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Abstract. This paper analyzes the notion of a minimal belief change
that incorporates new information. I apply the fundamental decision-
theoretic principle of Pareto-optimality to derive a notion of minimal
belief change, for two different representations of belief: First, for be-
liefs represented by a theory–a deductively closed set of sentences or
propositions–and second for beliefs represented by an axiomatic base
for a theory. Three postulates exactly characterize Pareto-minimal revi-
sions of theories, yielding a weaker set of constraints than the standard
AGM postulates. The Levi identity characterizes Pareto-minimal revi-
sions of belief bases: a change of belief base is Pareto-minimal if and only
if the change satisfies the Levi identity (for “maxichoice” contraction op-
erators). Thus for belief bases, Pareto-minimality imposes constraints
that the AGM postulates do not.
Keywords: belief revision, decision theory

1 Minimal Theory Change

New information changes our beliefs continually. How should we incorporate new
assertions into a body of existing ones? This question arises in many situations of
practical interest. For example, if the new assertion describes new data, incorpo-
rating the evidence into current beliefs is an essential part of learning systems.
If the new assertion is a datum presented to a database system, we face the
question of how to update a database, and the same goes for knowledge bases.
In the last two decades or so, the following principle has attracted much

interest among computer scientists and logicians [3, 8, 6, 10, 2]: Revise your be-
liefs so as to minimize the extent of change from the original beliefs. The aim
of this paper is to analyze the notion of minimal belief change. I derive ax-
ioms for minimal belief change from basic principles of decision theory. The
same decision-theoretic principles lead to different results for different ways of
formally representing beliefs. Specifically, I consider two such representations:
Belief modeled as a deductively closed set of sentences (or propositions), and
belief modeled by an axiomatic “belief base”. For each of these representations
of belief, I consider the consequences of using the fundamental decision-theoretic
principle of Pareto-Optimality to define minimal belief changes.
Roughly, Pareto-minimal belief revisions are those that cannot be improved

by adding fewer beliefs without giving up more, or by giving up fewer beliefs



without adding more. As it turns out, there is a purely set-theoretic definition
of Pareto-minimal belief revisions in terms of the symmetric set differences be-
tween the current theory and alternative revisions. The main theorem of this
paper establishes that certain axioms for belief revision characterize Pareto-
minimal theory changes, in the sense that a theory change is Pareto-minimal
if and only if the change satisfies these axioms. The chief difference between
Pareto-minimality and the standard AGM postulates [3] arises in the case in
which the current theory neither entails the new information nor its negation.
In that case, the AGM revision is the result of adding the new information to
the current theory. Pareto-minimal revisions, however, may be logically weaker
than the AGM revision.1

Pareto-optimality leads to different results for minimal revisions of belief
bases, sets of sentences that need not contain all of their logical consequences. The
well-known Levi identity characterizes Pareto-minimal changes of belief bases: I
prove that they are exactly those that result from, first, retracting just enough
basic beliefs to make the agent’s basic beliefs consistent with the new information
(technically, a “maxichoice contraction” [3, Ch. 4.2]), and second, adding the
new information to the basic beliefs contracted in this manner. Since AGM
revisions may give up more beliefs than maxichoice contraction permits, this
characterization shows that Pareto-minimality yields some constraints on the
revision of belief bases that the AGM axioms do not require (cf. [1]).

2 Theories

Following much of the belief revision literature, I employ a syntactic representa-
tion of an agent’s beliefs. However, all the developments to follow are valid for a
semantic approach based on propositions (sets of models) as well. I assume that
some language L has been fixed, and take a theory to be a deductively closed set
of formulas from L. In Section 5 I considers belief sets that are not deductively
closed.
As is usual in belief revision theory, my assumptions about the structure

of the language in which an agent formulates her beliefs are sparse; essentially,
all I assume is that the language features the usual propositional connectives.
I take as given a suitable consequence relation between sets of formulas in the
language, obeying the standard Tarskian properties. The formal presuppositions
are as follows.
A language L is a set of formulas satisfying the following conditions. (1) L

contains a negation operator ¬ such that if p is a formula in L, so is ¬p. (2)
L contains a conjunction connective ∧ such that if p and q are formulas in
L, so is p∧ q. (3) L contains an implication connective → such that if p and
q are formulas in L, so is p→ q.
A consequence operation Cn : 2L → 2L represents a notion of entailment

between sets of formulas from a language L. A set of formulas Γ entails another
1 In this respect, Pareto-minimal revisions agree with Katsuno and Mendelzon’s ap-
proach to “belief update” [6]; see Section 4.



