
Machine Learning manuscript No.
(will be inserted by the editor)

Learning Graphical Models for Relational Data via
Lattice Search

Oliver Schulte and Hassan Khosravi

Received: date / Accepted: date

Abstract Many machine learning applications that involve relational databases
incorporate first-order logic and probability. Relational extensions of generative
graphical models include Parametrized Bayes Net [44] and Markov Logic Net-
works (MLNs). Many of the current state-of-the-art algorithms for learning MLNs
have focused on relatively small datasets with few descriptive attributes, where
predicates are mostly binary and the main task is usually prediction of links be-
tween entities. This paper addresses what is in a sense a complementary problem:
learning the structure of a graphical model that models the distribution of discrete
descriptive attributes given the links between entities in a relational database. De-
scriptive attributes are usually nonbinary and can be very informative, but they
increase the search space of possible candidate clauses. We present an efficient new
algorithm for learning a Parametrized Bayes Net that performs a level-wise search
through the table join lattice for relational dependencies. From the Bayes net we
obtain an MLN structure via a standard moralization procedure for converting
directed models to undirected models. Learning MLN structure by moralization is
200-1000 times faster and scores substantially higher in predictive accuracy than
benchmark MLN algorithms on three relational databases.

Keywords Statistical-Relational Learning · Graphical Models · Markov Logic
Networks · Bayes Nets

1 Introduction

Many databases store data in relational format, with different types of entities
and information about links between the entities. The field of statistical-relational
learning (SRL) has developed a number of new statistical models for relational

School of Computing Science
Simon Fraser University
Vancouver-Burnaby, B.C., V5A 1S6
Canada
E-mail: oschulte@cs.sfu.ca,hkhosrav@cs.sfu.ca
Tel.: +1-778-782-3390
Fax: +1-778-782-3045

2

databases [18]. Markov Logic Networks (MLNs) form one of the most prominent
SRL model classes; they generalize both first-order logic and Markov network mod-
els [8]. MLNs have achieved impressive performance on a variety of SRL tasks.
Because they are based on undirected graphical models, they avoid the difficulties
with cycles that arise in directed SRL models [40,8,56]. An open-source bench-
mark system for MLNs is the Alchemy package [30]. Essentially, an MLN is a set
of weighted first-order formulas that compactly defines a Markov network com-
prising ground instances of logical predicates. The formulas are the structure or
qualitative component of the Markov network; they represent associations between
ground facts. The weights are the parameters or quantative component; they as-
sign a likelihood to a given relational database by using the log-linear formalism of
Markov networks. This paper addresses structure learning for MLNs in relational
schemas that feature a significant number of descriptive attributes, compared to
the number of relationships. Previous MLN learning algorithms do not scale well
with such datasets. We introduce a new moralization approach to learning MLNs:
first we learn a directed Bayes net graphical model for relational data, then we
convert the directed model to an undirected MLN model using the standard mor-
alization procedure (marry spouses, omit edge directions). The main motivation
for performing inference with an undirected model is that they do not suffer from
the problem of cyclic dependencies in relational data [8,56,23]. Thus our approach
combines the scalability and efficiency of directed model search, with the inference
power and theoretical foundations of undirected relational models.

Approach. We present a new algorithm for learning a Bayes net from relational
data, the learn-and-join algorithm. While our algorithm is applicable to learning
directed relational models in general, we base it on the Parametrized Bayes Net
formalism of Poole [44]. The learn-and-join algorithm performs a level-wise model
search through the table join lattice associated with a relational database, where
the results of learning on subjoins constrain learning on larger joins. The join
tables in the lattice are (i) the original tables in the database, and (ii) joins of
relationship tables, with information about descriptive entity attributes added by
joining entity tables. A single-table Bayes net learner, which can be chosen by
the user, is applied to each join table to learn a Bayes net for the dependencies
represented in the table. For joins of relationship tables, this Bayes net represents
dependencies among attributes conditional on the existence of the relationships
represented by the relationship tables.

Single-table Bayes net learning is a well-studied problem with fast search al-
gorithms. Moreover, the speed of single-table Bayes net learning is significantly
increased by providing the Bayes net learner with constraints regarding which
edges are required and which are prohibited. Key among these constraints are the
join constraints: the Bayes net model for a larger table join inherits the presence
or absence of edges, and their orientation, from the Bayes nets for subjoins. We
present a theoretical analysis that shows that, even though the number of poten-
tial edges increases with the number of join tables, the join constraint reduces
the Bayes net model search space to keep it roughly constant size throughout the
join lattice. In addition to the join constraints, the relational structure leads to
several others that reduce search complexity; we discuss the motivation for these
constraints in detail. One of the constraints addresses recursive dependencies (re-
lational autocorrelations of an attribute on itself) by restricting the set of nodes

3

that can have parents (i.e., indegree greater than 0) in a Parametrized Bayes Net.
A normal form theorem shows that under mild conditions, this restriction involves
no loss of expressive power.

Evaluation. We evaluated the structures obtained by moralization using one syn-
thetic dataset and five public domain datasets. In our experiments on small datasets,
the run-time of the learn-and-join algorithm is 200-1000 times faster than bench-
mark programs in the Alchemy framework [28] for learning MLN structure. On
medium-size datasets, such as the MovieLens database, almost none of the Alchemy
systems returns a result given our system resources, whereas the learn-and-join al-
gorithm produces an MLN with parameters within 2 hours; most of this time
(98%) is spent optimizing the parameters for the learned structure. To evaluate
the predictive performance of the learned MLN structures, we used the parameter
estimation routines in the Alchemy package. Using standard prediction metrics for
MLNs, we found in empirical tests that the predictive accuracy of the moralized
BN structures was substantially greater than that of the MLNs found by Alchemy.
Our code and datasets are available for ftp download [1].

Limitations. The main limitation of our current algorithm is that it does not find
associations between links, for instance that if a professor advises a student, then
they are likely to be coauthors. In the terminology of Probabilistic Relational
Models [16], our algorithm addresses attribute uncertainty, but not existence un-
certainty (concerning the existence of links). The main ideas of this paper can also
be applied to link prediction.

Another limitation is that we do not propose a new weight learning method,
so we use standard Markov Logic Network methods for parameter learning after
the structure has been learned. While these methods find good parameter settings,
they are slow and constitute the main computational bottleneck for our approach.

Paper Organization. We review related work, then statistical-relational models, es-
pecially Parametrized Bayes nets and Markov Logic Networks. We define the table
join lattice, and present the learn-and-join algorithm for Parametrized Bayes nets.
We provide detailed discussion of the relational constraints used in the learn-and-
join algorithm. For evaluation, we compare the moralization approach to standard
MLN structure learning methods implemented in the Alchemy system, both in
terms of processing speed and in terms of model predictive accuracy.

