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1 Introduction

From one perspective, the fundamental notions of point-set topology have to
do with sequences (of points or of numbers) and their limits. A broad class
of epistemological questions also appear to be concerned with sequences and
their limits. For example, problems of empirical underdetermination—which
of a collection of alternative theories is true—have to do with logical proper-
ties of sequences of evidence. Underdetermination by evidence is the central
problem of Plato’s Meno [Glymour and Kelly 1992], of one of Sextus Empiri-
cus’ many skeptical doubts, and arguably it is the idea in Kant’s antinomies,
for example of the infinite divisibility of matter [Kelly 1995, Ch.3]. Many ques-
tions of methodology, or of the logic of discovery, have to do with sequences
and their limits, for example under what conditions Bayesian procedures, which
put a prior probability distribution over alternative hypotheses and possible
evidence and form conditional probabilities as new evidence is obtained, con-
verge to the truth ([Savage 1954], [Hesse 1970], [Osherson and Weinstein 1988],
[Juhl 1993]). Some analyses of “S knows that p” seem to appeal to properties
of actual and possible sequences of something—for example Nozick’s proposal
that knowledge of p is belief in p produced by a method that would not produce
belief in p if p were false and would produce belief in p if p were true. Even ques-
tions about finding the truth under a quite radical relativism, in which truth



depends on conceptual scheme and conceptual schemes can be altered, have
been analyzed as a kind of limiting property of sequences [Kelly et al. 1994].

One might think that is the end of the matter, a superficial analogy and noth-
ing more. In a series of papers and a recent book [Kelly 1995], Kelly has shown
otherwise: An array of epistemological and methodological questions about re-
liable inquiry translate literally into topological questions. The philosophical
fruits can be highly rewarding: a host of ambiguities hidden behind philosophi-
cal questions can be revealed; puzzling issues and proposed resolutions become
amenable to proof and disproof; spanking new epistemological questions arise.

This paper is a friendly introduction to the embedding of epistemological
questions in topology and some of its results.!

2 A Topological Space for Methodology

We will study methods that infer general conjectures from observations. We
adopt the convention of encoding discrete observations by natural numbers.
Two examples will illustrate this idea. Consider an empirical generalization
like “all swans are white”. A hypothetical ornithologist may investigate this
hypothesis by examining one swan after another. We encode the observation
“this swan is not white” by 0 and “this swan is white” by 1; see figure 1. There
is an ancient debate about whether matter has fundamental indivisible parts.
The modern physicist’s version of this question is “are there only finitely many
(types of) elementary particles?”. Let us take as our data annual reports from
particle physicists as to whether they have discovered a new elementary particle
or not. In figure 2, “no new particles this year” is encoded by 0, and “a new
particle has been discovered” by 1.

If inquiry continues indefinitely, an infinite sequence of observations is pro-
duced, which we represent by an infinite sequence of natural numbers encoding
the particular observations. We refer to infinite sequences of natural numbers
as data streams. Data streams are denoted by lower case Greek letters ¢, 7, etc.
We say that a data stream ¢ is consistent with a finite sequence of observations
e if € begins with e. An empirical hypothesis is a proposition about what will
be observed. The truth of an empirical proposition hence depends only on the
data stream. For example, the hypothesis “all (observed) swans are white” is
true on the infinite sequence of observations which features only white swans,
which in our encoding is the everywhere 1 data stream.? The hypothesis “there

IThe first four sections of this paper appeared previously as [Schulte and Juhl 1996].

2In what follows, we formulate claims about what will be observed, e.g. “all observed swans
are white”, more idiomatically without explicit reference to observations, e.g. “all swans are
white”. In effect, we assume that if there is a non-white swan, this fact will eventually be
included in the scientist’s data. Methodological issues that arise when a scientist’s observations
depend on the experiments she performs are examined in [Kelly 1995, Ch. 14]. A setting with
theory-laden evidence, in which the scientist’s theories influence what the scientist observes is
investigated in [Kelly and Glymour 1992],[Kelly et al. 1994],[Kelly 1995, Ch.15]. See also our
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Figure 1: Encoding observations by natural numbers.
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are only finitely many elementary particles” is true just in case there is a time
after which no new discoveries of particles are reported. In our encoding, this
hypothesis is correct on any data stream which features only Os after some finite
time. We refer to the set of data streams on which a hypothesis is true as its
empirical content. Since the truth of an empirical hypothesis depends only on
the data stream, we identify empirical hypotheses with their empirical content,
and treat such hypotheses as sets of data streams.

We think of the collection of all data sequences as the space of empirical
possibilities. On this space we impose a topological structure which will allow
us to study inductive inference with the tools of topology. A topological space
can be built on one of three foundations: open sets, closed sets, or limit points.
We begin with limit points.