set of formulas Γ 0, written Γ ` Γ 0, iff Cn(Γ ) ⊇ Γ 0. A set of formulas Γ entails a
formula p, written Γ ` p, iff p ∈ Cn(Γ ). I assume that Cn satisfies the following
properties, for all sets of formulas Γ,Γ 0: Inclusion: Γ ⊆ Cn(Γ );Monotonicity:
Cn(Γ ) ⊆ Cn(Γ 0) whenever Γ ⊆ Γ 0; and Iteration: Cn(Cn(Γ )) = Cn(Γ ).
A theory is a deductively closed set of formulas. That is, a set of formulas

T ⊆ L is a theory iff Cn(T ) = T . The entailment relation ` is related to the
propositional connectives as follows.

Modus Ponens If Γ ` p, (p→ q), then Γ ` q.
Implication If Γ ` q, then Γ ` (p→ q).
Deduction Γ ∪ {p} ` q iff Γ ` (p→ q).
Conjunction Γ ` (p ∧ q) iff both Γ ` p and Γ ` q.
Consistency Suppose that Γ 6` p. Then Γ ∪ {¬p} 6` p.
Inconsistency {p ∧ ¬p} ` L.
Double Negation Γ ` p iff Γ ` ¬¬p.

Classical propositional logic satisfies these assumptions. Belief revision the-
orists usually assume that the consequence relation Cn is compact; none of the
results in this paper require compactness.2 For the remainder of this paper, as-
sume that a language L and a consequence relation Cn (and hence an entailment
relation `) have been fixed that satisfy the conditions laid down above.

3 Theory Change: Additions and Retractions

My approach to defining minimal belief change is to seek a partial order ≺T
where we read T1 ≺T T2 as “T1 is a smaller change from T than T2 is”. Since
this ordering is partial, there may be possible changes that are incomparable. As
far as a given partial order among theory changes goes, if two changes are incom-
parable, we should view neither as a smaller change than the other. However, a
theory change T2 from an old theory T is not minimal if there is another, com-
parable, new theory T1 such that T1 ≺T T2. Thus I shall take minimal changes
from a current theory T to be the minimal elements in the given partial order
≺T .
I make use of decision-theoretic principles to define partial orders among

theory changes. Let’s begin by distinguishing two kinds of change: A retraction
in which the old theory entails a formula that the new theory does not entail,
and an addition, in which the new theory entails a formula that the old theory
does not entail. Thus T 0 retracts the formula p from T iff T ` p and T 0 6` p,
and T 0 adds the formula p to T iff T 6` p and T 0 ` p.
Next, I define two partial orders among theory changes. The first partial order

defines a notion of a new theory T1 “retracting more” from a previous theory T
than another new theory T2, namely if T1 retracts all the formulas from T that
T2 retracts from T , and T1 retracts at least one formula from T that T2 does not
2 A consequence relation Cn is compact iff for all formulas p and sets of formulas Γ ,
we have that p ∈ Cn(Γ ) only if p ∈ Cn(Γ 0) for some finite subset Γ 0 of Γ .



retract. The second partial order defines a notion of a new theory T1 “adding
more” to a previous theory T than another new theory T2, namely if T1 adds
all the formulas from T that T2 adds to T , and T1 adds at least one formula to
T that T2 does not add to T . It is not difficult to see that these notions can be
expressed in terms of set inclusions as follows (⊂ denotes proper set inclusion).

Definition 1. Let T, T1, T2 be three theories.

1. T1 retracts more formulas from T than T2 does ⇐⇒ T − T2 ⊂ T − T1.
2. T1 adds more formulas to T than T2 does ⇐⇒ T2 − T ⊂ T1 − T .

