
Information and Computation 204 (2006) 989–1011

www.elsevier.com/locate/ic

Mind change efficient learning

Wei Luo, Oliver Schulte *

School of Computing Science, Simon Fraser University, Vancouver, Canada

Received 12 September 2005; revised 17 February 2006
Available online 2 May 2006

Abstract

This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a
learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire
learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads
to the notion of strong mind change optimality. We characterize the structure of language classes that can
be identified with at most � mind changes by some learner (not necessarily effective): a language class L is
identifiable with �mind changes iff the accumulation order of L is at most �. Accumulation order is a classic
concept from point-set topology. We show that accumulation order is related to other established notions of
structural complexity, such as thickness and intrinsic complexity. To aid the construction of learning algo-
rithms, we show that the characteristic property of strongly mind change optimal learners is that they output
conjectures (languages) with maximal accumulation order. We illustrate the theory by describing strongly
mind change optimal learners for various problems such as identifying linear subspaces, one-variable patterns,
and fixed-length patterns.
© 2006 Elsevier Inc. All rights reserved.

1991 MSC: 68Q32
Keywords: Inductive inference; Mind change complexity; Accumulation order

∗ Corresponding author.
E-mail addresses: wluoa@cs.sfu.ca (W. Luo); oschulte@cs.sfu.ca (O. Schulte).

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2006.02.004



990 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

1. Introduction

One of the goals of computational learning theory is to design learning algorithms for which
we can provide performance guarantees. Identification in the limit is a central performance goal
in Gold’s language learning paradigm [11]. A well-studied refinement of this notion is identification
with bounded mind changes [9,1]. In this paper, we investigate a further refinement that we term
strong mind change optimality (SMC-optimality). Briefly, a learner is SMC-optimal if the learner
achieves the best possible mind change bound not only for the entire problem, but also relative to
any data sequences that the learner may observe.
The general theory in this paper has two main goals: (1) To provide necessary and sufficient

conditions for a language collection to be identifiable with a given (ordinal) mind-change bound
by some learner (not necessarily effective). (2) To provide necessary and sufficient conditions for
a learner to be SMC-optimal. The results addressing (1) help us determine when an SMC-opti-
mal learning algorithm exists, and the results addressing (2) help us to construct optimal learning
algorithms when they do exist.
We situate our study in the framework of point-set topology. Previous work has shown the use-

fulness of topology for learning theory [34,chapter 10,28,17,4,29] We show how to view a language
collection as a topological space; this allows us to apply Cantor’s classic concept of accumulation
order which assigns an ordinal acc(L) to a language collection, if L has bounded accumulation
order. We show that a language collection L is identifiable with mind change bound � by a learn-
er if and only if acc(L) = �. This result establishes a purely information-theoretic and structural
necessary condition for identification with bounded mind changes. Based on the concept of accu-
mulation order, we provide necessary and sufficient conditions for a learner to be SMC-optimal.
These results show that SMC-optimality strongly constrains the conjectures of learners. We illus-
trate these results by analyzing various learning problems, such as identifying a linear subspace and
a one-variable pattern.
The paper is organized as follows. Section 2 reviews standard concepts for language identifica-

tion and presents our definition of mind change optimality. Then we establish the correspondence
between mind change complexity and accumulation order. Section 4 gives necessary and sufficient
conditions for a learner to be strongly mind change optimal. Next, we describe some general prin-
ciples for constructing SMC-optimal effective learners and illustrate them with one-variable and
fixed-length pattern languages. In Section 6, we show strong relationships between the concept of
accumulation order and other structural notions studied in learning theory, such as thickness [41],
elasticity [44,30], and intrinsic complexity [10,13].

2. Preliminaries: language identification

2.1. Standard concepts

We employ notation and terminology from [14,27,chapter 1,11]. We write � for the set of nat-
ural numbers: {0, 1, 2, . . .}. The symbols ⊆,⊇,⊂,⊃, and ∅, respectively, stand for subset, superset,
proper subset, proper superset, and the empty set. We view a language as a set of strings. We
identify strings with natural numbers encoding them. Thus, we define a language to be a subset



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 991

of � and write L for a generic language [11, p. 449]. A language learning problem is a collection
of languages; we write L for a generic collection of languages. A text T is a mapping of � into
� ∪ {#}, where # is a symbol not in �. (The symbol # models pauses in data presentation.) We
write content(T) for the intersection of � and the range of T . A text T is for a language L iff
L = content(T). The initial sequence of text T of length n is denoted by T [n]. The set of all finite
initial sequences over � ∪ {#} is denoted by SEQ. We also use SEQ(L) to denote finite initial
sequences consistent with languages in L. We let � and � range over SEQ. We write content(�)
for the intersection of � and the range of �. The initial sequence of � of length n is denoted
by �[n]. We say that a language L is consistent with � iff content(�) ⊆ L. We write � ⊂ T or
T ⊃ � to denote that text T extends initial sequence �.

Examples.

(1) LetLi ≡ {n : n � i}, where i ∈ �;weuseCOINIT todenote the classof languages {L − i : i ∈ �}
[1, p. 324].

(2) In the n-dimensional linear space �n over the field of rationals �, we can effectively encode
every vector �v by a natural number. Then a linear subspace of �n corresponds to a language.
We write LINEARn for the collection of all (encodings of) linear subspaces of �n.

A learner is a function that maps a finite sequence to a language or the question mark ?, meaning
“no answer for now.” We normally use the Greek letter � and variants to denote a learner. Our
term “learner” corresponds to the term “scientist” in [27, chapter 2.1.2]. In typical applications,
we have available a syntactic representation for each member of the language collection L under
investigation. In such settings, we assume the existence of an index for each member of L, that
is, a function index : L �→ � (cf. [12, p. 18]), and we can take a learning function to be a function
that maps a finite sequence to an index for a language (learning functions are called “scientists” in
[12, chapter 3.3]). A computable learning function is a learning algorithm. We use the general notion
of a learner for more generality and simplicity until we consider issues of computability.
Let L be a collection of languages. A learner � for L is a mapping of SEQ into L ∪ {?}. Thus the

learners we consider are class-preserving; for the results in this paper, this assumption carries no
loss of generality. Usually context fixes the language collection L for a learner �.
We say that a learner� identifies a language L on a text T for L, if�(T [n]) = L for all but a finite

number of stages n. Next we define identification of a language collection relative to some evidence.

Definition 2.1. A learner � identifies L given � ⇐⇒ for every language L ∈ L, and for every text
T ⊃ � for L, we have that � identifies L on T .

Thus, a learner� identifies a language collection L if� identifies L given the empty sequence�.
Examples.

(1) The following learner�CO identifies COINIT: If content(�) = ∅, then�CO(�):= ?. Otherwise
set m := min(content(�)), and set �CO(�) := Lm.

(2) Let vectors(�) be the set of vectors whose code numbers appear in �. Then define �LIN(�) =
span(vectors(�)), where span(V ) is the linear span of a set of vectors V . The learner�LIN iden-
tifies LINEARn. The problem of identifying a linear subspace of reactions arises in particle



992 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

physics, where it corresponds to the problem of finding a set of conservation principles gov-
erning observed particle reactions [22,42]. Interestingly, it appears that the theories accepted
by the particle physics community match the output of �LIN [43,39,40].

A learner � changes its mind at some nonempty finite sequence � ∈ SEQ if �(�) �= �(�−) and
�(�−) �= ?, where �− is the initial segment of � with �’s last element removed [10,1]. (No mind
changes occur at the empty sequence �.)

Definition 2.2 (based on [1]). Let � be a learner and c be a function that assigns an ordinal to each
finite sequence � ∈ SEQ.

(1) c is a mind-change counter for � and L if c(�) < c(�−) whenever � changes its mind at some
nonempty sequence �. When L is fixed by context, we simply say that c is a mind change
counter for �.

(2) � identifies a class of languages L with mind-change bound � given � ⇐⇒ � identifies L given
� and there is a mind-change counter c for � and L such that c(�) = �.

(3) A language collectionL is identifiable with mind change bound � given � ⇐⇒ there is a learner
� such that � identifies L with mind change bound � given �.

Examples.

(1) For COINIT, define a counter c0 as follows: c0(�) := ω if content(�) = ∅, where ω is the
first transfinite ordinal, and c0(�) := min(content(�)) otherwise. Then c0 is a mind change
counter for �CO given �. Hence �CO identifies COINIT with mind change bound ω (cf.
[1, Section 1]).