Let H be an empirical hypothesis, that is, a set of data streams. A limit
point of H is a data stream e along which H is never refuted. This means that
at any point along the data stream &, there is an empirical possibility, i.e. a
data stream 7, that is consistent with the data observed so far and makes H
true. Figure 3 illustrates this concept.

In the example from figure 1, let H be the empirical content of the hypothesis
“not all swans are white”. In our encoding, H is the set of data streams along
which a 0 appears at some point. The everywhere 1 data stream (“all swans are
white”) is a limit point of H, for no matter how many white swans (1s) have
been observed, the next swan could be black. In the second example, let H be
the empirical content of the hypothesis “there are only finitely many elementary
particles”. In our encoding, H is the set of data streams along which eventually
only Os appear. But no matter how many particles have been observed so far,
it is possible that no new particles will be found, i.e. that the data stream
obtained in inquiry continues with Os only. This means that H is never refuted
along any data stream e. So all data streams are limit points of H.

An empirical hypothesis H is closed just in case H contains all of its limit
points. The hypothesis “all swans are white” is closed. But “not all swans are
white” is not closed, because the everywhere 1 data stream is a limit point of
this hypothesis on which the hypothesis is false. The hypothesis “there are only
finitely many particles” is not closed, and neither is “there are infinitely many
particles”: All data streams are limit points of these hypotheses, but not all data
streams make these hypotheses true. The complement of an empirical hypothesis
H is the set of data streams which are not in H, i.e. on which H is false. The
particle example shows that sometimes neither H nor the complement of H is
closed. An empirical hypothesis H is open just in case the complement of H is
closed. The hypothesis “some swan is not white” is open, but its complement
is not; “there are only finitely many particles” is not open, and neither is its
complement.

section 7.
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3 Universal Generalizations as Missing Limit Points

These topological structures played a role in philosophical debates long before
topology was invented. Consider one of Sextus Empiricus’ [1985] arguments for
inductive skepticism from the second century:

[The dogmatists] claim that the universal is established from the
particulars by means of induction. If this is so, they will effect it
by reviewing either all the particulars or only some of them. But if
they review only some, their induction will be unreliable, since it is
possible that some of the particulars omitted in the induction may
contradict the universal. If, on the other hand, their review is to
include all the particulars, theirs will be an impossible task ...

Figure 4 illustrates Sextus’ scenario. The topological structure is the same
as in figures 1 and 3: in each case, the universal generalization is a limit point
of its complement. This is no accident. Limit points are essentially connected
to the verifiability of empirical hypotheses; and there is a theorem that tells us
how.

We say that an empirical hypothesis H is (logically) entailed by a finite data
sequence e if all data streams consistent with e make H true, i.e. are members
of H. So an empirical proposition like “e has been observed” entails another
empirical proposition H just in case the former, viewed as a collection of data
streams, is a subset of the latter. For example, any data sequence along which a
black swan is observed entails the hypothesis “not all swans are white”, and no
finite data sequence entails “all swans are white”. An empirical hypothesis H is
verifiable with certainty if the hypothesis is eventually entailed by the evidence
whenever it is true. This means that along any data stream ¢ that makes H true
some finite number of observations from ¢ logically entails H. The hypothesis
that not all swans are white is verifiable with certainty, but its negation is not.
We say that a hypothesis H is (conclusively) falsified by a finite data sequence
e if e entails the complement of H. A hypothesis is refutable with certainty if
the hypothesis is conclusively falsified whenever it is false.

Suppose there is a limit point ¢ of an empirical hypothesis H that makes
H false, i.e. ¢ is not in H. Then by the definition of a limit point, no finite
number of observations from ¢ falsifies H. So if € is the data stream obtained
in inquiry, H is false but never falsified. This shows that if a hypothesis H is
refutable with certainty, it must contain all of its limit points. In other words,
H must be closed. Conversely, it is possible to prove [Kelly 1995, Proposition
4.6] that whenever a hypothesis H is closed, H is refutable with certainty. This
leads to a characterization of the topological structure of refutable hypotheses.

Theorem 1 An empirical hypothesis H is refutable with certainty if and only
if H is closed.
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Figure 4: Sextus’ argument that a universal generalization cannot be conclu-
sively established by induction.



We observe that a hypothesis is verifiable with certainty just in case its
complement is refutable with certainty. For a data sequence that entails a
hypothesis H falsifies the complement of H, and vice versa. This observation
yields a characterization of verifiable hypotheses.

Theorem 2 An empirical hypothesis H is verifiable with certainty if and only
if H is open.

As noted above, the hypothesis that there is only a finite set of elementary
particles is neither open nor closed. So by the characterization theorems, this
hypothesis is neither verifiable nor refutable with certainty. On the other ex-
treme, the investigation of hypotheses that are both closed and open will yield
certainty whether they are true or false. Such hypotheses are said to be decidable
with certainty. A trivial example is the a priori certain hypothesis “something
will be observed”, which is true on every data stream. This reflects the fact
that in every topological space, the entire space and its complement, the empty
set, are both closed and open. More generally, all hypotheses which are con-
junctions, disjunctions or negations of propositions of the form “data sequence
e will be observed” are decidable with certainty.