We may think of the addition partial order and the retraction partial or-
der as defining two distinct dimensions of “cost” in theory revision. If additions
and retractions were linked such that minimizing one minimizes the other, this
distinction would have no interesting consequences for the question of how to
minimize theory change: we would just minimize both additions and retractions
at once. What makes the distinction important is the fact that in general, addi-
tions and retractions trade off against each other. Typically, avoiding retractions
entails adding more sentences than necessary, and avoiding additions entails re-
tracting more sentences than necessary. An example will clarify this point.
Example. Imagine a cognitive scientist who believes that a certain AI sys-

tem, say SOAR, is the only candidate for machine intelligence. This scientist
believes that “if SOAR is not intelligent (¬s), there is no intelligent machine
(¬m)”. Thus the scientist believes the sentence p = ¬s → ¬m. Suppose that
the scientist believes only the consequences of p, that is, her current theory is
T = Cn({p}). In particular, the scientist neither believes that there is an in-
telligent machine (m), nor does she believe that there is no intelligent machine
(¬m). Now the scientist receives new information to the effect that SOAR is not
intelligent. She has to revise her theory T on evidence ¬s. Let us consider two
possible revisions, T1 and T2. Revision T1 adds the new information ¬s to T and
accepts the deductive consequences of this addition; thus T1 = Cn({p}∪ {¬s}).
This revision T1 is logically stronger than T and hence retracts nothing from T .
However, the revision adds the sentence ¬m (“there is no intelligent machine”),
since p and ¬s entail ¬m.
Contrast this with a different revision T2 that retracts the scientist’s initial

belief that SOAR is the only road to machine intelligence, and adds the new
information that SOAR is not intelligent. That is, T2 = Cn({¬s}). This revision
T2 retracts more from T than T1 does. On the other hand, T2 adds less to T
than T1 does, since T2 is strictly weaker than T1. In particular, T2 continues to
reserve judgment about whether machine intelligence is possible or not, whereas
T1 concludes that it is impossible (¬m).
As the results below show, this example illustrates a general tension between

avoiding additions and avoiding retractions; essentially, additions and retractions
trade off against each other unless the current theory already entails the new
information. When additions and retractions stand in conflict, how shall we make
trade-offs between them? This is the topic of the next section.



4 Pareto-Minimal Theory Change

When a conflict arises between avoiding additions and avoiding retractions in
belief revision, an agent may strike a subjective balance between them, as in
any case of conflicting aims. She may assign one kind of change more subjective
weight than the other, or favour some beliefs as more “entrenched” than oth-
ers.3 But before we resort to subjective factors, we can look to decision theory
for an objective constraint that applies to all agents seeking to minimize the-
ory change. If avoiding changes is our aim, then we should avoid revisions that
make more additions than necessary without avoiding retractions, and we should
avoid revisions that make more retractions than necessary without avoiding ad-
ditions. This is an instance of the following uncontroversial principle for rational
choice under certainty between objects with multiple relevant attributes: If A
is at least as desirable as B with respect to all relevant attributes, and A is
strictly better than B with respect to at least one attribute, choose A over B.
The decision-theoretic term for this principle is Pareto-optimality.4 For minimal
theory change, we can render it as follows.

Definition 2. Let T, T1, T2 be three theories. T1 is a greater change from T
than T2 is ⇐⇒

1. T1 retracts more formulas from T than T2 does, and for all formulas p, if T2
adds p to T , then T1 adds p to T ; or

2. T1 adds more formulas to T than T2 does, and for all formulas p, if T2
retracts p from T , then T1 retracts p from T .

An equivalent purely set-theoretic definition is: T1 is a greater change from
T than T2 is iff T2 4 T ⊂ T1 4 T , where ⊂ denotes proper inclusion and 4 is
symmetric difference (A4 B = A − B ∪ B − A).5 (I owe this definition to an
anonymous referee.)
Thus the principle of Pareto-Optimality defines a partial relation ≺T be-

tween theories: T2 ≺T T1 iff T1 is a greater change from T than T2 is. It seems
that we can now take a minimal change from T to be a minimal theory in the

3 Many investigators assume that a relation of “epistemic entrenchment” guides belief
revision (e.g., Gärdenfors and Nayak [3, Ch.4], [8]). They typically take epistemic
entrenchment to be subjective in the sense that different rational agents may view
the same belief as entrenched to different degrees.

4 Social choice theorists often use Pareto-optimality as a principle for comparing social
states. The Pareto principle applies both to social choice and to choice between
objects with multiple attributes because these two choice situations are formally
equivalent (identify the set of “attributes” with the set of individual members of
society).