Contributions. The main contributions may be summarized as follows.

1. A new structure learning algorithm for Bayes nets that model the distribution
of descriptive attributes given the link structure in a relational database. The
algorithm is a level-wise lattice search through the space of join tables.

2. Discussion and justification for relational constraints that speed up structure
learning.

3. A Markov logic network structure can be obtained by moralizing the Bayes
net. We provide a comparison of the moralization approach with other MLN
methods.

4

2 Additional Related Work.

A preliminary version of the Learn-and-Join Algorithm was presented by Khosravi
et al. [23]. The previous version did not use the lattice search framework. Our new
version adds constraints on the model search, makes all constraints explicit, and
provides rationales and discussion of each. We have also added more comparison
with other Markov Logic Network learning methods (e.g., BUSL, LSM) and a
lesion study that assesses the effects of using only part of the components of our
main algorithm. Our approach to autocorrelations (recursive dependencies) was
presented by Schulte et al. [52]. The main idea is to use a restricted form of Bayes
net that we call the main functor node format. This paper examines how the main
functor node format can be used in the context of the overall relational structure
learning algorithm.

The syntax of other directed SRL models, such as Probabilistic Relational
Models (PRMs) [16], Bayes Logic Programs (BLPs) [22] and Logical Bayesian
Networks [11], is similar to that of Parametrized Bayes Nets [44]. Our approach
applies to directed SRL models generally.

Nonrelational structure learning methods. Schmidt et al. [49] compare and con-
trast structure learning algorithms in directed and undirected graphical methods
for nonrelational data, and evaluate them for learning classifiers. Domke et al.
provide a comparison of the two model classes in computer vision [9]. Tillman et
al. [58] provide the ION algorithm for merging graph structures learned on differ-
ent datasets with overlapping variables into a single partially oriented graph. It
is similar to the learn-and-join algorithm in that it extends a generic single-table
BN learner to produce a BN model for a set of data tables. One difference is that
the ION algorithm is not tailored towards relational structures. Another is that
the learn-and-join algorithm does not analyze different data tables completely in-
dependently and merge the result afterwards. Rather, it recursively constrains the
BN search applied to join tables with the adjacencies found in BN search applied
to the respective joined tables.

Lattice Search Methods. The idea of organizing model/pattern search through a
partial order is widely used in data mining, for instance in the well-known Apriori
algorithm, in statistical-relational learning [46] and in Inductive Logic Program-
ming (ILP) [32]. Search in ILP is based on the θ-subsumption or specialization
lattice over clauses. Basically, a clause c specializes another clause c′ if c adds a
condition or if c replaces a 1st-order variable by a constant. The main similarity to
the lattice of relationship joins is that extending a chain of relationships by another
relationship is a special case of clause specialization. The main differences are as
follows. (1) Our algorithm uses only a lattice over chains of relationships, not over
conditions that combine relationships with attributes. Statistical patterns that in-
volve attributes are learned using Bayes net techniques, not by a lattice search. (2)
ILP methods typically stop specializing a clause when local extensions do not im-
prove classification/prediction accuracy. Our algorithm considers all points in the
relationship lattice. This is feasible because there are usually only a small number
of different relationship chains, due to foreign key constraints.

Since larger table joins correspond to larger relational neighborhoods, lattice
search is related to iterative deepening methods for statistical-relational learning

5

[40, Sec.8.3.1], [6]. The main differences are as follows. (1) Current statistical-
relational learning methods do not treat dependencies learned on smaller relational
neighborhoods as constraining those learned on larger ones. Thus dependencies
learned for smaller neighborhoods are revisited when considering larger neighbor-
hoods. In principle, it appears that other statistical-relational learning methods
could be adapted to use the relationship join lattice with inheritance constraints
as in our approach. (2) To assess the relevance of information from linked enti-
ties, statistical-relational learning methods use aggregate functions (e.g., the av-
erage grade of a student in the courses they have taken), or combining rules (e.g.,
noisy-or) [22,39]. In Probablistic Relational Models, Bayes Logic Programs, and
related models, the aggregate functions/combining rules add complexity to struc-
ture learning. In contrast, our statistical analysis is based on table joins rather
than aggregation. Like Markov Logic Networks, our algorithm does not require
aggregate functions or combining rules, although it can incorporate them if re-
quired.

MLN structure learning methods. Current methods [28,37,20,4] successfully learn
MLN models for binary predicates (e.g., link prediction), but do not scale well
to larger datasets with descriptive attributes that are numerous and/or have a
large domain of values. Mihalkova and Mooney [37] distinguish between top-down
approaches, that follow a generate-and-test strategy of evaluating clauses against
the data, and bottom-up approaches that use the training data and relational
pathfinding to construct candidate conjunctions for clauses. In principle, the BN
learning module may follow a top-down or a bottom-up approach; in practice,
most BN learners use a top-down approach. The BUSL algorithm [37] employs a
single-table Markov network learner as a subroutine. The Markov network learner
is applied once after a candidate set of conjunctions and a data matrix has been
constructed. In contrast, we apply the single-table BN learner repeatedly, where
results from earlier applications constrain results of later applications.

We briefly describe the key high-level differences between our algorithm and
previous MLN structure learning methods, focusing on those that lead to highly
efficient relational learning.

Search Space. Previous Markov Logic Network approaches have so far followed
Inductive Logic Programming techniques that search the space of clauses. Clauses
define connections between atoms (e.g. intelligence = hi , gpa = low). Descriptive
attributes introduce a large number of atoms, one for each combination of attribute
and value, and therefore define a large search space of clauses. We utilize Bayes net
learning methods that search the space of links between predicates/functions (e.g.,
intelligence, gpa), rather than atoms. Associations between predicates constitute
a smaller model space than clauses that can be searched more efficiently. The
efficiency advantages of searching the predicate space rather than the clause space
are discussed by Kersting and deRaedt [22, 10.7].

Constraints and the Lattice Structure. We employ a number of constraints that
are motivated by the relational semantics of the data. These further reduce the
search space, mainly by requiring or forbidding edges in the Bayes net model. A
key type of constraint are based on the lattice of relationship chains: These state
that edges learned when analyzing shorter chains are inherited by longer chains.
This allows the learn-and-join algorithm to perform a local statistical analysis for

6

a single point in the relationship chain lattice, while connecting the results of the
local analyses with each other.