4 Falsifiability and Denseness

Karl Popper’s falsifiability criterion [1968] has played a prominent role in 20-th
century debates about methodology. According to this criterion, a hypothesis is
a legitimate scientific hypothesis only if it is falsifiable. How might we formulate
the falsifiability criterion for the kind of empirical hypotheses we have examined
so far? An obvious interpretation is to require that an empirical hypothesis must
be refutable with certainty. But this will hardly do for a falsificationist: the
tautological hypothesis that is true no matter what is refutable with certainty,
but is not subject to any ‘critical tests’. It is true that the tautology is refuted
whenever it is false—but it never is false. This suggests another reading: Say
that an empirical hypothesis has a critical test if there is a finite sequence of
observations which conclusively falsifies the hypothesis. Should we take the
falsifiability criterion to aim at hypotheses with critical tests? This rules out
the tautology, but still seems too lenient. For example, the hypothesis “the
first swan will be white” may be refuted if the first swan is black; but after it
passes this initial muster, the hypothesis tells us nothing more. A Popperian
diagnosis would be that this hypothesis does not have enough content, where
content is determined with respect to a probability measure: the more probable
a hypothesis is, the less content it has. An alternative remedy is to require that
there be no end to the critical tests: no matter how much muster a hypothesis
has passed so far, there should be further observations which might falsify it.
Accordingly, we define:



An empirical hypothesis H is falsifiable if and only if H has a critical test.
An empirical hypothesis H is always falsifiable if and only if for every finite
sequence of observations e, there are further observations e’ which extend e and
falsify H.

The fundamental topological notion of denseness corresponds exactly to
these conceptions of falsifiability. An empirical hypothesis H is (everywhere)
dense if every data stream is a limit point of H. A hypothesis H is dense in a
finite data sequence e if every data stream that is consistent with e is a limit
point of H. A hypothesis H is nowhere dense if H is not dense in any finite
data sequence e. The hypothesis “all swans are white” is nowhere dense, and its
complement is everywhere dense. The hypothesis “there are only finitely many
elementary particles” is everywhere dense, and so is its complement.

Recall that by definition, a data stream ¢ is a limit point of an empirical
hypothesis H if no finite sequence of observations from e conclusively falsifies
H. Soif H has a critical test e, then no data stream that begins with e is a limit
point of H, and H is not everywhere dense. Conversely, if there is no critical
test for H, then H is never conclusively falsified along any data stream, and so
all data streams of H are limit points of H. Thus we have:

Proposition 3 An empirical hypothesis H is falsifiable if and only if H is not
everywhere dense.

Similarly, H can be conclusively falsified given a finite data sequence e if
and only if some data streams that are consistent with e are not limit points of
H; ie. if and only if H is not dense in e.

Proposition 4 An empirical hypothesis H is always falsifiable if and only if H
1s nowhere dense.

There is no guarantee that the evidence will let an always falsifiable hypoth-
esis “die in our stead” when it is false. A hypothesis may survive an eternal
barrage of critical tests and yet be false. In topological terms, a nowhere dense
set is not necessarily closed. Consider the hypothesis H “no swan is gray, but at
least one swan is black”. The empirical content of this hypothesis is illustrated
in figure 5. Since the appearance of a gray swan may falsify the hypothesis at
any point, H is always falsifiable. But if all swans are white, the hypothesis is
false, although never refuted by the evidence. Propositions of the form “there
are between 1 and n instances of X” are a broad class of always falsifiable hy-
potheses which may be false but never refuted by the data. Such hypotheses
are always falsified by the observation of more than n instances of X, and false
but never refuted when there are none. Some examples are “there is exactly
one species of black swans”, “there are exactly 37 elementary particles”, “there
are between one and three other intelligent life forms in the universe”.

We have examined two properties of empirical hypotheses which the falsifi-
ability criterion may be aimed at. On the one hand, one may want to be sure
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Figure 5: H is always falsifiable but not refutable with certainty.
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that the data will logically refute a hypothesis whenever it is false. On the
other hand, one may require the existence of critical tests (for eternity) for the
hypothesis. These desiderata correspond to distinct topological properties; the
first is satisfied by closed sets, the second by those hypotheses which are not
everywhere (or nowhere) dense. Topology clarifies distinctions which unguided
intuition tends to conflate.