5 Chou and Winslett too define a partial order among (first-order) models of the
form “N is closer to M than N 0 is” in terms of symmetric difference [2]. From the
perspective of this paper, their definition is a special case of Definition 2, namely
Pareto-minimality applied to models rather than theories.



≺T -ordering. But on that definition, the only minimal change from T is T it-
self! Of course, it is generally true that the smallest change is no change, on
any acceptable notion of “small change”. What we want is a minimal change
that satisfies additional constraints. In the case of belief update, the additional
constraint is that the minimal theory change should incorporate the new infor-
mation. Accordingly, I define a Pareto-minimal theory change from T , given new
information p, as a theory that is minimal in the ≺T -ordering among the theories
that entail p.

Definition 3. Let T, T1 be two theories, and let p be a formula. Then T1 is a
Pareto-minimal change from T that incorporates p⇐⇒

1. T1 ` p, and
2. there is no other theory T2 such that T2 ` p and T1 is a greater change from
T than T2 is.

Now we are ready for the main result of this paper: Necessary and sufficient
conditions for a theory revision to be a Pareto-minimal change.

Theorem 1. Let T be a theory and let p be a formula. A theory revision T ∗ p
is a Pareto-minimal change from T that incorporates p⇐⇒

1. T ∗ p ` p, and
2. T ∪ {p} ` T ∗ p, and
3. if T ` p, then T ∗ p = T .

The theorem shows that the tension between additions and retractions arises
whenever the agent’s current theory does not already entail the new informa-
tion. When this is the case, the revisions that make Pareto-acceptable trade-offs
run in strength from adding the evidence to the current theory (T ∪ {p}) to
entailing nothing but the evidence and its consequences ({p}). This account of
minimal change distinguishes sharply between the case in which the current the-
ory already entails the new information and the case in which it does not. The
standard AGM axioms [3, Ch.3.3] also make a sharp distinction, but along a
different line: They distinguish between the case in which the evidence is con-
sistent with the current theory (but not necessarily already part of it) and the
case in which the evidence is inconsistent with the current theory. Specifically,
the AGM axiom K*3 requires that T ∪ p ` T ∗ p, which is the characteristic
axiom of Pareto-minimal theory change. The postulate K*4 posits that if T ∪ p
is consistent, then T ∗ p ` T ∪ p. Thus the AGM axioms require the revised
theory to be Cn(T ∪ {p}) whenever p is consistent with T . In that case, the
revision Cn(T ∪ {p}) is a Pareto-minimal theory change, but it is just one of
many possible Pareto-minimal revisions, namely the logically strongest one.
Another theory of belief change that endorses K*3 but not K*4 is the “up-

dating” approach [6]. Intuitively, the connection between Pareto-minimality and
the Update operator is this: Katsuno and Mendelzon postulate that “an update
method should give each of the old possible worlds [in which the previous theory



is true] equal consideration” [5, p.4]. Translating from possible worlds to sets of
sentences, this means that Update treats adding new beliefs (removing possible
worlds) as a “cost” in belief change, which can justify retracting previous beliefs
(adding new possible worlds), even when the new information is consistent with
the agent’s current theory (for an example, see [5, p.7]).
Katsuno and Mendelzon argue that giving equal consideration to each of

the old possible worlds is appropriate when an agent learns how the world has
changed (update) rather than new facts about a static world (revision). This
suggests that an agent’s attitude towards the relative importance of additions
and retractions may depend on the context and content of her beliefs. Pareto-
minimality weights additions and retractions equally; in other contexts we may
wish to give priority to minimizing retractions.6 In the limiting case, we give
absolute priority to minimizing retractions first, and only then consider avoiding
additions. It can be shown that an agent’s theory revision satisfies K*4 if and
only if the agent makes the trade-off between additions and retractions in this
way.