Data Representation and Lifted Learning. The data format used by Markov
Logic Networks is a list of ground atoms, whereas the learn-and-join algorithm
analyzes data tables. This allows us to apply directly propositional Bayes net
learners which take single tables as input. From a statistical point of view, the
learn-and-join algorithm requires only the specification of the frequency of events
in the database (the sufficient statistics in the database) [50]. The data tables
provide these statistics. In the case of join tables the statistics are frequencies
conditional on the existence of a relationship (e.g., the percentage of pairs of
friends who both smoke). The learn-and-join algorithm can be seen as performing
lifted learning, in analogy to lifted probabilistic inference [44]. Lifted inference
uses as much as possible frequency information defined at the class level in terms
of 1st-order variables, rather than facts about specific individuals. Likewise, the
learn-and-join algorithm uses frequency information defined in terms of 1st-order
variables (namely the number of satisfying groundings of a 1st-order formula).

3 Background and Notation

Our work combines concepts from relational databases, graphical models, and
Markov Logic networks. As much as possible, we use standard notation in these
different areas. Section 3.5 provides a set of examples illustrating the concepts.

3.1 Logic and Functors

Parametrized Bayes nets are a basic statistical-relational learning model; we follow
the original presentation of Poole [44]. A functor is a function symbol or a pred-
icate symbol. Each functor has a set of values (constants) called the range of the
functor. A functor whose range is {T ,F} is a predicate, usually written with up-
percase letters like P,R. A functor random variable is of the form f(τ1, . . . , τk)
where f is a functor and each term τi is a first-order variable or a constant. We
also refer to functor random variables as functor nodes, or for short fnodes.1

Unless the functor structure matters, we refer to a functor node simply as a node.
If functor node f(τ) contains no variable, it is ground, or a gnode. An assign-
ment of the form f(τ) = a, where a is a constant in the range of f , is an atom;
if f(τ) is ground, the assignment is a ground atom. A population is a set of
individuals, corresponding to a domain or type in logic. Each first-order variable
X is associated with a population PX of size |PX |; in the context of functor nodes,
we refer to population variables [44]. An instantiation or grounding γ for a
set of variables X1, . . . , Xk assigns a constant γ(Xi) from the population of Xi to
each variable Xi.

Getoor and Grant discuss the applications of function concepts for statistical-
relational modelling in detail [17]. The functor formalism is rich enough to rep-
resent the constraints of an entity-relationship (ER) schema [59] via the follow-

1 The term “functor” is used as in Prolog [5]. In Prolog, the equivalent of a functor random
variable is called a “structure”. Poole [44] refers to a functor random variable or fnode as a
“parametrized random variable”. We use the term fnode for brevity.

7

ing translation: Entity sets correspond to populations, descriptive attributes to
functions, relationship tables to predicates, and foreign key constraints to type
constraints on the arguments of relationship predicates. A table join of two or
more tables contains the rows in the Cartesian products of the tables whose values
match on common fields.

We assume that a database instance (interpretation) assigns a unique constant
value to each gnode f(a). The value of descriptive relationship attributes is well
defined only for tuples that are linked by the relationship. For example, the value of
grade(jack , 101) is not well defined in a university database if Registered(jack , 101)
is false. In this case, we follow the approach of Schulte et al. [51] and assign
the descriptive attribute the special value ⊥ for “undefined”. Thus the atom
grade(jack , 101) = ⊥ is equivalent to the atom Registered(jack , 101) = F . Fierens
et al. [11] discuss other approaches to this issue. The results in this paper extend
to functors built with nested functors, aggregate functions [25], and quantifiers;
for the sake of notational simplicity we do not consider more complex functors
explicitly.

3.2 Bayes Nets and Markov Nets for Relational Data and Markov Logic Networks

We employ notation and terminology from [43] for graphical models. Russell and
Norvig provide a textbook introduction to many of the topics we review [48]. A
Bayes net structure is a directed acyclic graph (DAG) G, whose nodes comprise
a set of random variables denoted by V . In this paper we consider only discrete
finite random variables. When discussing a Bayes net structure, we refer inter-
changeably to its nodes or its variables. A family in a Bayes net graph comprises
a child node and the set of its parents. A Bayes net (BN) is a pair 〈G, θG〉 where
θG is a set of parameter values that specify the probability distributions of children
conditional on assignments of values to their parents. The conditional probabilities
are specified in a conditional probability table. For an assignment of values
to all nodes in the Bayes net, the joint probability of the values is given by the
product of the associated conditional probabilities. A Parametrized Bayes Net is a
Bayes net whose nodes are functor nodes. In the remainder of this paper we follow
[50] and use the term Functor Bayes Net or FBN instead of Parametrized Bayes
Net, for the following reasons. (1) To emphasize the use of functor symbols. (2)
To avoid confusion with the statistical meaning of “parametrized”, namely that
values have been assigned to the model parameters. We usually refer to FBNs
simply as Bayes nets.

A Markov net structure is an undirected graph whose nodes comprise a set
of random variables. For each clique C in the graph, a clique potential function
ΨC specifies a nonnegative real number for each possible assignment of values to
the clique. For an assignment of values to all nodes in the Markov net, the joint
probability of the values is given by the product of the associated clique potentials,
divided by a normalization constant. A Functor Markov Net is a Markov net
whose nodes are functor nodes.

Bayes nets can be converted into Markov nets through the standard moraliza-
tion method: connect all spouses that share a common child, and make all edges
in the resulting graph undirected. Thus each family in the Bayes net becomes a
clique in the moralized structure. For each state of each family clique, we define

8

the clique potential in the Markov net to be the conditional probability of the child
given its parents. The resulting Markov net defines the same joint probability over
assignments of values to the nodes as the original Bayes net.

3.3 Inference and Ground Models

In statistical-relational learning, the usual approach to inference for relational
data is to use a ground graphical model for defining a joint distribution over the
attributes and links of entities. This approach is known as knowledge-based model
construction [42,31,61]. For a Functor Markov Net M , this leads to the notion of a
ground Functor Markov net that is derived from M by instantiating the functor
nodes in M in every possible way. Formally, there is an edge f1(a1) − f2(a2)
between two gnodes if and only if there is an edge f1(τ 1)− f2(τ 2) in M and there
is a grounding γ of τ 1, τ 2 such that γ(τ i) = ai, for i = 1, 2.

Each clique among gnodes inherits the clique potential from the clique potential
of the 1st-order model. A given database instance specifies a value for each node in
the ground graph. Thus the likelihood of the Functor Markov net for the database
can be defined as the likelihood assigned by the ground Markov net to the facts in
the database following the usual product of all clique potentials involving ground
nodes. Viewed on a log-scale, this is the sum of the log-potentials.

In the case where the Functor Markov net is obtained by moralizing a Func-
tor Bayes net, the resulting log-likelihood is as follows: For each possible child-
parent state in the Bayes net, multiply the logarithm of the corresponding con-
ditional probability by the number of instantiations of the child-parent states in
the database. This is similar to the standard single-table Bayes net log-likelihood,
where for each possible child-parent state in the Bayes net, we multiply the log-
arithm of the corresponding conditional probability by the number of table rows
that satisfy the given child-parent state.