(2) For LINEARn, define the counter c1(�) by c1(�) := n − dim(span(vectors(�))), where dim(V)

is the dimension of a space V . Then c1 is a mind change counter for �LIN given �, so �LIN
identifies LINEARn with mind change bound n.

(3) Let FIN be the class of languages {D ⊆ � : D is finite}. Then a learner that always conjectures
content(�) identifies FIN. However, there is no mind change bound for FIN [1].

2.2. Strong mind change optimality

In this section, we introduce a new identification criterion that is the focus of this paper. Our
point of departure is the idea that learners that are efficient with respect to mind changes should
minimize mind changes not only globally in the entire learning problem but also locally after re-
ceiving specific evidence. For example, in the COINIT problem, the best global mind change bound
for the entire problem is ω [1, Section 1], but after observing initial data 〈5〉, a mind change efficient
learner should succeed with at most 5 more mind changes, as does �CO. However, there are many
learners that require more than 5mind changes after observing 〈5〉 yet still succeed with the optimal
mind change bound of ω in the entire problem.
To formalize this motivation, consider a language collection L. If a mind change bound exists

for L given �, we write MCL(�) for the least ordinal � such that L is identifiable with � mind
changes given �. We require that a learner should succeed with MCL(�) mind changes after each



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 993

data sequence � ∈ SEQ(L). For example, the learner �CO achieves this performance for COINIT.
This leads us to the following definition.

Definition 2.3. A learner � is strongly mind change optimal for L if there is a mind change counter
c for � such that c(�) =MCL(�) for all sequences �.

We use the abbreviation “SMC-optimal” for “strongly mind change optimal” (The terminolo-
gy and intuition is similar to Kelly’s in [19,21]). A learner � is simply SMC-optimal for L if � is
SMC-optimal given �.

Examples.

(1) In the COINIT problem, MCL(�) = ω, and MCL(�) = min(content(�)) when content(�) /=
∅. Since c0 is a mind change counter for�CO, it follows that�CO is SMC-optimal. Any learner
� such that (1) �(�) = �CO(�) if content(�) /= ∅ and (2) �(�) = �(�−) if content(�) = ∅ is
also SMC-optimal. (The initial conjecture �(�) is not constrained.)

(2) The learner�LIN is SMC-optimal. Thus for the problem of inferring conservation laws, SMC-
optimality coincides with the inferences of the physics community.

Discussion. In our paper [25], we examined a weaker notion of mind change efficiency termed
“uniform mind change optimality.” The difference with strong mind change optimality is that
uniform mind change optimality requires the mind change counter to take on the lowest val-
ue (i.e., c(�) =MCL(�)) only when the learner produces an output consistent with the data (i.e.,
when �(�) is consistent with �). Formally, a learner � is uniformly mind change optimal for L
if there is a mind change counter c for � such that for all sequences �, if �(�) �= ? and �(�)

is consistent with �, then c(�) =MCL(�). For noneffective learners, strong mind change opti-
mality is no more stringent than uniform mind change optimality: we will show in Theorem 3.1
that if a mind change bound of � is feasible for the learning problem L, then there is a strong-
ly mind change optimal learner that realizes the bound �. The two notions of optimality differ,
however, for computable learners: because consistency with the data may be hard to achieve for a
computable learner, uniform mind change optimality can be attained by a computable learner in
more problems than strong mind change optimality. We will describe an example separating the
two notions in Section 4 after analyzing the properties of strongly mind change optimal learners.
Both notions are useful in the study of learning algorithms. The stricter notion of strong mind
change optimality, the topic of the current paper, is mathematically more straightforward than
uniform mind change optimality. As the examples in this paper show, even though this require-
ment is more stringent in general for computable learners, it can be met effectively in a number
of natural learning problems, such as identifying a linear subspace and a one-variable pattern
(Section 5).

3. A topological characterization of mind-change bounded identifiability

Information-theoretical aspects of inductive inference have been studied by many learning
theorists (e.g., [12,27]). As Jain et al. observe [12, p. 34]:



994 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

Many results in the theory of inductive inference do not depend upon computability assump-
tions; rather, they are information theoretic in character. Consideration of noncomputable
scientists thereby facilitates the analysis of proofs, making it clearer which assumptions carry
the burden.

As an example, Angluin showed that her Condition 1 characterizes the indexed families of non-
empty recursive languages inferable frompositive data by computable learners [3,p. 121] and that the
noneffective version, Condition 2, is a necessary condition for inferability by computable learners.2

Variants of Angluin’s Condition 2 turn out to be both sufficient and necessary for variousmodels of
language identifiability by noncomputable learners ([27, Chapter 2.2.2], [12, Theorem 3.26]). Infor-
mation theoretic requirements such as Condition 2 constitute necessary conditions for computable
learners, and are typically the easiest way to prove the unsolvability of some learning problems
when they do apply. For example, Apsitis used the Baire topology on total recursive functions to
show thatEX� �= EX�+1 [4, Section 3]. On the positive side, if a sufficient condition for noneffective
learnability is met, it often yields insights that lead to the design of a successful learning algorithm.
It has often been observed that point-set topology, one of themost fundamental and well-studied

mathematical subjects, provides useful concepts for describing the information theoretic structure
of learning problems [34, chapter 10,28,4,17,29]. In particular, Apsitis investigated the mind change
complexity of function learning problems in terms of the Baire topology [4]. He showed that Can-
tor’s 1883 notion of accumulation order in a topological space [8] defines a natural ordinal-valued
measure of complexity for function learning problems, and that accumulation order provides a
lower bound on the mind change complexity of a function learning problem.We generalize Apsitis’
use of topology to apply it to language collections. The following section briefly reviews the relevant
topological concepts.

3.1. Basic definitions in point-set topology

A topological space over a set X is a pair (X ,O), where O is a collection of subsets of X , called
open sets, such that ∅ and X are in O and O is closed under arbitrary union and finite intersection.
One way to define a topology for a set is to find a base for it. A base B for X is a class of subsets of
X such that

(1)
⋃ B = X , and

(2) for every x ∈ X and any B1,B2 ∈ B that contain x, there exists B3 ∈ B such that x ∈ B3 ⊆
B1 ∩ B2.

For any base B, the set {⋃ C : C ⊆ B} is a topology for X [23, p. 52]. That is, we may take an open
set to be a union of sets in the base. Let L be a class of languages and � ∈ SEQ. We use L|� to
denote all languages in L that are consistent with � (i.e., {L ∈ L : L is consistent with �}); similarly
L|D denotes the languages in L that include a given finite subset D. The next proposition shows
that BL = {L|� : � ∈ SEQ} constitutes a base for L.

2 Condition 2 characterizes BC-learnability for computable learners [6].



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 995

Proposition 3.1. BL = {L|� : � ∈ SEQ} is a base for L; hence TL = {⋃ S : S ⊆ BL} is a topology
for L.

The topology TL generalizes the positive information topology from recursion theory [33, p. 186]
if we consider the graphs of functions as languages (as in [12, chapter 3.9.2][27, chapter 2.6.2]).

Examples. For the language collection COINIT we have that COINIT|{2, 3} = {L0,L1,L2} and
COINIT|{0} = {L0}. The base BCOINIT consists of all sets of the form COINIT|d , where d is
a finite subset of �.
In a topological space (X , T ), a point x is an isolated point of a set A ⊆ X if there is an open

set O ∈ T such that x ∈ O and A ∩ O \ {x} = ∅. If x is not an isolated point of A ⊆ X , then x is
an accumulation point of A. Following Cantor [8], we define the derived sets using the concept of
accumulation points.

Definition 3.1 (Cantor). Let (X , T ) be a topological space.

(1) The 0-th derived set of X , denoted by X (0), is just X .
(2) For every successor ordinal �, the �-th derived set of X , denoted by X (�), is the set of all
accumulation points of X (�−1).

(3) For every limit ordinal �, the set X (�) is the intersection of all �-th derived sets, where � < �.
That is, X (�) = ⋂

�<� X (�).

We give an example from the topology of the real plane that illustrates the geometrical intuitions
behind the topological concepts.

Example. Let

A =
{(
1
n
,
1
m

)
: n,m ∈ �

}
∪

{(
1
n
, 0

)
: n ∈ �

}
∪

{(
0,
1
m

)
: m ∈ �

}

be a set of points in the real plane�2 with the standard topology.We use iso(X) to denote all isolated
points in X . Then iso(A) = {( 1n , 1m) : n,m ∈ �}. Therefore

A(1) =
{(
1
n
, 0

)
: n ∈ �

}
∪

{(
0,
1
m

)
: m ∈ �

}
.

