ground atoms. An assignment X = x is therefore equivalent to a single database
instance. The probability of a database instance is given by the log-linear equation [3, Eq.7]:

P (X = x) =
1

Z

Y

�i2F

Y

A2I(�i)

�i(xA) (1)

where xA represents the values of those variables in A that are necessary to compute �i. Equation 1
can be evaluated, without enumerating the ground par-factors, as follows. (1) For each par-factor,
for each possible assignment of values, find the number of ground factors with that assignment of
values. (2) Raise the factor value for that assignment to the number of instantiating factors. (3)
Multiply the exponentiated factor values together. The number (2) of ground factors with the same
assignment of values is known as a sufficient statistic.

RA

salary

capability

professorprof_id

popularity

teachingability

student student_id

intelligence

ranking

Figure 1: A relational ER Design for a university domain.

Student
s_id intelligence ranking
jack 3 1
kim 2 1
paul 1 2

RA
s_id p_id salary capability
jack oliver high 3
kim oliver low 1
paul jim med 2
kim david high 2

Professor
p_id popularity teachingability
jim 2 1
oliver 3 1
david 2 2

(a) (c)(b)

Figure 2: Database Table Instances: (a) Student , (b) RA, (c) Professor .

1A par-factor can also include constraints on possible groundings.

3

RA(P,S)

Capability(P,S)

Popularity(P)

Salary(P,S)

Ranking(S)

Teachingability(P)

RA(P

bility(y(Capabp

(P S RA

bilityy

ularity(P

,, (

bil

P))

((

P))

R

y(y(

eachingab

))

ngab

S)S)))

anking

Intelligence(S)

Capa(P,S) RA(P,S) Salary(P,S) CP
n/a F n/a 1.00
4 T high 0.45
5 T high 0.36
3 T high 0.18
3 T low 0.20
2 T low 0.40
1 T low 0.40
2 T med 0.22
3 T med 0.44
1 T med 0.33

Count Capa(P,S) RA(P,S) Salary(P,S)
203 n/a F n/a

5 4 T high
4 5 T high
2 3 T high
1 3 T low
2 2 T low
2 1 T low
2 2 T med
4 3 T med
3 1 T med

(b) (c)

(a)

InIn

P in Professor

S in Student

Figure 3: (a) Bayesian network for the University domain. We omit the Registered relation-
ship for simplicity. The network was learned from the University dataset [12]. (b) Conditional
Probability table Capability(P, S) CPT , for the node Capability(P, S). Only value combinations
that occur in the data are shown. This is an example of a factor table. (c) Contingency Table
Capability(P, S) CT for the node Capability(P, S) and its parents. Both CP and CT tables are
stored in an RDBMS.

Variable
Manager

Count Database:
CDB

Random Variable
DataBase: VDB Input DataBase

System Pipeline

analyzes
schema

MetaData about
Random variables

Cross-table Counts/
Sufficient Statistics

Count
Manager

computes
sufficient
statistics

Model Structure

Parameters

Models Database:
MDB

Graphical Model +
Parameter Values

Model
Manager

Learns Model
Structure

Contingency Table

Figure 4: System Flow. All statistical objects are stored as first-class citizens in a DBMS. Objects
on the left of an arrow are utilized for constructing objects on the right. Statistical objects are
constructed and managed by different modules (boxes).

3 System Overview

Our system design represents statistical objects as relational tables, on a par with the original data
tables, so that SQL can be used to manage them. Figure 4 represents key system components. The
starting point is a multi-relational database containing the input data.

3.1 The Schema Analyzer

The schema analyzer is an SQL script that queries the system catalog table to define a default set of
relational random variables (par-RVs) for statistical analysis [3]. The metadata include the domain
of the par-RVs (possible values), and type information (possible arguments). The schema analyzer
extracts metadata about the random variables from the database system catalog. The random vari-
ables and associated metadata are stored in the random variable database VDB . We highlight two
features of the VDB component.

(i) The set of par-RVs and the associated metadata is constructed automatically from the input
database. Thus FACTORBASE utilizes the data description resources of SQL to faciliate the “setup
task” for relational learning [15].

(ii) Representing metadata explicitly offers two advantages. First, a user can easily edit the VDB to
customize the learning behavior, for instance by deleting irrelevant par-RVs. Second, it is possible
to export metadata from other formats to the VDB format. In this way FACTORBASE can serve as a
structure learning backend to expressive specification languages for other relational models [16, 17].

4

3.2 The Count Manager

A key service for statistical-relational learning is counting how many times a given relational pat-
tern (par-RV) is instantiated in the data. Such counts are known as sufficient statistics. Accessing
sufficient statistics is often the main scalability bottleneck. The access patterns of a model search
procedure are inherently sequential and random [2], and therefore it is important to cache suffi-
cient statistics. Caching is even more important if the data is stored on disk in an RDBMS, rather
than in main-memory. There are several reasons for employing an RDBMS for gathering sufficient
statistics. (1) The machine learning application saves expensive data transfer by executing count
operations in the database server space rather than local main memory. (2) SQL optimizations for
aggregate functions such as SUM and COUNT can be leveraged. (3) Sufficient statistics can be
stored in the RDBMS. For many datasets, the number of sufficient statistics runs in the millions and
is too big for main memory. A novel aspect of FACTORBASE is managing multi-relational sufficient
statistics that combine information across different tables in the relational database. This requires
combining SQL aggregate functions with table joins [18].