5 Pareto-Minimal Revision of Belief Bases

So far I have treated all of an agent’s beliefs as equally important. A more refined
representation of the agent’s epistemic state may distinguish between a “basic”
set of beliefs B, and the consequences of B that the agent might be said to hold
because he believes B.7 Hansson endorses the distinction between a basic set of
beliefs and their consequences as a “small step toward capturing the justificatory
structure” of an agent’s beliefs [4]. I shall take a base for a theory T to be a set
of formulas B, which may or may not be deductively closed, such that B ` T .
(For more on belief bases, see [9, 10] and the references therein).
To define Pareto-minimal revision of belief bases, I begin again with two ways

of making a change to a belief base. If B,B0 are two bases, I say that B0 retracts
the formula p from B iff p ∈ B and p /∈ B0, and that B0 adds the formula p to
B iff p /∈ B and p ∈ B0. The definition of “adding more” and “retracting more”
from a base is just like that for theories (cf. Definition 1). Thus B1 retracts
more formulas from B than B2 iff B − B2 ⊂ B − B1, and B1 adds more
formulas to B than B2 iff B2 −B ⊂ B1 −B.
As with Definition 3, we can apply the principle of Pareto-optimality to define

a partial comparison of base revisions with respect to the extent of change that
they induce.

Definition 4. Let B,B1, B2 be three bases. Then B1 is a greater change from
B than B2 is ⇐⇒
6 Levi presents a theory of how an agent may minimize the loss of “damped informa-
tional value” [7, Ch.2.1]. In my terms, this is advice for how to retract some beliefs
to avoid adding too many.

7 A paradigm example is a database, where we may distinguish between the records
that are explicitly stored in the database and what follows from the explicitly stored
information.



1. B1 retracts more formulas from B than B2 does, and for all formulas p, if
B2 adds p to B, then B1 adds p to B; or

2. B1 adds more formulas to B than B2 does, and for all formulas p, if B2
retracts p from B, then B1 retracts p from B.

As with Definition 2, an equivalent set-theoretic definition is that B1 is a
greater change from B than B2 is iff B24B ⊂ B14B.
When we consider the extent of change of a belief base, it is natural to take

into account only changes in basic beliefs, not changes in the logical consequences
of the basic beliefs that “just follow” from them. My definition of retracting and
adding to a belief base expresses this view of minimal belief change by consider-
ing only which sentences are added to or retracted from the set of basic beliefs.
For example, there may be a sentence q such that B ∗ p ` q and B 6` q but
q /∈ B ∗p. In that case the revision B ∗p adds q to the logical consequences of the
agent’s beliefs, but does not add q to her basic beliefs. In effect, Definition 4 does
not count such additions to the consequences of the agent’s basic beliefs as an
addition, unless they are also additions to the agent’s basic beliefs themselves.
Discounting changes in the logical consequences of basic beliefs in this way gives
rise to a fundamental difference between the Pareto-minimal revision of basic
beliefs and Pareto-minimal theory change: Pareto-minimal base revisions never
add basic beliefs to the previous ones other than the new information. For sup-
pose that a revision B ∗ p adds a belief q to a base B; then B ∗ p− {q} adds less
to B and retracts no more. Hence B ∗ p is not a Pareto-minimal change of B.
In contrast, a theory revision T ∗ p will typically add many beliefs to T , namely
logical consequences of previous beliefs conjoined with the new information p.
Another way to put the point is that for bases a conflict between additions and
retractions does not arise: it is possible to minimize both additions and retrac-
tions at the same time. In the case in which the new information contradicts the
current basic beliefs, this will lead an agent to hold inconsistent beliefs. Since
many researchers accept as a general norm of epistemic rationality that an agent
ought to avoid inconsistent beliefs, I shall restrict Pareto-minimal revisions to
consistent bases.

Definition 5. Let B,B1 be two bases, and let p be a formula. Then B1 is a
Pareto-minimal consistent change from B that incorporates p⇐⇒
1. p ∈ B1, and
2. B1 is consistent, and
3. there is no other consistent base B2 such that p ∈ B2 and B1 is a greater
change from B than B2 is.

What are the characteristic properties of Pareto-minimal base revisions? It
turns out that a version of a proposal originally due to Levi amounts to necessary
and sufficient conditions for a base revision to be Pareto-minimal and consistent.
The proposal is to think of a Pareto-minimal revision of a belief base B on new
information p as proceeding in two steps: First, remove just enough beliefs from
B to obtain a belief base B0 that is consistent with p; then add p to B0. Formally,



we require that B0 be a belief base that is consistent with p–thus B0 0 ¬p–and
removes as few beliefs from B as possible. Hence I define a retraction-minimal
contraction of a belief base as follows.