Similarly, we have A(2) = (0, 0), and A(3) = ∅ (see Fig. 1).
In the topology TL, a language L is an isolated point of L iff there is a finite subset D ⊆ L such that

the observation of D entails L (i.e., L|D = {L}). The derived sets of L can be defined inductively
as shown in Defnition 3.1. Note if � < � then L(�) ⊇ L(�). It can be shown in set theory that there
is an ordinal � such that L(�) = L(�), for all � > � [16]. In other words, there must be a fixpoint
for the derivation operation. If L has an empty fixpoint, then we say L is scattered [23, p.78]. In a
non-scattered space, the nonempty fixed point is called a perfect kernel.



996 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. A set A on the real plane. Applying derivation once will remove the points marked with dots; applying derivation
twice will remove the points marked with crosses; applying derivation again will remove the point marked with the circle.

The accumulation order of a language L in L, denoted by accL(L) is the maximum ordinal � such
that L ∈ L(�); when L is fixed by context, we simply write acc(L) = �. The accumulation order of a
class of languagesL, denoted by acc(L), is the supremum of the accumulation order of all languages
in it. Therefore, a language collection has an accumulation order if and only if it is scattered.3

Examples.

(1) The only isolated point inCOINIT is L0 = �, for COINIT|{0} = {L0}. ThereforeCOINIT(1) =
{Li : i � 1}. Similarly L1 is the only isolated point in COINIT(1); hence COINIT(2) = {Li : i �
2}. It is easy to verify that COINIT(n) = {Li : i � n}. Therefore, the accumulation order of
language Li in COINIT is i and the accumulation order of COINIT is ω = sup�.

(2) In LINEARn = {linear subspaces of �n}, the only isolated point is �n itself: Let S be a set of
n linearly independent points in �n; then LINEARn|S = {�n}. Similarly every (n − i)-dimen-
sional linear subspace of �n is an isolated point in LINEAR(i)

n . Therefore, the accumulation
order of LINEARn is n.

(3) In FIN, there is no isolated point. This is because for every finite subset S of �, there are
infinitely many languages in FIN that are consistent with S . Therefore, FIN is a perfect kernel
of itself and FIN has no accumulation order.

3 Accumulation order is also called scattering height, derived length, Cantor-Bendixson rank, or Cantor-Bendixson
length [16].



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 997

3.2. Accumulation order characterizes mind change complexity

In this section,we show that the accumulationorder of a language collectionL is an exactmeasure
of its mind change complexity for (not necessarily effective) learners: if acc(L) is unbounded, then
L is not identifiable with any ordinal mind change bound; and if acc(L) = �, then L is identifiable
with a mind change bound.4

In a language topology, accumulation order has two fundamental properties that we apply often.
Let accL(�) ≡ sup{accL(L) : L ∈ L|�}; as usual, we omit the subscript in context. A language L tops
L|� if accL(L) = accL(�); a sequence � is topped if there is some language that tops �. Note that if
accL(�) is a successor ordinal (e.g., finite), then � is topped. All data sequences in SEQ(LINEARn)

are topped. In COINIT, the initial sequence � is not topped. A language L uniquely tops � in L if L
is the only language that tops � in L.
Lemma 3.1. Let L be a scattered class of languages with bounded accumulation order.

(1) For every language L ∈ L, for every text T for L, there exists a time n such that L uniquely tops
T [n] in L; moreover, for every m > n, language L uniquely tops T [m] in L.

(2) For any two languages L1,L2 ∈ L such that L1 ⊂ L2 it holds that accL(L1) > accL(L2).

Proof. Part 2 is immediate. Part 1: For contradiction, assume there is a text T for L such that for all
n, L|(T [n]) contains some language L′ such that acc(L′) � acc(L) = �. Then L is an accumulation
point of L(�), the subclass of L that contains all languages with accumulation order less than or
equal to �. Therefore acc(L) � � + 1, which is a contradiction. �
Wenow establish the correspondence betweenmind change complexity and accumulation order:

MCL(�) = accL(�).

Theorem 3.1. Let L be a language collection and let � be a finite data sequence. Then there is a learner
� that identifies L given � with mind change bound � ⇐⇒ accL(�) � �.

Proof. (⇐) Define the mind change counter c by c(�) := accL(�). We show that c is a mind change
counter for the following learner � that identifies L:

(1) �(�) :=?,
(2) �(�) :=? if accL(�) < accL(�−),

4 Necessary and sufficient conditions for finite mind change identifiability by learning algorithms appear in [24,32]. An
anonymous referee provided the following example of a learning problem whose information-theoretic mind change
complexity is 0, but that requires 1 mind change for any computable learner. Let ϕ be an acceptable programming sys-
tem and $ be a complexity measure for ϕ (see [12, chapter 2]). Let L1 contain all total recursive functions f such that
(1) ϕf(0) = f , and (2) $f(0)(x) � f(x + 1) for all x ∈ �. The functions in L1 are “self-describing” [12, Definition 4.24].
Let L2 contain all total recursive functions g such that (1) there exists an x ∈ � such that $g(0)(x) � g(x + 1) implies
ϕg(0)(x) �= g(x) and (2) ϕg(x0+2) = g where x0 is the least such x. The problem L = L1 ∪ L2 is identifiable with zero mind
change by a noncomputable learner by waiting for the datum specifying the value of the target function at 0. On the other
hand, every computable learner for L makes one mind change in the worst case.



998 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

(3) �(�) := L if accL(�) = accL(�−) and L uniquely tops � in L,
(4) �(�) := �(�−) if accL(�) = accL(�−) and there is no language L that uniquely tops � in L.

It is easy to see that � identifies L. Let T be any text for any language L ∈ L. Then by Lemma
3.1(1) there is a time m such that L uniquely tops L|T [n′] for all n′ > m. Hence Clause 3 applies at
all times n′ > m, and � converges to L on T , as required.
It remains to show that c is a mind change counter for�. We begin with an auxiliary observation

(a): For all languages L �∈ L|�, if�(�) �= L, then�(�) �= L for every � ∈ SEQ(L) such that � ⊃ �. In
other words, if� rejects a hypothesis L inconsistent with �, then� never returns to L after �. To see
that this holds, consider some � ⊃ � and suppose for reductio that �(�) = L. Then there must be
some ' with � ⊂ ' ⊆ � such that �('−) /= L and �(') = L. Then Clause 3 implies that L uniquely
tops ', which contradicts the assumption that L is inconsistent with � and hence with '.
We argue that (*) if Clause 3 applies at �, then no mind change occurs at �, such that either

�(�) = �(�−) or�(�−) = ?. Suppose that�(�−) = L′ �= L and accL(�) = accL(�−) and L unique-
ly tops �. Let n < |�| be the least time such that �(�[n]) = L′. Then by definition of �, Clause 3
applies at �[n], and so L′ uniquely tops �[n] in L. Since L uniquely tops � and L �= L′, we know that
accL(�) < accL(�[n]), and therefore n < |�−| since accL(�) = accL(�−).
Thus, accL(�−) < accL(�[n]). Therefore by Clause 2, there is some time m such that n < m <

|�| such that �(�[m]) = ?, and moreover L′ �∈ L|�[m]. Therefore the observation (a) implies that
�(�−) �= L′. This contradiction shows that either�(�−) = ? or�(�−) = L, and thus nomind change
occurs at �, as required.
It is immediate from the construction that � changes its mind at � only if Clauses 2 or 3 ap-

ply, so (*) implies that � changes its mind only if Clause 2 applies. In that case c(�) = accL(�) <

accL(�−) = c(�−). So counter c is a mind change counter for� since this holds for all mind changes
of �.
(⇒) Let � be a learner that identifies L given �. Suppose c is a mind change counter such that

c(�) = �. We prove by transfinite induction that if acc(�) > �, then c is not a mind change count-
er for L. Assume the claim holds for all � < � and consider �. Suppose acc(�) > �; then there is
L ∈ L|� such that acc(L) = � + 1. Case 1: �(�) = L. Then since L is a limit point of L(�), there is L′
in L(�) such that L′ �= L and acc(L′) = �. Let T ′ ⊃ � be a text for L′. Since � identifies L′, there is a
time n > |�| such that �(T ′[n]) = L′. Since �(T ′[n]) �= �(�) and �(�) �= ?, this is a mind change of
�, hence c(T ′[n]) < c(�). That is, c(T ′[n]) = � < �. On the other hand, since acc(L′) = �, we have
acc(T′[n]) > �. By inductive hypothesis, c is not a mind change counter for �. Case 2: �(�) �= L.
Let T ⊃ � be a text for L. Since � identifies L, there is a time n > |�| such that �(T [n]) = L. As
c(T [n]) � c(�) = � and acc(T[n]) > �, as in Case 1, c is not a mind change counter for �. �
Corollary 3.1. Let L be a class of languages. Then there exists a mind-change bound for L if and only
if L is scattered in the topology TL.