5 Inquiry Without Certainty

Sextus Empiricus argued that we could never know with certainty that a univer-
sal hypothesis is true. The critical tests of falsificationists allow us to conclude
with certainty that a hypothesis is false when it fails one of them. But science
may arrive at the truth in the limit of inquiry without ever providing certainty
about any of its hypotheses. This is the kind of empirical success that philoso-
phers like Peirce, James, Putnam and Reichenbach have endorsed. William
James [1948], for one, emphasized the difference between knowing and knowing
with certainty that we know:

We may talk of the empiricist and the absolutist way of believing
the truth. The absolutists in this matter say that we not only can
attain to knowing truth, but we can know when we have attained to
knowing it; while the empiricists think that although we may attain
it, we cannot infallibly know when. To know is one thing and to
know for certain that we know is another.

This conception of empirical success has been formulated by philosophers and
logicians in essentially the same way in a number of formal settings [Osherson et al. 1991],
[Gold 1967], [Putnam 1965]%. Kelly’s [Kelly 1995] version is given in the topo-
logical framework of this paper. The key idea is that a scientist may eventually
stabilize to true beliefs without ever knowing that she has done so. Consider
again a universal generalization like “all swans are white”. An ornithologist
may conjecture that this hypothesis is true as long as all observed swans are
white, and take the hypothesis to be refuted when a swan is found that is not
white. If all swans are white, the epistemic situation of the ornithologist is
just as described by James: The ornithologist always has the true belief that
all swans are white, but she never knows this fact with certainty—for the next
swan might be black, as Sextus pointed out. If it is not true that all swans
are white, then our ornithologist will believe this after the first non-white swan

3Putnam’s paper deals with success in the limit concerning formal, mathematical problems.
Putnam recognized the applicability of his standard of success in inductive inference. This
perspective reveals strong analogies between formal and empirical inquiry; the solvability
of deductive problems is characterized by the same kind of structures as the solvability of
inductive problems. [Kelly and Schulte 1995a] explores these analogies in some detail.

12
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Figure 6: An assessment method.

has appeared (and in fact be certain of it). So no matter what is the case, the
ornithologist will eventually always have only true beliefs.

In general, let H be an empirical hypothesis; an assessment method for H
takes as input a finite data sequence and gives as output a conjecture ‘true’ or
‘false’; see figure 6. An assessment method produces a conjecture after each
new observation along an infinite data stream. We say that an assessment
method stabilizes to ‘true’ (‘false’) along an infinite data stream e just in case
after some time the assessment method conjectures ‘true’ (‘false’) forever on the
observations from ¢; see figure 7. An assessment method « decides H in the
limit on a data stream ¢ if

1. H is correct on ¢ and « stabilizes to ‘true’ along ¢, or
2. H is not correct on € and « stabilizes to ‘false’ along e.

An assessment method « reliably decides H in the limit if o decides H in
the limit on every data stream e. Finally, an empirical hypothesis H is said to
be decidable in the limit if there is an assessment method « for H that reliably
decides H in the limit. A reliable assessment method is guaranteed to eventually
arrive at the truth about H, but we may never know when it has done so.

As we noted, the ornithological assessment method described above reliably
decides “all swans are white” in the limit. In fact, any hypothesis H that
is refutable with certainty is reliably decidable in the limit: Conjecture ‘true’
until H is refuted by the evidence, and ‘false’ (with certainty) thereafter. If
H is never logically refuted by the data, the hypothesis must be true, since

13
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Figure 7: Conjectures stabilize to ‘true’.

H is refutable with certainty; so this method reliably decides H in the limit.
Similarly, verifiable hypotheses are decidable in the limit: conjecture ‘false’ until
they are established, and ‘true’ thereafter. All of the hypotheses considered
in the previous section are decidable in the limit, although they are neither
refutable nor verifiable with certainty. For example, to reliably assess “there
are between 1 and 3 other intelligent life forms in the universe”, suppose we
have launched an exhaustive space mission to seek out new forms of life. The
method that conjectures ‘false’ while no new life forms have been found, ‘true’
if we have encountered at least one but no more than three, and ‘false’ (with
certainty) after meeting four or more is guaranteed to eventually arrive at the
truth about this hypothesis.

On the other hand, the hypothesis that there are only finitely many elemen-
tary particles is not decidable in the limit. For consider an arbitrary assessment
method which aspires to reliably decide this hypothesis in the limit. An induc-
tive kind of Cartesian demon might present the method with one new particle
after another until the method conjectures that there are infinitely many par-
ticles. At that point, the demon can stop, having presented only finitely many
particles, until our aspirant’s confidence in the existence of infinitely many par-
ticles is shaken, and the method conjectures that there are only finitely many
particles. Then the demon resumes the discovery of new particles, until the
method changes its mind again to guess that there are infinitely many particles,
etc. In order to decide the hypothesis in the limit, the method must eventually
always conjecture ‘true’ or always conjecture ‘false’ during this interplay. If the
method stabilizes to ‘true’, the demon presents new particles forever, so the
method settles on a false belief. On the other hand, the demon stops presenting
new particles when the method stabilizes to ‘false’, so in that case there are

14



only finitely many particles, contrary to the opinion which the method arrives
at. Hence all assessment methods fail to find the truth about the hypothesis
that there are only finitely many particles on some possible data stream. This
kind of argument against all possible methods is known as a diagonal argument
[Putnam 1975]%.