Definition 6. Let B,B1 be two bases, and let p be a formula. Then B1 is a
retraction-minimal contraction from B on p⇐⇒

1. B1 ⊆ B, and
2. B1 6` p, and
3. there is no other base B2 such that B2 6` p and B1 retracts more from B
than B2 does.

Retraction-minimal contractions of a base B on new information p have
a simple characterization: They are exactly those subsets of B that cannot be
expanded without entailing p. (The proof is left to the reader.)

Lemma 1. Let B,B1 be two bases such that B1 ⊆ B, and let p be a formula.
Then B1 is a retraction-minimal contraction from B on p⇐⇒ for all for-
mulas q, if B1 retracts q from B, it is the case that B1 ∪ {q} ` p.

Thus retraction-minimal contractions are those that belief revision theorists
refer to as “maxichoice contractions” [3, Ch.4.2]. The Levi identity says that
minimal revisions of a belief set K given new information p are the result of
adding p after contracting K on ¬p (see [3, Ch.3.6]). The next proposition shows
that the Levi identity for retraction-minimal (maxichoice) contractions charac-
terizes Pareto-minimal revisions of belief bases that lead to consistent belief
bases.

Theorem 2 (The Levi Identity for Belief Bases). Let B be a base and
let p be a formula. Suppose that a revision B ∗ p contains p. Then B ∗ p is
a Pareto-minimal consistent change from B that incorporates p ⇐⇒ there is a
retraction-minimal contraction B0 from B on ¬p such that B ∗ p = B0 ∪ {p}.

I omit the proof for space reasons. In view of Theorem 2, it is not difficult
to see that Pareto-minimal consistent revisions of belief bases satisfy the AGM
axioms K*1—K*5 (interpreted for base revisions with ⊇ in place of `; see also
[1, Part II]).8 The converse is not true, however: Pareto-minimality places more
constraints on the revision of belief bases than K*1—K*5, since AGM revisions
need not be the result of maxichoice contractions and hence may give up more
beliefs than Pareto-minimal revisions.

8 For K*2 I require that p ∈ B ∗ p. For K*5 we must assume that the underlying
consequence relation ` is consistent in the sense that ∅ 0 L; otherwise there is no
consistent base. When the new information p is inconsistent, there is no consistent
revision on p; in that case I require that B ∗ p is an inconsistent base in accordance
with K*5.



Alchourrón and Makinson conjectured that “when applied to bases that are
irredundant, choice contraction and revision functions serve as good formal rep-
resentations of the corresponding intuitive processes” [1, p.21]. Theorem 2 es-
tablishes a formal version of this conjecture, in which Pareto-minimality takes
the place of “intuition”.9

6 Conclusion

The principle of minimal belief change is an important and influential idea in sev-
eral areas of computer science such as artificial intelligence and database theory.
This paper showed a method for rigorously deriving axioms for minimal belief
change from fundamental decision-theoretic principles. This approach clarifies
the foundations of belief revision postulates; and it allows us to distinguish uni-
versally valid postulates from those whose applicability depend to a larger extent
on the details of how we represent beliefs and the relative weight we assign to
retractions and additions in a given application domain.
Specifically, with regard to beliefs represented by deductively closed theories,

Theorem 1 shows that the AGM axiom K*3 is universally valid for Pareto-
minimal belief change, whereas the axiom K*4 is not.
With regard to beliefs represented by belief bases–which need not be de-

ductively closed–Pareto-minimality validates K*4 and other staples of belief
revision theory such as the Levi identity. In fact, Pareto-minimal base revision
obeys constraints that go beyond the AGM postulates. Thus the results of my
analysis of base revision largely agree with previous work; however, my method
is different: I do not appeal to intuition, or even representation theorems, for
justifying belief revision maxims, but instead derive them from fundamental
decision-theoretic principles.
Altogether, the results in this paper show that Pareto-minimality provides a

fruitful and principled decision-theoretic foundation for postulates guiding min-
imal belief revision.