4. Necessary and sufficient conditions for strongly mind change optimal learners

Theorem 3.1 establishes that if the accumulation order of a language collection L is bounded by
an ordinal �, then there is a learner � that identifies L with at most �mind changes; moreover, the
proof of the theorem shows that there is a strongly mind-change optimal learner � that does so.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 999

The goal of this section is to characterize the behavior of strongly mind-change optimal learners.
These results allow us to design mind change optimal learners and to prove their optimality.

Proposition 4.1. Let � be a learner that identifies a language collection L. Then � is SMC-optimal
for L if and only if for all data sequences �:

(1) If there is a language L topping � in L, and �(�) /=?, then �(�) uniquely tops � in L.

(2) If � /= � is not topped and accL(�) = accL(�−), then no mind change occurs at �.

Proof. (⇒) Clause 2 follows immediately from the fact that if � is SMC-optimal, then accL is
a mind change counter for �. For Clause 1, suppose � is topped. Assume for contradiction that
�(�) = L′ �= ? and L′ is not the only language topping L|�. Then there exists a language L ∈ L|�
such that L �= L′ and accL(L) = accL(�). Let T be a text for L such that T ⊇ �. If � identifies L,
there exists a time n > |�| such that �(T [n]) = L. Therefore � makes at least one mind change be-
tween � and T [n]. If accL is a mind change counter for �, then accL(�) > accL(T[n]). On the other
hand, we have accL(T[n]) = accL(L) = accL(�). This contradiction shows that � is not SMC-op-
timal.
(⇐) We want to show that accL is a mind change counter for �.
Let � be an arbitrary sequence in SEQ(L). There are four cases to consider:

(1) � is topped and acc(�) < acc(�−).
(2) � is topped and acc(�) = acc(�−).
(3) � is not topped and acc(�) < acc(�−).
(4) � is not topped and acc(�) = acc(�−).

We argue that �(�) �= �(�−) and �(�−) �= ? imply acc(�) < accL(�−) in all four cases. That is, if
a mind change occurs at �, then the accumulation order drops at �.
In cases 1 and3, the implicationholds trivially. In case 4,wehavebyCondition 2of the proposition

that there is no mind change at �.
Case 2a: �(�−) = ?; then there is no mind change at �. Case 2b: �(�−) �= ?. We note that �−

is topped since acc(�) = acc(�−) and � is topped. So �(�−) has the highest accumulation order
by Condition 1. Since �(�−) and �(�) both have the highest accumulation order acc(�), we have
�(�−) = �(�). �
Proposition 4.1 shows that the key property of strongly mind change optimal learners is that

when they output a consistent informative conjecture L different from ?, the conjecture L maxi-
mizes accumulation order. In many applications, hypotheses with higher accumulation order are
intuitively simpler than those with lower accumulation order. In such language collections, we can
think of mind change optimal methods as choosing the simplest hypothesis consistent with the data
when a unique simplest hypothesis is available.5

5 We are indebted to S. Jain for suggesting this interpretation of Proposition 4.1. Kelly develops the idea of linking mind
change efficient learning with simplicity of hypotheses, and presents it as a formalization of Occam’s Razor [21,20].



1000 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

4.1. Strong vs. uniform mind change optimality

Both UMC-optimal and SMC-optimal learners share the key property of Proposition 4.1 (see
[25, Section 4] for a characterization of UMC-optimal learners). The main difference is that if an
SMC-optimal learner� conjectures a language L on data �− and L is inconsistent with subsequent
data � such that � is topped by some language L′, then � must change its mind at �, whereas
a UMC-optimal learner may “hang on” to a refuted hypothesis. Thus the conjectures of SMC-
optimal learners must be consistent with the data � whenever � is topped (taking ? to be trivially
consistent with any data). The proof of Theorem 3.1 shows that this consistency requirement is not
restrictive for general uncomputable learners. The matter is different for effective learners: There
are learning problems for which there is a computable UMC-optimal learner but no computable
SMC-optimal learner [18].6 Thus for computable learners, SMC-optimality defines a new class of
learning problems.

5. Effective strongly mind change optimal learning

In this section, we consider further computational issues and illustrate how our analysis of mind
change complexity can aid the design of mind change efficient learning algorithms in specific prob-
lems. As it turns out, Angluin’s well-known pattern languages bring out a number of general points
about constructing SMC-optimal learning algorithms.
It is straightforward to computationally implement the learners �CO and �LIN. These learners

have the feature that whenever they produce a conjecture L on data �, the language L is a subset
of every other languages in L|�. Formally, we say L is the ⊆-minimum at � if L is a subset of every
other language in L|�. It follows from Clause 2 of Lemma 3.1 that a ⊆-minimum also maximizes
accumulation order, so �CO and �LIN always output the language uniquely having the highest
accumulation order and hence by Proposition 4.1 they are both SMC-optimal. For a language col-
lectionL like COINIT andLINEAR, if we can compute the⊆-minimum, an SMC-optimal learning
algorithm for L can be constructed on the model of �CO and �LIN. However, these conditions are
much stronger than necessary in general. In general, it suffices that we can eventually compute a
⊆-minimumalong any text. In particular, we canmake a learner output ? when it is computationally
impossible or too complex to find a ⊆-minimum consistent language. We illustrate this point by
specifying SMC-optimal learning algorithms for P1 and Tn, two subclasses of languages defined by
Angluin’s well-known patterns [2, p. 48].

6 Kelly and Schulte provide an example showing that the difference between UMC and SMC-optimality in fact allows
for a vast gap in the computational abilities of the learners. They describe a learning problem such that (1) the problem
can be solved with 1 mind change by a computable learner that is uniformly mind change optimal, but (2) no strongly
mind change optimal computable learner can identify the right answer in the limit, even when augmented with an oracle
for all problems of arithmetic (sets in the arithmetical hierarchy) [18]. In this example, there is a computable learner that
achieves the optimal information-theoretic mind change bound of 1, but no consistent computable learner that does so.
The anonymous referee’s example in footnote 4 also illustrates how consistency can prevent a computable learner from
achieving a mind change bound of 1, although in that example every computable learner requires more than 0 mind
changes, which is the information-theoretic complexity of the problem; hence no computable learner is UMC-optimal or
SMC-optimal.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1001

5.1. Patterns

Let X be a set of variable symbols (e.g., x1, x2, . . .) and let) be a finite alphabet of at least two con-
stant symbols (e.g., 0, 1, . . . , n). A pattern, denoted by p , q etc., is a finite non-null sequence overX ∪ )

(e.g., x10x1 or x1x2x2). We use var(p) to denote the set of distinct variables in p and use #var(p) to
denote the number of distinct variables in p . A pattern p is canonical if var(p) = {x1, x2, . . . , x#var(p)}
and their first occurrence (from left to right) is in that order. For example, the pattern x12x2x1

is canonical, but patterns x21x4 and x2x1 are not. We use PATTERN to denote the set of all
canonical patterns. A substitution . replaces a variable in a pattern p by another pattern uniformly.
For example, . = [x2x3/x1]maps the pattern x1x1 to the pattern x2x3x2x3. Substitutions give rise
to a partial order over all patterns. Following [37,38], we say that a pattern q subsumes a pattern p ,
denoted by p � q, if there is a substitution . such that p = q.. The language generated by a pattern
p , denoted by L(p), is the set {q ∈ )∗ : q � p}. The length of a pattern p , denoted by |p |, is the
number of symbols occuring in p . The set of strings of the same length as a given pattern p plays an
important role in the proofs below; we denote this set by S(p) ≡ {s ∈ L(p) : |s| = |p |}. We observe
that for an alphabet ), the size of S(p) is given by |S(p)| = |)|#var(p).
To discuss effective learning we have to take care of some technicalities. First, the output of a

learning algorithm are descriptions of languages instead of languages themselves. Therefore, we
extend our notation in Section 2 by replacing languages and language collections by language de-
scriptions and classes of language descriptions. For example, in pattern identification problem, we
use PATTERN to denote both the class of all canonical patterns and the language collection it
generates; we use accPATTERN(p) to denote the accumulation order of L(p) in the language collec-
tion denoted by PATTERN. As another example, we use PATTERN|S to denote both languages
consistent with the evidence set S and the patterns that generate them. It should be clear from the
context whether we are referring to a language or its description by a pattern that generates the
language.