The fact that the grounding semantics provides a conceptually straightforward
way to define probabilistic inferences for relational data has been a major com-
petitive advantage of undirected relational models [8,56]. Below, we discuss the
difficulties that can arise in applying the grounding semantics with directed mod-
els, making reference to some examples, which we introduce in the next subsection.

3.4 Markov Logic Networks

A Markov Logic Network (MLN) is a finite set of 1st-order formulas or clauses
{φi}, where each formula φi is assigned a weight. A Markov Logic Network can
be viewed as a specification of a Markov network using logical syntax [8]. Given
an MLN and a database D, let ni(D) be the number of groundings that satisfy φi

in D. An MLN assigns a log-likelihood to a database according to the equation

ln(P (D)) =
∑
i

wini(D)− ln(Z) (1)

where Z is a normalization constant.
Thus the log-likelihood is a weighted sum of the number of groundings for

each clause. Functor Markov Nets have a simple representation as Markov Logic

9

Networks as follows. For each assignment of values to a clique of functor nodes, add
a conjunctive formula to the MLN that specifies that assignment. The weight of
this formula is the logarithm of the clique potential. For any Functor Markov net,
the MLN likelihood function defined by Equation (1) for the corresponding MLN
is exactly the Markov net likelihood defined by grounding the Functor Markov net.
Therefore we can use MLN inference to carry out inference for Functor Markov
Nets.

3.5 Examples

We illustrate Functor Bayes Nets and Markov Logic Networks with two relational
schemas.

Friendship Database. Figure 1 shows a simple database instance in the ER format,
following [8]. Figure 2 illustrates Functor Bayes net concepts. An example of a
family formula with child node Smokes(Y) is

Smokes(Y) = T ,Smokes(X) = T ,Friend(X ,Y) = T .

Figure 3 shows the MLN structure obtained by moralization and the correspond-
ing ground Markov net for the database of Figure 1. For converting the Bayes net
conditional probabilities to MLN clause weights, Domingos and Richardson sug-
gest using the log of the conditional probabilities as the clause weight [8, 12.5.3],
which is the standard conversion for propositional Bayes nets. Figure 3 illustrates
moralization using log-probabilities as weights. In this paper we apply moraliza-
tion only to the model structure, not to the model parameters. Table 1 shows
how the unnormalized log-likelihood of the sample database is computed for the
ground model.

!"#$% &#'($)% *"+,$-%

.++"% /% /%

0'1% /% 2%

!"#$3% !"#$4%

.++"% 0'1%

0'1% .++"%

5$'67$% 2-8$+9%

Fig. 1 A simple relational database instance.

University Database. Table 2 shows a university relational schema and Figure 4 a
Functor Bayes net for this schema.

10

!"#$%&'"() *+,-%.'"()

/&0%#1'"23()

*+,-%.'3() !"#$%&'3()

/&0%#1'32"()

/&0%#1'323()/&0%#1'"2"()

!"#$%&'4()*+,-%.'5()

/&0%#1'524()

*+,-%.'4()

6'!'4()7)8)9*'4()78()7):;<)

=)

6'*'4()7)8)9*'5()782/'524(78()7):;<)

6'*'4()7)8)9*'5()7/2/'524(7/()7):><)

=)

Fig. 2 A Functor Bayes Net and its grounding for the database of Figure 1. The double
arrow ↔ is equivalent to two directed edges. Conditional probability parameters are chosen
arbitrarily for illustration.

!"#$%&'()*+,-.%/'0)*

1&2%#3'04()*

+,-.%/'()*

!"#$%&'")* +,-.%/'")*

1&2%#3'"45)*

+,-.%/'5)* !"#$%&'5)*

1&2%#3'54")*

1&2%#3'545)*1&2%#3'"4")*

+'()*6*74*+'0)*674*1'04()678*9#':;<)*

+'()*6*74*+'0)*614*1'04()618*9#':=<)*

!'()*6*74*+'()*678**9#':;<)*

>*

?@A*

Fig. 3 Top: The moralized Functor Bayes net of Figure 2. On the right, it shows the clauses
and the weights for the corresponding Markov Logic Network. The clauses specify the family
states in the Functor Bayes net. Each clause weight is the logarithm of the conditional proba-
bility that corresponds to the clause. In graphical terms, these are the log-clique potentials for
the clique comprising the nodes Smokes(X),Friend(X ,Y),Smokes(Y). Bottom: The ground
Markov network for the database of Figure 1.

11

Table 1 The computation of the Markov Net log-likelihood for the database of Figure 1. For
simplicity, we used uniform probabilities as probability parameters for the nodes Friend(X ,Y)
and Smokes(X).

Clique Formula log-potential #groundings
log-potential ×

groundings
Smokes(X)=T ln(50%) 2 -1.39
Friend(X,Y)=T ln(50%) 2 -1.39
Friend(X,Y)=F ln(50%) 2 -1.39
Friend(X,Y)=T,Smokes(X)=T,Smokes(Y)=T ln(70%) 2 -0.71
Friend(X,Y)=F,Smokes(X)=T,Smokes(Y)=T ln(100%) 2 0
Cancer(Y)=T, Smokes(Y) = T ln(70%) 1 -0.36
Cancer(Y)=F, Smokes(Y) = T ln(30%) 1 -1.20

Total unnormalized log-likelihood -6.43

Student(student id, intelligence, ranking)
Course(course id , difficulty, rating)
Professor (professor id, teaching ability, popularity)
Registered (student id, course id , grade, satisfaction)
Teaches(professor id , course id)

RA (student id, prof id, salary, capability)
TA (course id, student id, capability)

Table 2 A relational schema for a university domain. Key fields are underlined. The RA and
TA relations are not used in all examples.

!"#$%&"'"()*+,-+./"012"%)3+,-.

'045$4#)*-.

$4&"66$#"41")*-. ($77),-.

'0&$4#),-.

#'0(")*+,-.

%0&$%701&$84)*+,-.

!"#$%&"'"()*+,-. /"012"%)3+,-.

989:60'$&;)3-.

&"012<0=6&;)3-.

Fig. 4 A Functor Bayes net graph for the relational schema of Table 2 (without TA and RA
relations).

3.6 Directed Models and the Cyclicity Problem

Knowledge-based model construction with directed models is defined by instan-
tiating the variables in the graph with all possible constants, as with undirected
models [44], [48, Ch.14.6]. Two key issues arise.