7 Proof of Theorem 1

Theorem 1. Let T be a theory and let p be a formula. A theory revision T ∗ p
is a Pareto-minimal change from T that incorporates p⇐⇒

1. T ∗ p ` p, and
2. T ∪ {p} ` T ∗ p, and
3. if T ` p, then T ∗ p = T .

Proof. (⇒) Part 1: Immediate from Definition 3. Part 2: I show the contra-
positive. Suppose that T ∪{p} 6` T ∗p. Then there is a formula q in T ∗p such that
9 Nebel also argues for constructing minimal base revisions from maxichoice contrac-
tions followed by adding the new information [9, Secs. 7, 8].



T ∪ {p} 6` q. So (a) T 6` q by Monotonicity. Now consider T 0 = (T ∗ p)∩Cn(T ∪
{p} ∪ {¬q}). First I note that T 0 is closed under deductive consequence. For let
r ∈ Cn((T ∗p)∩Cn(T ∪{p}∪{¬q})). Then by Monotonicity, r ∈ Cn(T ∗p) and
r ∈ Cn(Cn(T ∪{p}∪{¬q})). We assumed that T ∗p is closed under consequence,
and Iteration implies that Cn(Cn(T ∪ {p}∪ {¬q})) = Cn(T ∪ {p}∪ {¬q}); thus
r ∈ T ∗ p ∩ Cn(T ∪ {p} ∪ {¬q}). This shows that Cn(T 0) = T 0.
Next, note that (b) T 0 6` q because Cn(T ∪ {p} ∪ {¬q}) 6` q by Consistency

(applied to T ∪ {p}) and Iteration; thus from Monotonicity and the fact that
T 0 ⊆ Cn(T ∪ {p} ∪ {¬q}), it follows that T 0 6` q. Moreover, we have from
Monotonicity and the fact that T 0 ⊆ T ∗ p as well that (c) if T 0 adds a formula
to T , so does T ∗ p. From (a), (b) and (c) it follows that (d) T ∗ p adds more
formulas to T than T 0.

Now I show that (e) T 0 retracts from T exactly the formulas that T ∗p retracts
from T . Monotonicity implies immediately that if T ∗ p retracts a formula from
T , so does T 0. For the converse, suppose that T 0 retracts a formula r from T .
Since Cn(T ∪ {p} ∪ {¬q}) ` T , this implies that r /∈ (T ∗ p). And that means
that T ∗ p retracts r from T as well.

Finally, we have that (f) T 0 ` p, since T ∗ p ` p by Part 1 and clearly
Cn(T ∪ {p} ∪ {¬q}) ` p. Together, (a)—(f) establish that T 0 incorporates p and
T ∗ p is a greater change from T than T 0 is. Hence T ∗ p is not a Pareto-minimal
change.

Part 3: Immediate, since every theory other than T retracts or adds more
formulas to T than T itself does.

(⇐) Suppose that T ∗ p satisfies conditions 1, 2 and 3. Then the claim is
immediate if T ` p and T ∗ p = T ; suppose that T 6` p. I show that T ∗ p is not
a greater change from T than any other change T 0 that incorporates p.

First, suppose that T ∗ p retracts a formula q from T but T 0 does not, such
that T 0 ` q. Then T 0 ` (p ∧ q) by Conjunction, whereas T ∗ p 6` (p ∧ q) by
Conjunction as well. Since we supposed that T 6` p, it follows that T 6` (p ∧ q)
by Conjunction once more. So T 0 adds a formula to T–namely p∧ q–that T ∗p
does not add to T , and hence T ∗ p is not a greater change from T than T 0 is.

Second, suppose that T ∗ p adds a formula q to T , but T 0 6` q. Condition 2
asserts that T ∪ {p} ` T ∗ p and hence Cn(T ∪ {p}) ` q. By Deduction, we have
that (a) T ` p→ q. Moreover, Implication implies that (b) T ∗ p ` p→ q. Also,
(c) T 0 6` p→ q. For suppose that on the contrary, T 0 ` p→ q. Then since T 0 ` p,
it follows from Modus Ponens that T 0 ` q, contrary to assumption. From (a),
(b) and (c) we have that T 0 retracts a formula from T–namely p → q–that
T ∗ p does not retract from T . Thus T ∗ p is not a greater change from T than
T 0 is.

These arguments establish that if T ∗p satisfies conditions 2 and 3, then there
is no theory T 0 incorporating p such that T ∗ p is a greater change from T than
T 0 is. From Condition 1 it follows that T ∗ p is a Pareto-minimal change from T
that incorporates p.¤
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