5.2. Mind change optimal identification of one-variable patterns

If a pattern contains exactly one distinct variable (i.e., #var(p) = 1), then it is a one-variable
pattern. For one-variable patterns, we usually omit the subscript for the variable (e.g., x01 or
0x00x1). Following [2], we denote the set of all one-variable patterns by P1. Angluin described
an algorithm that, given a finite set S of strings as input, finds the set of one-variable patterns
descriptive of S , and then (arbitrarily) selects one with the maximum length [2, Theorem 6.5].
A one-variable pattern p is descriptive of a sample S if S ⊆ L(p) and for every one-variable
pattern q such that S ⊆ L(q), the language L(q) is not a proper subset of L(p) [2, p. 48]. To
illustrate, the pattern 1x is descriptive of the samples {10} and {10,11}, the pattern x0 is
descriptive of the samples {10} and {10,00}, and the pattern x is descriptive of the sample
{10,00,11}.
We give an example (summarized in Fig. 2) to show that Angluin’s algorithm is not an SMC-

optimal learner. Let x be the target pattern and consider a text T = 〈10,00,11,0, . . .〉 for L(x).
As mentioned above, we write P1|S for the set of one-variable patterns consistent with a sample S .
Then P1|{10} = {1x,x0,x}, P1|{10,00} = {x0,x}, P1|{10,11} = {1x,x} and P1|{10,00,11} = {x}.
The accumulation orders of these languages are determined as follows:



1002 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

Fig. 2. An illustrationofwhyAngluin’s learning algorithm for one-variable patterns is not stronglymind change optimal.

(1) accP1(L(x)) = 0 since L(x) is isolated; so accP1(〈10,00,11〉) = 0 .
(2) accP1(L(1x)) = 1 since P1|{10,11} = {1x,x}; so accP1(〈10,11〉) = 1.
(3) accP1(L(x0)) = 1 since P1|{10,00} = {x0,x}; so accP1(〈10,00〉) = 1.

Also,wehaveaccP1(〈10〉) = 1. Since forT [1] = 〈10〉, theone-variable patterns1x andx0areboth
descriptive of {10}, an Angluin-style learner MA conjectures either 1x or x0; suppose MA(〈10〉) =
1x. Now let cA be anymind change counter forMA. Since1x is consistentwith 〈10〉, SMC-optimality
requires that cA(〈10〉) = accP1(〈10〉)= 1. The next string 00 in T refutes 1x, soMA changes its mind
to x0 (i.e., MA(T [2]) = x0), and cA(〈10,00〉) = 0. However, MA changes its mind again to pattern
x on T [3] = 〈10,00,11〉, so cA is not a mind change counter for MA, and MA is not SMC-optimal.
In short, after the string 10 is observed, it is possible to identify the target one-variable pattern with
one more mind change, but MA requires two.
The issue with MA is that MA changes its mind on sequence 〈10,00〉 even though accP1(〈10〉) =

accP1(〈10,00〉) = 1. Intuitively, a mind change optimal learner has to wait until the data decide
between the two patterns 1x and x0. As Proposition 4.1 indicates, we can design an SMC-optimal
learner M for P1 by “procrastinating” with ? until there is a pattern with the highest accumulation
order. For example on the text T described above, our SMC-optimal learnerM makes the following
conjectures: M(〈10〉) = ?, M(〈10,00〉) = x0, M(〈10,00,11〉) = x (see Fig. 2).
The general specification of the SMC-optimal learning algorithm M is as follows. For a termi-

nal a ∈ ) let pa ≡ p[a/x]. The proof of [2, Lemma 3.9] shows that if q is a one-variable pattern
such that L(q) ⊇ {pa, pb} for two distinct terminals a, b, then L(q) ⊇ L(p). So if for a pattern p

consistent with data �, the data contain {pa, pb}, then L(p) is a ⊆-minimum for P1|� and hence
has the highest accumulation order for �. Thus an SMC-optimal learning algorithm M can pro-
ceed by waiting until the data feature pa and pb for some pattern p . More precisely, define M as
follows.

(1) Set M(�) := ?.
(2)Given a sequence � with S := content(�), check (*) if there is a one-variable pattern p consis-
tent with � such that S ⊇ {pa, pb} for two distinct terminals a, b. If yes, output M(�) := p . If
not, set M(�) := ?.

Since there are at most finitely many patterns consistent with �, the check (*) is effective.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1003

In fact, (*) and hence M can be implemented so that computing M(�) takes time linear in |�|.
Outline: Let m = min{|s| : s ∈ S}. Let Sm be the set of strings in S of length m. Define pS(i) := a if
s(i) = a for all s ∈ Sm, and pS(i) := x otherwise for 1 � i � m. For example, p{10,11,111} = 1x and
p{10,01} = x. Then check for all s ∈ S if s ∈ L(pS). For a one-variable pattern, this can be done in
linear time because |.(x)|, the length of .(x), must be |s|−term(pS)

|pS |−term(pS)
where term(pS) is the number

of terminals in pS . For example, if s = 111 and pS = 1x, then |.(x)| must be 2. If pS is consistent
with S , then there are distinct a, b ∈ ) such that {pa, pb} ⊆ S . Otherwise no pattern p of length m is
consistent with S and hence (*) fails.
It is worth noting that sometimes the mind change efficient learnerMP1 may take longer to con-

verge than the Angluin-style learner MA. For example, let T be a text for the pattern 1x such that
T(0) = 10 and T(1) = 11; then we can verify that the Angluin-style learnerMA in Fig. 2 converges at
time 0, but amind change efficient learner does not converge until time 1. In general, anAngluin-style
learner will converge to the correct one-variable pattern at least as soon as a SMC-optimal learner
and strictly sooner on some texts. Thus, the Angluin-style learner dominates the SMC-learner with
respect to convergence time in the sense of [27] and [17].

5.3. Mind change optimal identification of fixed-length patterns

Following [31], for each positive integer n, we write Tn to denote the set of canonical patterns of
length n. We apply the concept of accumulation order to design a mind change efficient algorithm
that identifies Tn for a fixed n. The first step is to find an easily computable, closed-form expression
for the accumulation order of a pattern in Tn.

Lemma 5.1. Fix a positive integer n > 0, and let p be a pattern in Tn. Then accTn(p) = n− #var(p),
where #var(p) is the number of distinct variables in p.

Proof.We prove the claim by downward induction.
Base case: #var(p) = n. Then p is the most general pattern x1x2 · · · xn; thus accTn(p) = 0.
Inductive step: Assume accTn(q) = n− #var(q) for all q with #var(q) > k . Consider a pattern p

with #var(p) = k . Let r ∈ Tn be another pattern of length n. If #var(r) < k , then |S(r)| < |S(p)| so
S(p) �⊆ S(r). Angluin shows that S(p) = S(r) implies L(p) = L(r) [2, Lm. 3.2]. So if #var(r) = k and
L(p) /= L(r), then S(p) /= S(r) and so S(p) �⊆ S(r) since |S(p)| = |S(r)|. So in either case, S(p) �⊆ S(r).
As there are only finitely many patterns of length n, this implies that there exists a finite subset
S ⊆ L(p) such that L(r) �= L(p) implies that #var(r) > k for every pattern r ∈ Tn|S . By the induction
assumption, it follows that (1) accTn(p) � n− k.
Second, since #var(p) < n, it is easy to see that there exists a pattern r such that #var(r) =

#var(p) + 1 and q ! p ; thus L(p) ⊆ L(q). This implies that (2) accTn(p) � n− (k − 1) + 1 = n− k.
Combining the above two inequalities (1) and (2), we have accTn(p) = n− k = n− #var(p). �
To illustrate, the lemma implies that accTn(x1x2 · · · xn) = 0, accTn(x10x2 · · · xn−1) = 1, and

accTn(x1x1 · · · x1) = n− 1.
Lemma 5.1 allows us to design a strongly mind change optimal learner as follows. First, we

observe that every data sequence � is topped for the language collection Tn. This is because Tn is
finite. For a finite set of ordinals {�1,�2, . . . ,�n}, its supremum is its maximum. Thus Condition 2
of Proposition 4.1 holds vacuously. Condition 1 requires a strongly mind change optimal learner to



1004 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

output ? or the pattern that uniquely tops the given data sequence �. For a given data sequence �,
we can enumerate the finitely many patterns Tn|� of length n that are consistent with the strings in
�. Then we simply check if any pattern p in Tn|� uniquely maximizes n − #var(p) or equivalently
minimizes #var(p).
In principle, closed form expressions for the accumulation order of a pattern p in the one-vari-

able pattern space P1 and in the general pattern space PATTERN, such as Lemma 5.1 provides for
Tn, would yield mind change optimal learners for these language collections. Finding closed form
expressions for accP1 and accPATTERN are currently open problems [26].