(1) The Combining Problem. The directed model with population variables
represents generic statistical relationships found in the database. For instance, a
Bayes net may encode the probability that a student is highly intelligent given
the properties of a single course they have taken. But the database may contain
information about many courses that the student has taken, which needs to be
combined. In terms of the ground graph, the problem is how to define the condi-
tional probability of a child gnode given its set of multiple parents. For example,
in the Bayes Net of Figure 2, the gnode Smokes(a) will have a separate parent

12

Smokes(y) for each person y instantiating the population variable Y . (Since our
toy database contains only two people, there is only one parent gnode Smokes(b).)
Addressing the combining problem requires an aggregate function, as in PRMs, or
a combining rule as in BLPs, or the log-linear formula of MLNs.

(2) The Cyclicity Problem. A directed model may face cyclic dependencies be-
tween the properties of individual entities. For example, if there is generally a
correlation between the smoking habits of friends, then we may have a situation
where the smoking of Jane predicts the smoking of Jack, which predicts the smok-
ing of Cecile, which predicts the smoking of Jane, where Jack, Jane, and Cecile
are all friends with each other. In the presence of such cycles, neither aggregate
functions nor combining rules lead to well-defined probabilistic predictions. Fig-
ure 2 shows a cycle of length 2 between the two gnodes Smokes(a) and Smokes(b).
This model also illustrates how cycles arise in the presence of relationships that re-
late entities of the same type, as Friend relates two people. Such relationships are
called rings in Entity-Relationship models [59] and are called self-relationships
by Heckerman, Koller, Meek [19]. Self-relationships typically give rise to auto-
correlations where the value of an attribute for an entity depends on the value
of the same attribute among related entities [41,52]. For instance, in the ground
Bayes net of Figure 2, the value of Smokes(a) depends on the value of Smokes for
other people.

Because cycles are not allowed in a valid Bayes net graph, grounding Functor
Bayes nets that include self-relationships does not lead to a valid distribution for
carrying out probabilistic inference. This cyclicity problem has been difficult to
solve, which has led Neville and Jensen to conclude that “the acyclicity constraints
of directed models severely limit their applicability to relational data” [40, p.241].

The approach of this paper is essentially a hybrid method that uses directed
models for learning and undirected models for inference. The idea is to use scalable
Bayes net algorithms to learn a Functor Bayes net, then convert the Bayes net to
a Markov Logic network for inference using moralization. Converting the Bayes
net to an undirected model avoids the cyclicity problem. Thus the approach of
this paper combines advantages of both directed and undirected SRL models:
Learning efficiency and interpretability from directed models on the one side, and
on the other, the solutions to the combining and cyclicity problems together with
the inference power of undirected models. The graph of Figure 5 summarizes the
system architecture.

Fig. 5 System architecture for learning a Markov Logic Network from an input relational
database.

13

4 Lattice Search for Attribute Dependencies

We describe the learn-and-join method for learning a Functor Bayes net that
models correlations among descriptive attributes given the link structure. We begin
with the data structures that the algorithm uses to represent relational objects.
Then we give pseudocode for the algorithm and illustrate it with an example.

4.1 Overview

The components of the algorithm address the following main issues. (1) The repre-
sentation of relationship sets. (2) Bounding the complexity of relational contexts.
(3) Avoiding duplicate edges. (4) Propagating constraints from smaller relation-
ship sets in the multinet lattice to larger ones.

Compared to the previous presentation of the learn-and-join algorithm by
Khosravi et al. [23], we make two main changes. (i) We define and discuss the
constraints on the graph structure that are used in the algorithm, separately from
the description of the model search procedure. (ii) We describe the model search
procedure as a lattice search, where the lattice points are chains of relationships.
Conceptually, the lattice view makes the description simpler and more general
without losing rigor. Computationally, the lattice diagram facilitates the imple-
mentation of the model search.

4.2 The Multinet Lattice

With each point in the relationship lattice, we associate a Bayes net model and a
join data table. Thus the lattice structure defines a multinet rather than a single
Bayes net. Multinets are a classic Bayes net formalism for modelling context-
sensitive dependencies among variables. They have been applied for modelling
diverse domains, such as sleep disorders, eye diseases, and turbines that generate
electricity. Geiger and Heckerman contributed a standard reference article for the
multinet formalism [15]. In their illustrative example, a building guard watches
for three different types of people, visitors, spies, and workers. The existence of a
dependency between the gender of a person and whether they wear an identifica-
tion badge depends on the type of person. This scenario is modelled with three
multinets, one for each type of person. The type of person is the context for the
corresponding multinet.

Going back to the classic work of Ngo and Haddaway on context-sensitive
dependencies in relational data [42], directed relational models usually include re-
sources for representing the influence of context on dependencies [42,11,17,39,19,
48]. A common approach is to use a logical language for stating context condi-
tions as well as dependencies between random variables. In this paper we employ
multinets rather than context-sensitive rules for two reasons: (1) To stay close to
standard graphical approaches for nonrelational Bayes nets. (2) To ensure that the
dependencies found for a given context define a valid acyclic Bayes net structure.

In the learn-and-join algorithm, a context is defined by a chain of relationship
functor nodes. Distinguishing these different contexts allows us to represent that
the existence of certain dependencies among attributes of entities depend on which

14

kind of links exist between the entities. The final output of the learn-and-join algo-
rithm is a single Bayes net derived from the multinet. As we discuss in Section 4.3,
the output of the algorithm can also be converted to other formalisms, including
those based on rules for context-sensitive dependencies.

4.2.1 Functor Nodes

Throughout the discussion we assume that a set of functor random variables F is
fixed. The random variables F are partitioned into (i) functor nodes representing
descriptive attributes of entities, (ii) functor nodes representing descriptive at-
tributes of links, (iii) Boolean relationship functor nodes that indicate whether a
relationship holds. Descriptive attribute functor nodes (i) take as arguments a sin-
gle population variable, whereas the relational functor nodes (ii) and (iii) take as
arguments two or more population variables. We make the following assumptions
about the functor nodes F that appear in a Functor Bayes net.

1. A functor node contains variables only.
2. No functor node contains the same variable X twice.

These assumptions are met in typical SRL models. They do not actually involve
a loss of modelling power because a functor node with a constant or a repeated
variable can be rewritten using a new functor symbol (provided the functor node
contains at least one variable). For instance, a functor node Friend(X , jack) can
be replaced by introducing a new unary functor symbol Friend jack (X). Similarly,
Friend(X ,X) can be replaced by the unary functor symbol Friend self (X). The
functor node set F may be explicitly specified by the user or automaticallly gen-
erated from a relational database schema [23].

Examples. The nodes of the Bayes net of Figure 4 are the functor nodes gen-
erated from the schema of Table 2 with one population variable per entity type
(e.g., S for Student). Self-relationships require two population variables of the
same kind. This is illustrated in the Bayes net of Figure 2, which contains two
population variables for the Person entity type X and Y for the self-relationship
Friend . This allows the Bayes net to represent an autocorrelation involving the
Smokes attribute: Given that person X is friends with person Y , the smoking
habits of X predict those of Y .