So what must an empirical hypothesis be like if inquiry is to reliably find
out whether it is true or false? As with verifiable and refutable hypotheses,
we can give a topological characterization of which hypotheses are decidable
in the limit. The key concept is that of a countable disjunction of refutable
hypotheses.® An empirical hypothesis H is a countable disjunction of refutable
hypotheses Hy, Hs, ... if H is true just in case one of the H; is. For example,
the hypothesis “there are only finitely many elementary particles” is equivalent
to the disjunction “there are no elementary particles or there is at most one or
there are at most two or ...”. Each hypothesis of the form “there are at most n
elementary particles” is refutable with certainty—if it is false, eventually more
than n particles will be reported. A verifiable hypothesis is a countable dis-
junction of decidable hypotheses. For example, “not all swans are white” is
equivalent to “the first swan is not white or the second swan is not white or ...”.
In general, a verifiable hypothesis is true just in case one of the pieces of evidence
which entail it is obtained. A refutable hypothesis is itself a trivial disjunction
of refutable hypotheses. So any verifiable hypothesis and its complement, which
is refutable, are countable disjunctions of refutable hypotheses, and the same
is true of a refutable hypothesis and its verifiable complement. The next the-
orem tells us that this is the characteristic property of all hypotheses that are
decidable in the limit.

Theorem 5 An empirical hypothesis H is decidable in the limit if and only if
both H and the complement of H are countable disjunctions of refutable hy-
potheses.

The proof may be found in [Kelly 1995, Proposition 4.9]. It follows from the
theorem and the diagonal argument given above that although “there are only
finitely many particles” is a countable disjunction of refutable hypotheses, its
complement “there are infinitely many particles” is not.

4Thus we have two forms of argument to establish whether an inductive problem can be
solved by a reliable method: for a positive answer, we exhibit a reliable method, and for a
negative answer, we give a diagonal argument. Whether this kind of question can always be
settled this way, hinges, remarkably, on issues in the foundations of mathematics: [Juhl 1995a]
shows that under the Axiom of Choice and assuming the Continuum Hypothesis, there is an
empirical hypothesis H such that neither a reliable method nor a diagonal argument establishes
whether H is decidable in the limit. From the Axiom of Determinacy, on the other hand, it
follows that for every assessment problem there either is a reliable method or a diagonal
argument against all reliable methods.

5Such sets are known in topology as Gg sets.
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6 Reliable Discovery

Suppose a scientist entertains a number of alternative hypotheses, and wants
to find a true one among them. For example, the hypotheses could be theories
of elementary particles that predict which particles exist and how they behave.
Or we may think of different natural languages and a child trying to learn the
language spoken in her environment. We refer to the task of finding a true
hypothesis among a number of possibilities as a discovery problem. Popper’s
falsifiability criterion was proposed as part of a general logic of discovery. Do
falsifiable hypotheses play a special role in scientific discovery? We will address
this question through a model of discovery that is simplified but brings out some
important philosophical points.

A discovery method for alternative hypotheses Hy, Hs, ... takes as input a
finite data sequence and conjectures one of the alternatives to be true; see figure
8. A discovery method stabilizes to a hypothesis H along a data stream e if after
some time the assessment method always conjectures H on the observations from
e. A discovery method identifies a correct hypothesis on a data stream e just

16



in case the method stabilizes to a correct hypothesis on €. A discovery method
reliably identifies a correct hypothesis from Hy, Hs, ... just in case the method
identifies a correct hypothesis from H;, Ho,... on every data stream. In what
follows, we make the simplifying assumption that the alternative hypotheses
are exhaustive and mutually exclusive, so that on each data stream exactly
one alternative is correct. Similar but somewhat more complicated results hold
without this assumption (cf. [Kelly 1995, Chapter 9]).

What must the alternative hypotheses be like if it is possible to reliably iden-
tify the true alternative? It suffices if each hypothesis is refutable with certainty;
in that case a Popperian conjectures and refutations method is guaranteed to
identify a true hypothesis. Begin with the first hypothesis (which is the ‘bold-
est’ if the alternatives are ordered by audacity), and conjecture Hy until H; is
falsified by the evidence. Then move on to Hs, conjecture Hs if Ho is falsified,
etc. To see that this works, let H,, be the true hypothesis. So Hy, Hs, ..., Hy,_1
are false. Since every alternative is refutable with certainty, eventually each of
the false alternatives Hy, Ho, ..., H,_1 is conclusively falsified. After that point,
our conjectures and refutation procedure always conjectures the true hypothesis
H,.