6. Accumulation order and structural complexity

Our final section relates accumulation order to other well-known learning-theoretic concepts
that describe the structure of a learning problem.

6.1. Thickness and inclusion depth

It follows from Clause 2 of Lemma 3.1 that the accumulation order of a language L in a language
collection L is at least as great as the length of a chain of supersets of L. We refer to this length as
the inclusion depth of L, as formalized the following definition.
Definition 6.1. Let L be a language collection and L be a language in L. The inclusion depth of L in
L is the size n of the largest index set {Li}1�i�n of distinct languages in L, such that L ⊂ L1 ⊂ . . . ⊂
Li ⊂ . . . ⊂ Ln. The inclusion depth of L is the maximum of the inclusion depths of languages in L
(cf. [26]).

For example, in COINIT, the inclusion depth of language Ln = {i ∈ � : i � n} is n. The inclusion
depth of COINIT is ω. For many language collections, the inclusion depth of a language L is not
only a lower bound on its accumulation order but characterizes it exactly. Aswewill show, examples
include COINIT, LINEARn, P1, Tn, and PATTERN. The following proposition shows that a fairly
simple property due to Angluin [3, Condition 3] is a sufficient condition for the accumulation order
of a language to be equal to its inclusion depth. Following [41], we say that a class of languagesL has
finite thickness ifL|{s} is finite for every string s ∈ ⋃ L.Note that if the languagecollectionLhasfinite
thickness, then every language inLhas finite inclusion depth, so the inclusion depth ofL is atmostω.
In language collections of finite thickness, the inclusion depth of a language is exactly its accu-

mulation order.

Proposition 6.1. Let L be a language collection with finite thickness and L be a language in L.

(1) There is a finite subset S ⊆ L such that L is a ⊆-minimum in L|S.
(2) The inclusion depth of L is accL(L).

Proof. For clause 1, let s be a string in L; then L|{s} is finite since L has finite thickness. For every
language L′ ∈ L|{s} such that L′ �⊇ L, the set L \ L′ is nonempty. For each L′, choose a string sL′ from
L \ L′, and let S := {s} ∪ {sL′ : L′ ∈ L|{s} \ {L}}. Then L|S contains only languages that include L.
We prove clause 2 by induction.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1005

Base case: Let L be a language with the inclusion depth 0, which means that there is no lan-
guage that properly includes L. Then there exists a finite set S ⊆ L such that L|S = {L}. Therefore,
accL(L) = 0 by the definition of accumulation order.
Inductive step:Assume for every language with inclusion depth less than k that its accumulation

order equals its inclusion depth. Consider the case that L has inclusion depth k . From the induction
assumption, we know that there exists a language L′ such that L ⊂ L′ and accL(L′) = k − 1. There-
fore, (1) accL(L) � k by Clause 2 of Lemma 3.1. On the other hand, since L has finite thickness,
there exists a subset S ⊆ L such that L|S contains only languages that include L. It is clear that
for every language L′ ∈ L|S , if L′ �= L then L′ ⊃ L; this implies that L′ has inclusion depth less than
k for every language L′ ∈ L|S − L, otherwise L would have inclusion depth greater than k . There-
fore, acc((L|S) \ {L}) = sup (

accL{L′ ∈ L|S \ {L}}) < k; thus (2) accL(L) � k. Combining the two
inequalities (1) and (2), we have accL(L) = k, which complete the inductive step. �
As it is easy to verify that each of the language collections COINIT, LINEARn, P1, Tn, and

PATTERN has finite thickness, the proposition implies that the accumulation order of each lan-
guage L in these collections is the inclusion depth of L, or the maximum length of a chain of
supersets of L. Clause 1 of the proposition establishes that in languages with finite thickness, the
general strategy of conjecturing ⊆-minima is sufficient for constructing SMC-optimal learners.

6.2. Elasticity

We show that the concept of elasticity provides a sufficient condition for a language collection
L to have a bounded accumulation order, which by Theorem 3.1 implies that L is identifiable with
a bounded number of mind changes.
A class of languagesL has infinite elasticity if there exist an infinite sequence of strings (si)i∈� and

an infinite sequence of languages (Li)i∈�, where Li ∈ L, such that for each i ∈ �, {s0, . . . , si} ⊆ Li

but si+1 �∈ Li . A class of languages has finite elasticity iff it does not have infinite elasticity [44], [30,
Def. 7]. For example the language collection LINEARn has finite elasticity because if vector �vi+1 is
not in a linear subspace Li, then �vi+1 is independent of any subset {�v0, �v1, . . . , �vi}. It is not hard to see
that finite thickness implies finite elasticity [44], so Tn and P1 have finite elasticity.
We use D(L) to denote all finite subsets of languages in L. A subset P of a topological space is

perfect if P has no isolated points [23, p. 78].
Lemma 6.1. Let P be a perfect nonempty set of languages. Then P|d is also nonempty and perfect for
every finite subset d ∈ D(P).

To illustrate, the language collection FIN which comprises all finite subsets of � is perfect and
nonempty. Since no finite subset d entails a single language in FIN (i.e., card(FIN|d) > 1), we have
that FIN|d is nonempty and perfect.
The next proposition gives a topological condition sufficient to establish that a language collec-

tion L has infinite elasticity, namely that L contain a subset that is perfect in the language topology
forL. IfL has a perfect subset, the derivation procedure from Section 3.1 terminates with a nonemp-
ty perfect kernel, and L has no bounded accumulation order, which by Theorem 3.1 is equivalent
to the statement that L is not identifiable with an ordinal mind change bound. Contrapositively, if
L has finite elasticity, then L is identifiable with an ordinal mind change bound.



1006 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

Proposition 6.2. Let L be a collection of languages.

(1) If L contains a nonempty perfect subset P ⊆ L, then L has infinite elasticity.
(2) IfL has finite elasticity, thenL has a bounded accumulation order and henceL is identifiable with

a bounded number of mind changes.

Proof. Part 1: If P /= ∅ is perfect, then P is infinite and so there are infinitely many languages L ∈ P
such that L /= ⋃ P . Choose a nonempty language L0 /= ⋃ P and strings s0 ∈ L0 and s1 ∈ ⋃ P − L0.
Let P1 := P|{s0, s1}. Then by Lemma 6.1, P1 is a nonempty perfect set. So there is nonempty L1 ∈ P1
such that L1 /= ⋃ P1, and we may choose a string s2 ∈ ⋃ P1 − L1. Continuing this process indefi-
nitely, we obtain two sequences (Li)i∈� and (si)i∈� such that for each i ∈ �, {s0, . . . , si} ⊆ Li but
si+1 �∈ Li . In other words, L has infinite elasticity.
Part 1: Suppose that L has finite elasticity. Then by the contrapositive of Clause 1, the only

perfect subset of L is the empty set. Since the derivation procedure from Definition 3.1 terminates
with a perfect subset of L, it thus terminates with the empty set, so L is scattered and has bounded
accumulation order by Corollary 3.1. �
The proposition implies that LINEARn and all sub-collections of PATTERN are identifiable

with a bounded number of mind changes.
If a language has infinite elasticity, then it also has infinite thickness. It is known that, for in-

dexed language families, finite elasticity is a sufficient condition for effective learnability [44,30].
A sequence of nonempty languages {Li} constitutes an indexed family just in case there exists a
computable function f such that for each i ∈ N and for each x ∈ N , we have f(i, x) = 1 if x ∈ Li

and f(i, x) = 0 otherwise [3, Section 2], [12, Ex. 4.7]. Fig. 3 illustrates the relationship among these
structural concepts.

6.3. Intrinsic complexity

Next we consider the relationship between weak and strong reducibility, intrinsic complexity
[10,13], and accumulation order. Our basic result is that if language collection L1 is reducible to L2,
then acc(L2) � acc(L1). In this sense reducibility agrees with accumulation order—and hence mind
change complexity—as a comparison of the complexity of different learning problems.

Fig. 3. Relations between various computable and noncomputable identifiability concepts. EMC∗ denotes language col-
lections identifiable by a computable learner with a bounded number of mind changes. MC∗ denotes language collections
with bounded accumulation orders, or equivalently, identifiable by a noncomputable learner with a bounded number
of mind changes. Following [12], we use Lang to denote all language collections identifiable by noncomputable learners
and use TxtEx to denote all language collections identifiable by computable learners. The notation⇒+ indexed family
indicates that the implication holds only for indexed language collections.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1007

Definition 6.2 ([15,13,10]).