4.2.2 Relationship Chains

A relationship set is a chain if it can be ordered as a list [R1(τ 1), . . . , Rk(τk)]
such that each functor Ri+1(τ i+1) shares at least one population variable with
the preceding terms R1(τ 1), . . . , Ri(τ i). All sets in the lattice are constrained to
form a chain. For instance, in the University schema of Table 2, a chain is formed
by the two relationship nodes

RA(P ,S),Registered(S ,C).

If relationship node TA(C ,S) is added, we may have a three-element chain

RA(P ,S),Registered(S ,C),TA(C ,S).

15

The subset relation defines a lattice on relationship sets/chains. Figure 6 illustrates
the lattice for the relationship nodes in the University schema of Figure 2. For
reasons that we explain below, entity tables are also included in the lattice and
linked to relationships that involve the entity in question.

!"#$%&"'!() *+#,-%'*() .,+/%--+,'.()

0%12-"%,%$'!3*() 45'!3*() 4%678%-'.3*()

0%12-"%,%$'!3*(3)

45'!3*()

45'!3*(3))

4%678%-'.3*()

0%12-"%,%$'!3*(3)

4%678%-'.3*()

0%12-"%,%$'!3*(3)45'!3*(3)4%678%-'.3*()

Fig. 6 A lattice of relationship sets for the University schema of Table 2 (without the RA
relation). Links from entity tables to relationship tables correspond to foreign key pointers.

The concept of a relationship chain is related to but different from the notion
of a slot chain as used in Probabilistic Relational Models [16]. The main difference
is that a slot chain can connect entity tables as well as relationship tables. Thus a
path from the Student table to the Registered table to the Course table constitutes
a slot chain of length 3, but contains only a single relationship (relationship chain
of length 1).

4.2.3 The Join Data Table

With each relationship set R is associated a join data table onR. The table rep-
resents the frequencies (sufficient statistics) with which combinations of attribute
values occur, conditional on all relationships in R being true. Let Ri denote the
data table associated with relationship functor Ri(τ i). For relationship functors
R = {R1(τ 1), . . . , Rk(τk)} let X1, . . . , Xl be the population variables that occur
in the k relationship functors, and write Ej for the entity data table associated
with the population variable Xj . Then the join table for the relationship set, or
relationship join, is given by

onR≡onk
i=1 Ri onl

j=1 Ej .

If two or more variables are associated with the same population, then the
same descriptive attribute will appear at least twice in the relationship join. In

16

this case we disambiguate the names of the descriptive attributes by adding the
variable as their argument. Similarly, we add variables to disambiguate repeated
occurrences of descriptive link attributes. Thus each column label in the rela-
tionship join corresponds to exactly one functor node. For each relationship set
R = {R1(τ 1), . . . , Rk(τk)}, the nodes in the associated Bayes net BR are the col-
umn labels in onR, plus Boolean relationship indicator nodes R1(τ 1), . . . , Rk(τk).

Examples. For the relationship chain RA(P ,S),Registered(S ,C), the join data
table is given by

RA on Registered on Professor on Student on Course.

The join data table associated with the relationship functor Friend(X ,Y)—shown
in Figure 4.2.3—is given by

Friend on People on People.

!"#$%&

'()*&

!"#$+&

'(,*&

-')*& .')*& -',*& .',*&

/00"& 123& 4& 4& 4& 5&

123& /00"& 4& 5& 4& 4&

567$08&9270&:$2;<$&9270&:$2;<$&&

Fig. 7 The join data table associated with the Friend relationship for the database instance
of Figure 1.

4.3 Model Conversion

The output of the lattice search is the Bayes net associated with the largest re-
lationship chain that forms the apex of the relationship lattice. The Bayes net of
Figure 4 is associated with the relationship set Registered(S ,C),Teaches(P ,C),
which is the maximal conjunction of both relationship functors in this functor set.
In Figure 6 the maximally large relationship set has three members. To obtain a
Markov Logic Network, we convert the maximal Bayes net to an MLN using mor-
alization. The Bayes net can similarly be converted to other clausal formalisms
like BLPs and LBNs, since a Functor Bayes net defines a set of directed clauses
of the form child ← parents [22]. The existence of a link of a certain type can be
taken as a context condition in rule languages where associations between random
variables depend on a context.

17

5 The Learn-And-Join Algorithm

This section presents the Learn-and-Join Algorithm (LAJ) that takes as input a
relational database and constructs a Bayes multinet for each relationship set in
the multinet lattice. The algorithm enumerates relationship lists. This can be done
using any standard technique, such as those developed for enumerating itemsets
in association rule mining [2]. It proceeds level-wise by considering relationship
sets of length s = 1, 2, After Bayes nets have been learned for sets of length
s, the learned edges are propagated to sets of length s + 1. In the initial case
of single relationship tables where s = 1, the edges are propagated from Bayes
nets learned for entity tables. In addition to the edge constraints, the algorithm
enforces a number of constraints that are motivated by the relational structure of
the functor nodes.

We next provide a compact description of the constraints used, including their
definition, an intuitive interpretation and examples. Then we show by examples
how the constraints operate. Finally, we summarize the algorithm with pseudocode
as Algorithm 1. Later sections discuss the constraints in detail, including motiva-
tion, mathematical analysis and references to related concepts that have appeared
in the literature.

5.1 Constraints Used in the Learn-And-Join Algorithm

The constraints fall into two types: relational constraints that capture the seman-
tics of the relational schema, and lattice constraints on the presence/absence of
edges that connect the results of learning from different points in the relationship
set lattice.

The algorithm requires the specification of a main population variable for each
entity type (e.g., Y for People). The intuitive interpretation is that the distribution
of attributes for that entity type is modelled by functor nodes that involve the main
variable, whereas other functor nodes play an auxilliary role (e.g., the distribution
of the Smokes attribute is modelled by the functor node Smokes(Y) rather than
the functor node Smokes(X)).

5.1.1 Edge Inheritance In the Relationship Lattice

These constraints state that the presence or absence of edges in graphs associated
with join tables lower in the lattice is inherited by graphs associated with join
tables higher in the lattice. The intuition is that dependencies should be assessed
in the most specific context possible. First edges from an entity table are inherited
by relationship tables that involve the entity in question.

Constraint 1 Let X be the main population variable for an entity type associated
with entity table E. Let R be any relationship set that contains the variable X.
Then the Bayes net associated with R contains an edge f(X)→ g(X) connecting
two descriptive attributes of X if and only if the Bayes net associated with E
contains the edge f(X)→ g(X).