It may seem as though the alternative hypotheses must be refutable with
certainty if inquiry can reliably identify the true one. For otherwise we run
the danger of always maintaining a false conjecture which is never conclusively
refuted by the evidence. But the next theorem tells us that this argument is
fallacious; reliable discovery does not require that the alternatives under con-
sideration are refutable with certainty, but only that they are decidable in the
limit.

Theorem 6 Let Hy, Hs, ... be a collection of mutually exclusive and exhaustive
empirical hypotheses. Then it is possible to reliably identify the true alternative
from Hy, Ho, ... if and only if each H; is decidable in the limit.

The proof may be found in [Kelly 1995, Corollary 9.12]. Indeed, when the
alternatives in question are not refutable with certainty, the conjectures and
refutations recipe may lead us far from the truth. In such cases the conjectures
and refutation scheme is a hindrance rather than an aid to scientific discovery.
To illustrate this point, let us consider the problem of estimating the proba-
bility of an event, for example the probability that a given toss of a coin will
come up heads. Hans Reichenbach [1949] believed that all inductive inference
could be reduced to such estimates. Reichenbach subscribed to the frequentist
interpretation of probability. For a frequentist, to say that the probability of
a coin coming up heads is, say, 1/2 means that as the coin is tossed more and
more often, the rate of heads comes closer and closer to 1/2.5 To make this
idea precise, let e be a finite (non-empty) sequence of coin tosses. The relative
frequency of heads in e is the number of heads occurring in e divided by the

SProvided the successive tosses are independent of each other.
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Figure 9: The limit of the relative frequencies is 1/2.

number of total tosses in e. Given an infinite sequence ¢ of coin tosses, the
limiting frequency of heads in € is, for example, 1/2 just in case for every ratio
r different from 1/2, eventually the relative frequency of coin tosses in the finite
initial sequences of ¢ is always closer to 1/2 than to r; see figure 9.

Now suppose we think the probability of a certain coin coming up heads or
tails is either 1/4 or 3/4. On the frequentist interpretation of probability, this
means that if we toss the coin indefinitely, the limiting frequency of heads in
the resulting infinite sequence of tosses will be either 1/4 or 3/4. Given an in-
finite sequence of coin tosses, a natural procedure reminiscent of Reichenbach’s
‘straight rule’ reliably identifies the true limiting relative frequency”: Conjecture
“the probability is 1/4” if the relative frequency of heads in the tosses observed
so far is closer to 1/4 than to 3/4, and conjecture “the probability is 3/4” oth-
erwise. However, no finite sequence of coin tosses conclusively falsifies either of

"Reichenbach’s straight rule tells us to conjecture that the limiting frequency of the event
of interest is its relative frequency in the current sample. He pointed out that this rule is
guaranteed to come arbitrarily close to the limiting frequency of the event if this limit exists,
and took this fact to be a ‘vindication’ of the straight rule [Salmon 1991]. [Juhl 1994] shows
that the straight rule approaches the correct limiting frequency as fast as possible (in a certain
definite sense).
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these hypotheses. So a conjectures and refutations method never changes its
initial conjecture, and fails whenever its initial estimate is false. This example
can be extended to any case in which the number of alternative probabilities
under consideration is finite. Popper’s reply to this problem [1968, Sections
65-68] was that in practice, statements about the probability of an event are
“used” as falsifiable hypotheses. But as we have seen, hypotheses about limiting
relative frequencies present no special challenge to empirical inquiry if the goal
of empirical inquiry is to reliably find the true limiting relative frequency among
a finite number of alternatives. The reason why such hypotheses pose method-
ological problems for Popper’s falsificationism is not that there are difficulties
in interpreting them, but that the conjectures and refutations method does not
realize the full potential of reliable scientific discovery.

7 Related Results and More Philosophy

The mathematical study of inductive inference in the methodological framework
of this paper is known as learning theory. In this concluding section we present a
selective survey of further pertinent theorems and learning-theoretic approaches
to philosophical issues.

The characterization theorems presented above provide methodological in-
terpretations for a number of standard results in topology. We mention two
more: In all of our examples, we assume that only a finite number of observa-
tions could arise at each stage (typically two, encoded by 0 or 1). The topological
space that results when we restrict the space of possible data streams to those
consistent with this assumption is compact. The Heine-Borel theorem implies
that if an empirical hypothesis is decidable with certainty in a compact space, its
truth or falsehood must be entailed by the data by a specific time ¢ determinable
a priori (cf. [Kelly 1995, Ex.4.14]). In other words: if all possible observations
are drawn from a finite set, and we are guaranteed to eventually have certainty
about a hypothesis, then there is a deadline by which the truth-value of the
hypothesis will be settled, no matter what the actual data are. The idea behind
this result is this: We can think of the set of possible data sequences in a com-
pact space as forming a finitely branching tree. If there is an infinite branch
in this tree (i.e. a data stream) along which a given hypothesis H is neither
entailed nor falsified, H is not decidable with certainty. So if H is decidable
with certainty, there cannot be such an infinite branch. But then the subtree
comprising all data sequences that entail or falsify H is a finitely branching tree
without an infinite branch, hence itself is finite and so has a longest branch.
The length of this branch is the deadline by which the truth-value of H will be
established.