(1) An enumeration operator is a computable function that maps SEQ into SEQ.
(2)An infinite sequence G is admissible for a text T if G converges to an index (or grammar) of
the language L = content(T).

(3) Let L1 and L2 be two classes of languages. Then L1 is weakly reducible to L2, denoted by
L1 �weak L2, if there exist two enumeration operators 7 and 8 such that for every text T1 for
L1,
(a) 7(T1) = ⋃

n 7(T1[n]) is a text for L2.
(b) for every admissible sequence G for7(T1), the sequence8(G) = ⋃

n 8(G[n]) is admissible
for T1.

We say that operators 7 and 8 witness L1 �weak L2.
(4) Language collection L1 is strongly reducible to L2, denoted by L1 �strong L2, if there exists 7
and 8 such that

(a) 7 and 8 witness L1 �weak L2, and
(b) for every language L1 ∈ L1, there exists a language L2 ∈ L2 such that L2 = content(7(T))
for every text T for L1.

The following proposition relates accumulation order to reducibility.

Proposition 6.3. Let L1 and L2 be two language collections such that L1 �weak L2 is witnessed by
operators 7 and 8.

(1) Let L and L′ be two distinct languages in L1, and let T and T ′ be texts for L and L′, respective-
ly. Then content(7(T)) �= content(7(T′)). (Thus, texts from distinct languages are mapped to
texts from distinct languages.)

(2) Let T be a text for some L1 ∈ L1, and let L2 = content(7(T)). Then accL2(L2) � accL1(L1).
(3) If L1 �weak L2, then acc(L1) � acc(L2). Therefore if L2 is identifiable with mind change bound

�, so is L1.

Proof. Clause 1: For contradiction, assume content(7(T)) = content(7(T′)) = L2 ∈ L2. If G is an
admissible sequence for 7(T), then G is also an admissible sequence for 7(T ′). Therefore 8(G) is
admissible for both T and T ′, which is impossible.
Clause 2: The proof is by transfinite induction on accL2(L2). Assume the claim hold for all cases

where accL2(L2) = � < �, and suppose that accL2(L2) = �.
For contradiction, assume that accL1(L1) = 9 > �. Since 7(T) is a text for L2, by Lemma

3.1, there exists a time n such that L2 uniquely has the highest accumulation order � in
L2|7(T)[n]. Let m be a time such that (a) 7(T [m]) ⊇ 7(T)[n]. Since T is a text for L1 and
accL1(L) > �, there is a language L′

1 ∈ L1|T [m] such that accL1(L′
1) = �. Let T ′ be a text for

L′
1 that extends T [m]; then by Clause 6.3 we have that content(7(T′)) �= L2. Let us write

L′
2 for content(7(T′)). Clearly content(7(T′[m])) ⊆ content(7(T′)) = L′

2, so L′
2 ∈ L2|7(T ′[m]).

Since T [m] = T ′[m] we have (b) L′
2 ∈ L2|7(T [m]). Combining (a) and (b) we have (c) L′

2 ∈
L2|7(T)[n].



1008 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

Since L2 is the only language in L2|7(T)[n] with the accumulation order �, the language L′
2

must has an accumulation order � < � in L2. Therefore, accL1(L′
1) = � > accL2(L

′
2) = �, which

contradicts the induction hypothesis and establishes the inductive step.
Clause 3: Immediate consequence of Clause 2. �
The above proposition gives us a necessary condition for reducibility, which we illustrate in the

following examples. As in [13], SINGLE denotes the class of all singleton languages. It is easy to
see that acc(COINIT) = ω but acc(SINGLE) = 0, therefore COINIT ��weak SINGLE, as shown
in [13].
If L1 is not scattered (i.e., has no mind change bound) and L2 is scattered (i.e., has a mind change

bound), then Proposition 6.3 implies thatL1 is not weakly reducible toL2. Since the class of all finite
languages FIN is not scattered (cf. Section 3.1), it follows that FIN ��weak COINIT, as established
by [13].
If 7 and 8 witness L1 �strong L2, then 7 induces a function f7 that maps L1 into L2 as follows:

for a language L ∈ L1, choose any text T for L, and assign f(L) = content(7(T)). The definition
of strong reducibility guarantees that f7 is well-defined. We show that f. is a continuous one-
one function in our topology. A function f : X → Y is continuous if for every point x ∈ X and
every neighborhood V of f(x) in Y , there exists a neighborhood U of x in X , such that f(U) ⊆ V .7

For two language collections L1 and L2, this means that f : L1 → L2 is continuous if for ev-
ery language L1 ∈ L1 and every finite subset D2 ⊆ f(L1), there is a finite subset D1 ⊆ L1 such that
{f(L) : L ∈ L1|D1} ⊆ L2|D2.
Lemma 6.2. Suppose7 and8witnessL1 �strong L2.Then f7 : L1 → L2 defined above is a continuous
one-one function.

The proof is left to the reader.
Lemma 6.2 connects strong reducibility with many basic results in point-set topology. As an

illustration, we apply standard theorems in topology to immediately derive that strong reducibility
respects accumulation order without the need for the construction of Proposition 6.3.

Proposition 6.4. Let f : X �→ Y be a continuous one-one function, and let A ⊆ X and x ∈ X.

(1) If x ∈ A(1), then f(x) ∈ f(A)(1) (i.e., f(A(1)) ⊆ [f(A)](1)).
(2) If acc(Y) is defined, then acc(X) is also defined and moreover acc(X) � acc(Y).

Proof. Clause 1 is Theorem 2.3 of [7]. Clause 2 follows easily by transfinite induction. �
Therefore we can establish the following result from standard topological results.

Corollary 6.1. Suppose 7 and 8 witness L1 �strong L2. Then acc(L1) � acc(L2).
Thus if f7 : L1 → L2 is onto and (f7)−1 : L2 → L1 is continuous, then acc(L1) = acc(L2);

in topological terminology, homeomorphic language collections have the same accumulation
order.

7 This definition is equivalent to the condition that f −1(V) is open in X for every open set V of Y .



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1009

7. Summary and future work

The topic of this paper was learning with bounded mind changes. We applied the classic topo-
logical concept of accumulation order to characterize the mind change complexity of a learning
problem: A language collection L is identifiable by a learner (not necessarily computable) with �

mind changes iff the accumulationorder ofL is atmost�.We studied the properties of stronglymind
change optimal learners: roughly, a learner� is strongly mind change optimal if� realizes the best
possible mind change bound not only in the entire learning problem, but also in subproblems that
arise after observing some data. The characteristic property of SMC-optimal learners is that they
output languages with maximal accumulation order. Thus, analyzing the accumulation order of a
learning problem is a powerful guide to constructing mind change efficient learners. We illustrated
these results in several learning problems such as identifying a linear subspace and one-variable and
fixed-length patterns. For learning linear subspaces, the natural method of conjecturing the least
subspace containing the data is the only mind change optimal learner that does not “procrastinate”
(i.e., never outputs ? or an inconsistent conjecture). This is exactly the inference procedure that
the particle physics community has followed to arrive at the set of conservation laws found in the
current standard model of particle physics. Angluin’s algorithm for learning a one-variable pattern
is not SMC-optimal; we described a different SMC-optimal algorithm for this problem that has
linear update time.
An interesting open issue in the general theory of SMC-optimal learning is the relationship be-

tween mind change optimality and time efficiency. As the example of one-variable patterns shows,
there can be a trade-off between time efficiency and producing consistent conjectures, on the one
hand, and the procrastination that minimizing mind changes may require on the other (see Section
5). We would like to characterize the learning problems for which this tension arises, and how great
the trade-off can be. For example, if a language collection L is closed under intersection, then con-
jecturing∩(L|�) for every data sequence � yields an SMC-optimal learner that never procrastinates
(the so-called “closure algorithm” [5]). The language collection LINEAR and the learner �LIN are
an instance of an intersection-closed language class and the corresponding closure algorithm. Are
there are other general sufficient or necessary conditions for a procrastination-free SMC-optimal
learner?
As we have seen, mind change optimality imposes strong constraints on learners. This means

that we can apply our theory to design optimal learning algorithms for problems of interest. Such
an analysis can validate existing inference procedures, as in the case of learning conservation laws,
or lead to the development of new ones, as with one-variable patterns. Other potential applications
include the following. The next challenge for pattern languages is to find an SMC-optimal algorithm
for learning a general pattern with arbitrarily many variables. An important step towards that goal
would be to determine the accumulation order of a pattern language L(p) in the space of pattern
languages [26]. Another application is the design of SMC-optimal learners for logic programs. For
example, Jain and Sharma have examined classes of logic programs that can be learned with bound-
ed mind changes using explorer trees [14]. Do explorer trees lead to mind change optimal learning
algorithms? One approach to learning causal graphs or Bayes nets is based on independence re-
lations extracted from the data, where the graph is viewed as a compact representation of these
independence facts [35,36]. What are mind change optimal algorithms that identify a correct graph
in the limit from independence data?