Example. If the People Bayes net contains an edge Smokes(Y)→ Cancer(Y),
then the Bayes net associated with the relationship Friend must also contain this

18

edge (see Figure 2). If the edge is absent in the People Bayes net, it must also be
absent in the Bayes net associated with the relationship Friend .

The next constraint states that edges learned on smaller relationship sets are
inherited by larger relationship sets. If the smaller sets are ambiguous with regard
to the direction of an adjacency, the larger relationship set must contain the adja-
cency; the direction is then resolved by applying Bayes net learning to the larger
relationship set.

Constraint 2 Suppose that nodes f(τ), g(τ ′) appear in the join table onR. Then

1. If f(τ) and g(τ ′) are not adjacent in any graph BR∗ associated with a rela-
tionship subset R∗ ⊂ R, then f(τ) and g(τ ′) are not adjacent in the graph
associated with the relationship set R.

2. Else if all subset graphs agree on the orientation of the adjacency f(τ)−g(τ ′),
the graph associated with the relationship set R inherits this orientation.

3. Else the graph associated with the relationship set R must contain the edge
f(τ)→ g(τ ′) or the edge f(τ)← g(τ ′).

Examples. Consider the lattice shown in Figure 6. Suppose that the graph
associated with the relationship Registered(S ,C) contains an edge

difficulty(C)→ intelligence(S),

and that the graph associated with the relationship TA(S ,C) does not contain the
edge difficulty(C)→ intelligence(S). Then the edge difficulty(C)→ intelligence(S)
must be present in the Bayes net associated with the larger relationship set
Registered(S ,C), TA(S ,C). If the edge is contained in neither of the graphs asso-
ciated with Registered(S ,C), and TA(S ,C), it must not be present in the graph
associated with the Registered(S ,C), TA(S ,C).

5.1.2 The Main Functor Node Format

Following Schulte et al. [52], the algorithm requires the specification of a main
functor node for each functor (e.g., Smokes(Y) is the main functor node for the
functor Smokes). Only main functor nodes are allowed to have edges pointing into
them (i.e., indegree greater than 0). The intuition behind this constraint is that it
suffices to model the conditional distribution of just one “copy” of the functor. For
example, to model the conditional distribution of the Smokes attribute, it suffices
to have parents only for the functor node Smokes(Y), rather than allow parents
for both the functor node Smokes(Y) and Smokes(X).

Constraint 3 For any Bayes net associated with a relationship set, if its graph
contains an edge → f(τ) pointing into a node f(τ), then f(τ) is the main functor
node for f .

Example. Suppose that Smokes(Y) is the main functor node for Smokes. Then
the main functor constraint permits the edges Smokes(X) → Smokes(Y) and
Friend(X ,Y) → Smokes(Y), but rules out the edges Smokes(Y) → Smokes(X)
and Friend(X ,Y)→ Smokes(X).

19

5.1.3 Population Variable Bound

We allow the user to specify a bound on the number of population variables that
occur in a family (child + parent nodes). Intuitively, this bounds the number of
distinct (generic) objects that can be considered in a single child-parent configu-
ration. For instance, if the bound is 1, the family expresses patterns only about
a single entity. With 2 population variables, patterns involving pairs can be ex-
pressed, with 3 triples can be modelled, etc.

Examples. For the node Cancer(Y) of Figure 2, its family contains a single
population variable Y , so only patterns involving a generic person can be repre-
sented. For the node Smokes(Y), its family contains two population variables X
and Y , so patterns involving pairs of people can be represented.

We emphasize that a variable number bound does not imply a bound on the
size of families, or the length of clauses: even with a single population variable
like S for students, we can have an arbitrary number of attributes of students in
a single clause. Kok and Domingos [29] highlight the importance of learning long
clauses for relational models.

5.1.4 Link Attributes

There is a deterministic dependency between a Boolean relationship indicator node
and a descriptive attribute associated with the relationship: If the relationship
does not exist between two entities, then the value of the descriptive attribute is
undefined. In our representation, this means that the descriptive attribute takes
on the value ⊥ for undefined (cf. Section 3.1). This deterministic connection can
be enforced given the following graphical constraint.

Constraint 4 Suppose that fR denotes a descriptive attribute of relationship R
and that fR(τ) is the main functor node for fR and R(τ) is the main functor node
for R. Then there is an edge R(τ)→ fR(τ) in any Bayes net that contains fR(τ).

Examples. In the Bayes net of Figure 4, the functors satisfaction and grade
denote descriptive attributes of the Registered relationship. So the Bayes net
must contain edges Registered(S ,C)→ satisfaction(S ,C) and Registered(S ,C)→
grade(S ,C), which are the main nodes for their respective functors.

5.1.5 Relationship Parents

An edge f(τ)→ g(τ ′) in a Bayes net BR represents an influence that depends on
the existence of the links in the relationship chain R. To make this dependence
explicit in the Bayes net graph, we add the members of R as parents to the child
node g(τ ′).

Constraint 5 Suppose that an edge f(τ) → g(τ ′) appears in a graph BR but
not in any graph associated with a subset of R, or in any graph associated with
an entity table/population that occurs in R. Then the graph BR contains an edge
R(τ ∗)→ g(τ ′) for each relationship indicator node R(τ ∗) ∈ R.

20

Example. Consider the lattice shown in Figure 6. Suppose that the graph as-
sociated with the relationship Registered(S ,C) contains an edge

difficulty(C)→ intelligence(S).

Since this edge is not contained in either of the graphs associated with the entity
tables Student or Course, the constraint requires an edge

Registered(S ,C)→ intelligence(S).

Constraint 5 is not essential to the learning performance. Rather, adding the
edges originating in relationship nodes has the effect of changing the representation
of context-sensitivity from the multi-net format to a single-net format, which is the
target output of the learn-and-join algorithm. If the target is another output model
format, this constraint may be replaced by another formalism for representing
context-sensitive associations (cf. Sections 4.2 and 4.3).

To complete the description of the constraints, we present examples of how the
constraints operate in the learn-and-join algorithm. Later sections provide further
discussion and analysis.

5.2 Examples.

We illustrate the learn-and-join algorithm on the example database of Figure 1;
see Figure 8. The TA and RA relations are omitted for simplicity.

1. Applying the single-table Bayes net learner to the People table may produce
a single-edge graph Smokes(Y)→ Cancer(Y).

2. Then form the join data table

J = Friend on People on People

shown in Figure 4.2.3. The Bayes net learner is applied to J , with the following
constraints.
(a) From the People Bayes net, there must be an edge Smokes(Y)→ Cancer(Y),

where Y is the main population variable associated with People. (Con-
straint 1).

(b) No edges may point into Smokes(X) or Cancer(X), since these are not the
main functor nodes for the functors Smokes and Cancer . (Constraint 3).