3.3 The Model Manager

The Model Manager supports the construction and querying of large structured statistical models,
which are stored in the Model Database MDB. Services provided by the Model Manager include
the following. (1) Compute parameter estimates for the model using the sufficient statistics in the
Count Database. (2) Computing model characteristics such as the number of parameters or degrees
of freedom in a model. (3) Computing a model selection score that quantifies how well the model fits
the multi-relational data. Model selection scores are usually functions of the number of parameters
and the parameter estimates. By employing the SQL view mechanism, parameter estimates and
model selection scores are updated automatically during the model search.

4 Conclusion

Compared to traditional learning with a single data table, learning for multi-relational data requires
new system capabilities. In this paper we described FACTORBASE , a system that leverages the
existing capabilities of an SQL-based RDBMS to support statistical-relational learning. Represen-
tational tasks include specifying metadata about structured first-order random variables, and storing
the structure of a learned model. Computational tasks include storing and constructing sufficient
statistics, and computing parameter estimates and model selection scores. We showed that SQL
scripts can be used to implement these capabilities, with multiple advantages. These advantages in-
clude: 1) Fast program development through high-level SQL constructs for complex table and count
operations. 2) Managing large and complex statistical objects that are too big to fit in main memory.
For instance, some of our benchmark databases require storing and querying millions of sufficient
statistics. While FACTORBASE provides good solutions for each of these system capabilities in
isolation, the ease with which large complex statistical-relational objects can be integrated via SQL
queries is a key feature.

Future Work. Further potential application areas for FACTORBASE include managing massive num-
bers of aggregate features for classification [19], and collective matrix factorization [20]. An im-
portant goal is a single RDBMS package for both learning and inference that integrates FACTOR-
BASE with inference systems such as BayesStore and Tuffy.

There are opportunities for optimizing RDBMS operations for the workloads required by statistical-
relational structure learning. These include view materialization and the key scalability bottleneck of
computing multi-relational sufficient statistics. There are several fundamental system design choices
whose trade-offs for SRL warrant exploration. These include the choice between pre-counting and
post-counting sufficient statistics, and using main memory vs. RDBMS disk storage. For instance,
model selection scores can be cached in either main memory or the database. Our SQL-based
approach facilitates using distributed computing systems such as SparkSQL [21], which have shown
great potential for scalability.

5

References
[1] Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M Hellerstein.

BayesStore: managing large, uncertain data repositories with probabilistic graphical models.
In VLDB, volume 1, pages 340–351, 2008.

[2] Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik. Tuffy: Scaling up statistical
inference in Markov Logic Networks using an RDBMS. PVLDB, 4(6):373–384, 2011.

[3] Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical models: a survey.
Machine Learning, 99(1):1–45, 2015.

[4] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intelli-
gence. Morgan and Claypool Publishers, 2009.

[5] Sameer Singh and Thore Graepel. Automated probabilistic modeling for relational data. In
CIKM, pages 1497–1500. ACM, 2013.

[6] Sameer Singh and Thore Graepel. Automated probabilistic modelling for relational data. 2013.
[7] J. D. Ullman. Principles of Database S¡ystems. W. H. Freeman & Co., 2 edition, 1982.
[8] Zhensong Qian and Oliver Schulte. Factorbase: Multi-relational model learning with sql all

the way. In IEEE International Conference on Data Science and Advanced Analytics (DSAA),
2015.

[9] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene Fratkin,
Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and Arun Kumar.
The MADlib analytics library: Or MAD skills, the SQL. PVLDB, 5(12):1700–1711, August
2012.

[10] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin, and
Michael I. Jordan. MLbase: A distributed machine-learning system. In CIDR, 2013.

[11] Jörg Wicker, Lothar Richter, and Stefan Kramer. SINDBAD and SiQL: Overview, applications
and future developments. In Savso Dvzeroski, Bart Goethals, and Panvce Panov, editors,
Inductive Databases and Constraint-Based Data Mining, pages 289–309. Springer New York,
2010.

[12] Zhensong Qian and Oliver Schulte. The BayesBase system, 2015. www.cs.sfu.ca/

˜

oschulte/BayesBase/BayesBase.html.
[13] Oliver Schulte and Hassan Khosravi. Learning graphical models for relational data via lattice

search. Machine Learning, 88(3):331–368, 2012.
[14] Hassan Khosravi, Oliver Schulte, Tong Man, Xiaoyuan Xu, and Bahareh Bina. Structure

learning for Markov logic networks with many descriptive attributes. In AAAI, pages 487–493,
2010.

[15] Trevor Walker, Ciaran O’Reilly, Gautam Kunapuli, Sriraam Natarajan, Richard Maclin, David
Page, and Jude W. Shavlik. Automating the ILP setup task: Converting user advice about
specific examples into general background knowledge. In ILP, pages 253–268, 2010.

[16] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, and Graham Williams. Pmml: An open
standard for sharing models. The R Journal, 1(1):60–65, 2009.

[17] Brian Milch, Bhaskara Marthi, Stuart J. Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: probabilistic models with unknown objects. In IJCAI-05, pages 1352–1359,
2005.

[18] Zhensong Qian, Oliver Schulte, and Yan Sun. Computing multi-relational sufficient statistics
for large databases. In CIKM, pages 1249–1258. ACM, 2014.

[19] Alexandrin Popescul and Lyle Ungar. Feature generation and selection in multi-relational
learning. In Introduction to Statistical Relational Learning, chapter 16, pages 453–476. MIT
Press, 2007.

[20] Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization.
In SIGKDD, pages 650–658. ACM, 2008.

[21] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Hua, Davies Liu, Joseph K. Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark
SQL: Relational data processing in Spark. In SIGMOD Conference, To Appear, 2015.

6