1010 W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011

In sum, strong mind change optimality guides the construction of learning algorithms by im-
posing strong and natural constraints; and the analytical tools we established for solving these
constraints reveal significant aspects of the fine structure of learning problems.

Acknowledgments

This research was supported by a Discovery Grant from the Natural Sciences and Engineer-
ing Research Council of Canada. We thank the anonymous referee for valuable comments and
suggestions.

References

[1] A. Ambainis, S. Jain, A. Sharma, Ordinal mind change complexity of language identification, Theor. Comput. Sci.
220 (2) (1999) 323–343.

[2] D. Angluin, Finding patterns common to a set of strings, J. Comput. Syst. Sci. 21 (1) (1980) 46–62.
[3] D. Angluin, Inductive inference of formal languages from positive data, Inf. Control 45 (2) (1980) 117–135.
[4] K. Apsitis, Derived sets and inductive inference, in: S. Arikawa, K.P. Jantke (Eds.), Proceedings of ALT 1994,
Springer, Berlin, Heidelberg, 1994, pp. 26–39.

[5] P. Auer, R. Ortner, A new pac bound for intersection-closed concept classes., in: COLT, 2004, pp. 408–414.
[6] G. Baliga, J. Case, S. Jain, The synthesis of language learners, Inf. Comput. 152 (1999) 16–43.
[7] J.D. Baum, Elements of Point Set Topology, rep. Dover, 1991, 1964.
[8] G. Cantor, Grundlagen einer allgemeinenMannigfaltigkeitslehre, in: W. Ewald (Ed.), From Kant to Hilbert, vol. 2,
Oxford Science Publications, 1996, pp. 878–920.

[9] R. Freivalds, C.H. Smith, On the role of procrastination in machine learning, Inf. Comput. 107 (2) (1993) 237–271.
[10] R. Freivalds, E. Kinber, C.H. Smith, On the intrinsic complexity of learning, Inf. Comput. 123 (1) (1995) 64–71.
[11] E.M. Gold, Language identification in the limit, Inf. Control 10 (5) (1967) 447–474.
[12] S. Jain, D. Osherson, J.S. Royer, A. Sharma, Systems That Learn, second ed., MIT Press, Cambridge, MA, 1999.
[13] S. Jain, A. Sharma, The intrinsic complexity of language identification, J. Comput. Syst. Sci. 52 (3) (1996) 393–402.
[14] S. Jain, A. Sharma, Mind change complexity of learning logic programs, TCS 284 (1) (2002) 143–160.
[15] S. Jain, E.B. Kinber, R. Wiehagen, Language learning from texts: degrees of intrinsic complexity and their charac-
terizations., J. Comput. Syst. Sci. 63 (3) (2001) 305–354.

[16] A.J. Jayanthan, Derived length for arbitrary topological spaces, Int. J. Math. Math. Sci. 15 (2) (1992) 273–277.
[17] K. Kelly, The Logic of Reliable Inquiry, Oxford University Press, 1996.
[18] K. Kelly, O. Schulte, The computable testability of theories with uncomputable predictions, Erkenntnis 43 (1995)
29–66.

[19] K. Kelly, Efficient convergence implies Ockham’s Razor, in: Proceedings of the 2002 International Workshop on
Computation Models of Scientific Reasoning and Applications, 2002, pp. 24–27.

[20] K. Kelly, A close shave with realism: Ockham’s razor derived from efficient convergence, 2003 (completed
manuscript) Available http://www.andrew.cmu.edu/user/kk3n/kelly/ockham.pdf.

[21] K. Kelly, Justification as truth-finding efficiency: how ockham’s razor works, Minds Mach. 14 (4) (2004) 485–505.
[22] S. Kocabas, Conflict resolution as discovery in particle physics, Mach. Learn. 6 (1991) 277–309.
[23] K. Kuratowski, Topology, vol. 1, Academic Press, 1966 (translated by J. Jaworowski).
[24] S. Lange, T. Zeugmann, Language learning with a bounded number of mind changes, in: Symposium on Theoretical
Aspects of Computer Science, 1993, pp. 682–691.

[25] W. Luo, O. Schulte, Mind change efficient learning., in: P. Auer, R. Meir (Eds.), Learning Theory, 18th Annual
Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June 27–30, 2005, Proceedings, Lecture Notes in
Computer Science, vol. 3559, Springer, 2005, pp. 398–412.



W. Luo, O. Schulte / Information and Computation 204 (2006) 989–1011 1011

[26] W.Luo,Compute inclusiondepthof a pattern., in: P.Auer,R.Meir (Eds.), LearningTheory, 18thAnnualConference
on Learning Theory, COLT 2005, Bertinoro, Italy, June 27–30, 2005, Proceedings, Lecture Notes in Computer
Science, vol. 3559, Springer, 2005, pp. 689–690.

[27] E. Martin, D.N. Osherson, Elements of Scientific Inquiry, MIT Press, Cambridge, MA, 1998.
[28] E. Martin, A. Sharma, F. Stephan, Learning, logic, and topology in a common framework, in: Proceedings of the
13th International Conference on Algorithmic Learning Theory, Springer-Verlag, 2002, pp. 248–262.

[29] E. Martin, A. Sharma, On a syntactic characterization of classification with a mind change bound, in: COLT 2005,
Lecture Notes in Computer Science, vol. 3559, Springer, 2005, pp. 413–428.

[30] T. Motoki, T. Shinohara, K. Wright, The correct definition of finite elasticity: corrigendum to identification of
unions, in: Proceedings of COLT 1991, Morgan Kaufmann Publishers, 1991, p. 375.

[31] Y. Mukouchi, Characterization of pattern languages, in: Proc. 2nd workshop on algorithmic learning theory
(ALT’91), 1991, pp. 93–104.

[32] Y.Mukouchi, Inductive inference with boundedmind changes, in: S. Doshita, K. Furukawa, K.P. Jantke, T. Nishida
(Eds.), Proceedings of ALT 1992, Springer, Berlin, Heidelberg, 1993, pp. 125–134.

[33] P. Odifreddi, Classical Recursion Theory, North-Holland, New York, 1999.
[34] D.N. Osherson, M. Stob, S. Weinstein, Systems That Learn: An Introduction to Learning Theory for Cognitive and
Computer Scientists, MIT Press, Cambridge, MA, 1986.

[35] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000.
[36] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, MIT Press, Cambridge, MA, 2000.
[37] G. Plotkin, A note on inductive generalization, in: Machine Intelligence, vol. 5, Edinburgh University Press, 1970,
pp. 153–163.

[38] G. Plotkin, A further note on inductive generalization, in: Machine Intelligence, vol. 6, Edinburgh University Press,
1971, pp. 101–124.

[39] O. Schulte, Automated discovery of conservation principles and new particles in particle physics, Mach. Learn.
(2005) (submitted).

[40] O. Schulte, An algorithmic proof that the family conservation laws are optimal for the current reaction data, arXiv
preprint archive. Available from: <http://arxiv.org/abs/hep-ph/0602011>.

[41] T. Shinohara, Inductive inference of monotonic formal systems from positive data, New Gen. Comput. 8 (4) (1991)
371–384.

[42] R. Valdés-Pérez, Algebraic reasoning about reactions: discovery of conserved properties in particle physics, Mach.
Learn. 17 (1994) 47–67.

[43] R. Valdés-Pérez, On the justification of multiple selection rules of conservation in particle physics phenomenology,
Comput. Phys. Commun. 94 (1996) 25–30.

[44] K. Wright, Identification of unions of languages drawn from an identifiable class, in: Proceedings of the second
annual workshop on Computational learning theory, Morgan Kaufmann Publisher, 1989, pp. 328–333.


	Mind change efficient learning
	Introduction
	Preliminaries: language identification
	A topological characterization of mind-change bounded identifiability
	Necessary and sufficient conditions for strongly mind change optimal learners
	Effective strongly mind change optimal learning
	Accumulation order and structural complexity
	Summary and future work
	Acknowledgments
	References