Countable disjunctions of always falsifiable hypotheses are called meager
sets in topology, because they are consistent only with a small® number of data

8Meagerness is a topological sense of ‘small’. Meager sets can be ‘big’ if one takes the
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streams, and hence have high empirical content. Another aspect of meager sets
that suits falsificationism is that no meager hypothesis is ever entailed by the
data; this follows from Baire’s category theorem.

Learning theory has been applied to analyze various inductive settings of
interest, for example language learning [Osherson et al. 1986], and the method-
ology of cognitive science [Glymour and Kelly 1990] and of cognitive neuropsy-
chology [Glymour 1994], [Bub 1994]. In the study of computable learners, a
fruitful combination of topological techniques with computability theory has
been extensively investigated by philosophers, logicians and computer scientists
[Angluin and Smith 1983]. For example, must a computer be able to derive the
predictions of a theory in order to test the theory? Not necessarily: there is
an empirical hypothesis H for which we can write a computer program that
eventually pronounces H false if (and only if) H is false, even though the pre-
dictions of H are infinitely uncomputable® [Kelly and Schulte 1995b]. Is the
point of discovery to find theories which allow us to make predictions? There is
a collection of alternative theories and a computer program that reliably finds
a true predictive theory among them, such that no computer can derive the
predictions of the theories it discovers [Blum and Blum 1975, 131, example 2];
see also [Kelly 1995, Proposition 11.13].

An apparently banal prescription of methodology is to reject a hypothesis
when it is falsified by the evidence. This principle is endorsed by such accounts
of ‘inductive rationality’ as Bayesian conditionalization, theories of the confir-
mation of hypotheses by the evidence [Hempel 1965, I.1], and ‘minimal change
belief revision’ theories along the lines of [Gérdenfors 1988]. We refer to this
as the consistency principle, and to methods which satisfy it as consistent. In-
nocuous as it may seem, the consistency principle severely restricts the scope
of successful inquiry for agents who are not logically omniscient. In particular,
there is an empirical hypothesis for which there exists a (non-consistent) com-
puter program that eventually declares H false if (and only if) H is false—but
no computable consistent method can even decide H in the limit (and this would
still be true if consistent methods had access to an oracle for all arithmetical
questions) [Kelly and Schulte 1995b]; see also [Juhl 1993].

Many influential approaches to methodology are based on probabilistic con-
cepts. [Kelly 1995, Ch.13] examines measure theory, the mathematical founda-
tion of statistics, from the reliabilist perspective on induction presented in this
paper; see also [Juhl and Kelly 1994].

We have seen that the conjectures and refutations scheme can stand in the
way of finding the truth. What about other proposed ‘principles of rational-
ity’ for inductive inference, such as Bayesian conditionalization and ‘minimal
change’ belief revision? [Juhl 1995b] shows that when only two observations
are possible at each stage of inquiry, for any empirical hypothesis H that is

size of a set to be determined by a probability measure: there are meager sets with Lebesque
measure 1 (cf. [Royden 1988, Ch.7.8]).
9By this we mean that the predictions of H are not definable in arithmetic.
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decidable in the limit, a Bayesian’s degrees of belief can be tailored to the prob-
lem at hand so that the conditionalizer decides H in the limit. It is an open
question whether this is always possible when any number n of observations, or
infinitely many, may arise at each stage. On the other hand, it follows from our
discussion of the consistency principle above that conditionalization can pre-
vent agents who are not logically omniscient from finding the truth; for when a
hypothesis H is falsified by evidence e, the probability of H conditional on e is
0, and hence Bayesian updaters are consistent. Principles of ‘minimal change’
belief revision [Gardenfors 1988] can be formulated for inductive methods. The
results obtained so far indicate that these principles do not interfere with an
agent’s ability to find the truth [Martin and Osherson 1995], but open questions
remain [Kelly et al. 1995].

The inductive methods discussed in this paper are reliable in the sense
that they are logically guaranteed to succeed (given appropriate background
assumptions)—an idea that originated with Reichenbach’s ‘vindication of in-
duction’ [Salmon 1991]. A weaker, subjunctive, notion of reliability can be de-
rived from Nozick[1981]’s discussion of methods which produce knowledge (see
[Kelly 1995, Ch.4]). For example, a method « subjunctively decides an empirical
hypothesis H with certainty if and only if the following two counterfactuals are
true:

1. if H were true, then o would eventually declare H as certainly true, and

2. if H were false, then o would eventually declare H as certainly false.

Other subjunctive criteria of success for inductive methods may be defined
similarly. If we take a possible empirical world to be a data stream along with a
specification of the current stage of inquiry, we can apply possible world seman-
tics [Lewis 1973] to define the truth of the relevant counterfactuals in terms of
neighborhood relations among data streams. Whether inductive problems can
be solved by subjunctively reliable methods then depends on which data stream
is the actual one, which other data streams are ‘closest to’ the actual one, and
the topological structure of the hypotheses under investigation—an intriguing
blend of techniques from the theory of counterfactuals and topology. One result
is this: If a universal generalization H like “all swans are white” is true, then H
is subjunctively decidable with certainty just in case there is a fixed deadline ¢
such that the counterfactual “if H were false, then the data would falsify H by
time ¢” is true [Kelly 1995, Ex. 4.15 (ii)]. Subjunctive reliability awaits further
philosophical and mathematical exploration.

[Kelly 1995, Ch. 14] examines an ezperimental setting in which the object of
study is a system with discrete consecutive states that can be manipulated by
the scientist. Experimental science is more complicated than the non-interfering
observational methods we have studied so far. One difficulty is that some of the
system’s dispositions may never be observed in the course of nature left to itself,
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because the behavior in question only occurs under conditions that are not real-
ized without the scientist’s intervention. But in an indeterministic system, even
the most ingenious experiments might not reveal all the behavior the system is
capable of: It might just happen that no matter how often the scientist puts the
system into state s, the system never goes from state s to state r even though
this transition is possible in principle. This problem does not arise in systems
that satisfy the following principle of plenitude: if a state s occurs infinitely of-
ten, and it is possible that state r follows state s, then r follows s infinitely often.
Another problem of experimental science is experimental interference; when a
scientist intervenes to determine what is and is not possible in the system under
study, she may permanently alter the system in such a way that other facts of
interest can no longer be ascertained. For systems that satisfy the plenitude
principle and are free from experimental interference, reliable inquiry about the
system’s behavior can be characterized with topological concepts much in the
same way as passive observation can (cf. [Kelly 1995, Ch. 14]). This throws
an interesting light on the idea, found in physics and metaphysics from ancient
atomism to modern science, that the course of nature is determined through
the interaction of ideal entities with immutable dispositions, for example atoms
or elementary particles. Since the dispositions of the fundamental entities do
not change, no human act makes a difference to what is in principle possible in
nature, so experimental interference is no longer a danger to scientific inquiry. If
we add the assumption that the fundamental entities satisfy the plenitude prin-
ciple, an important epistemological consequence of introducing such immutable
fundamental entities is to eliminate serious methodological difficulties that arise
when science not only observes nature but changes it.

Ever since Kuhn’s seminal work [Kuhn 1970], philosophers of science have
emphasized that a scientist’s observations as well as the truth of her theories
may depend on her conceptual scheme. [Kelly and Glymour 1992], [Kelly 1995,
Ch.15] and [Kelly et al. 1994] examine relativistic settings in which “truth,
meaningfulness and what count as data all depend not only on the way things
are, but also on something else associated with the scientist” [Kelly 1995, p.
385]. Let us call this “something else” the scientist’s conceptual scheme. In-
ductive success may be defined in a number of ways for relativistic inquiry.
For example, we may require a scientist first to settle on a conceptual scheme,
and then find the truth relative to that conceptual scheme. Or we may allow
the scientist to keep sifting through conceptual schemes forever, provided he
eventually always believes the truth relative to his current conceptual scheme.

When a scientist’s observations depend on the scientist’s theories, the act
of adopting a theory may bar the scientist from important observations much
as an infelicitous physical manipulation might. So the problem of experimental
interference arises in science with theory-laden data as in experimental science.
In a relativistic setting problems of experimentation manifest themselves in a
second way, because not only the scientist’s evidence but also the truth of his
hypotheses depends on his theories. This means that a scientist may have to
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perform ‘semantic experiments’ in order to find out how the truth (and mean-
ing) of the hypotheses under investigation depends on his choice of conceptual
scheme. [Kelly 1995, Ch.15] describes an example in which a scientist has to go
through an infinite series of conceptual revolutions in order to arrive at beliefs
that may change but are eventually always true relative to his current con-
ceptual scheme. The venerable assumption that the truth of our beliefs does
not depend on us obviates the need for such semantic experiments. If in ad-
dition we assume that theory-laden evidence satisfies a plenitude principle (cf.
[Kelly and Glymour 1992]), relativistic inquiry can be characterized with topo-
logical concepts much in the same way as passive observation can. In this per-
spective metaphysical assumptions are seen to eliminate methodological difficul-
ties in relativistic inquiry. The epistemologically rich subjunctive, experimental
and relativistic settings for inductive inference await further philosophical and
mathematical exploration.

Given the right formal framework, topology can be directly applied to ques-
tions about inductive inference. We hope to have illustrated how the epistemo-
logical connection to topology turns this fundamental branch of mathematics
into a fecund source of philosophical insight.
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