The Bayes net learner applied to the join table J then may find an edge Smokes(X)→
Smokes(Y). Since the dependency represented by this edge is valid only for pairs
of people that are friends (i.e., conditional on Friend(X ,Y) = T), the algorithm
adds an edge Friend(X ,Y)→ Smokes(Y) (Constraint 5), whose associated Bayes
net is shown in Figure 8.

Figure 9 shows the multinet for the University schema up to level 1. Con-
tinuing the construction up to the highest level 2 produces a single Bayes net
for the maximal relationship set Registered(S ,C),Teaches(P ,C) that is shown in
Figure 4.

21

!"#$%"&'()

*+#,"-&'() ./01"2&'()

3) 3)

3) 4)

./01"2&'()*+#,"-&'()

425"06&78'()

*&7() .&7() *&'() .&'()

3) 3) 3) 4)

3) 4) 3) 3)

425"06)9:;<)!"#$%")9:;<)!"#$%"))

./01"2&'()*+#,"-&7()

425"06&78'()

*+#,"-&'()

!"#$%")

Fig. 8 The 2-net lattice associated with the DB instance of Figure 1. The figure shows the
data tables associated with the only entity table People and the only relationship table Friend .
The block arrow indicates that the output of a single-table Bayes net learner on the data table
is the Bayes net shown. The dashed line that connects the two edges Smokes(Y)→ Cancer(Y)
indicates that this edge is propagated from the lower-level Bayes net to the higher-level Bayes
net.

!"#$%&"'!() *+#,-%'*() .,+/%--+,'.()

,0&12&3'!()

2&"%4423%&5%'!() $2//'*()

,0"2&3'*() 6+6#40,2"7'.()

"%05890:242"7'.()

;%32-"%,%$'!<*()

,0&12&3'!()

2&"%4423%&5%'!() $2//'*()

,0"2&3'*()

3,0$%'!<*()

-0"2-/05"2+&'!<*()

;%32-"%,%$'!<*() =%058%-'.<*()

=%058%-'.<*()

6+6#40,2"7'.()

"%05890:242"7'.()$2//'*()

,0"2&3'*()

Fig. 9 The multinet lattice for the University Schema, restricted to entity and relationship
functors. Join data tables are not shown. We omit the TA and RA relationships for simplicity.

5.3 Pseudocode

Algorithm 1 combines all the algorithm’s components in pseudocode. We next
discuss the constraints in more detail. The discussion can be skipped without loss
of continuity.

22

Algorithm 1: Pseudocode for structure learning with lattice search

Input: Database D with entity tables E1, ..Ee; functors F ; #variable bound maxVar .
Output: MLN formulas for D; a Bayes multi-net BR for relationship subsets R of F .

Calls BNL: Any propositional Bayes net learner that accepts edge constraints and a single
table of cases as input.
Notation: BNL(T ,Econstraints) is the output DAG of the Bayes net learner given data
table T and constraints Econstraints.

1: Econstraints := Forbidden + Required Edges from Constraint 3 and Constraint 4.
2: for i← 1 to e do
3: BEi

:= BNL(Ei ,Econstraints).
4: end for
5: Econstraints += Lattice Constraints from entity tables (Constraint 1).
6: for list size s← 1, 2 . . . do
7: Enumerate relationship sets R1, . . . ,Rsk of size s, such that for each i:

(1) Ri is a chain.
(2) the number of population variables in Ri is no greater than maxVar .

8: if there is no such list of size s then
9: terminate computation

10: else
11: for i← 1 to sk do
12: BRi

:= BNL(onRi
,Econstraints) + edges originating in the Ri functors

(Constraint 5).
13: end for
14: end if
15: Econstraints += Lattice Constraints from relationship joins of size s (Constraint 2).
16: end for
17: Let Bmax be the Bayes net associated with the maximal relationship set.
18: Add all family formulas of Bmax to MLN.

6 Discussion: Lattice Constraints

A key feature of the learn-and-join algorithm are the lattice inheritance con-
straints 1 and 2 that a Bayes net for a table join must respect the links found
for the joined tables. We describe a computational and a statistical motivation for
them.

Computational Efficiency. The edge-inheritance constraint reduces the search com-
plexity considerably. To illustrate, consider the impact of Constraint 1 for two
entity tables that contain k descriptive attributes each. In an unconstrained join
with a relationship table, the search space of possible adjacencies has size

(
2k
2

)
,

whereas with the constraint, the search space size is k2/2, which is smaller than(
2k
2

)
because the quadratic k2 factor has a smaller coefficient. For example, with

k = 6, we have
(
2k
2

)
= 66 and k2/2 = 18. For the learn-and-join algorithm, the

main computational challenge in scaling to larger table joins is therefore not the
increasing number of columns (attributes) in the join, but only the increasing
number of rows (tuples).

Statistical Motivation. In addition to efficiency, a statistical motivation for the
edge-inheritance constraint 1 is that the marginal distribution of descriptive at-
tributes may be different in an entity table than in a relationship table. For in-
stance, if a highly intelligent student s has taken 10 courses, there will be at least
ten satisfying groundings of the conjunction Registered(S ,C), intelligence(S) = hi .

23

If highly intelligent students tend to take more courses than less intelligent ones,
then in the Registered table, the frequency of tuples with intelligent students is
higher than in the general student population. In general, the distribution of
database frequencies conditional on a relationship being true may be different
from its unconditional distribution. The edge inheritance constraint ensures that
the subgraph of the final Bayes net whose nodes correspond to the attributes of
the E table is exactly the same as the graph that the single-table Bayes net learner
constructs for the E table.

The motivation for Constraint 2 is similar: a dependency ought to be evalu-
ated on a minimal context. For instance, the presence of an edge intelligence(S)→
difficulty(C) given that Registered(S ,C) = T ought to depend only on the Registered
relationship and not on a relationship that involves another object, such as a TA
for the course (i.e., the edge is inherited in the larger context Registered(S ,C) =
T ,TA(C ,G)).

A further statistical foundation is provided by a plausible pseudo-likelihood
function that measures the fit of a Bayes Nets to a given input database [50].
The relational pseudo log-likelihood is defined just like the regular single-table
log-likelihood for a Bayes net, with the database frequency of a parent-child state
replacing the number of rows that feature the parent-child state. Schulte shows
that the learn-and-join algorithm optimizes the pseudo-likelihood function [50].

7 Discussion: The Main Functor Node Format

The functor concept allows different nodes in a Functor Bayes net to be associated
with the same attribute or relationship, where the difference between the nodes
is in their variable arguments only. This expressive power is essential to represent
recursive dependencies where instances of an attribute/relationship depend on
other instances of the same attribute/relationship. However, it causes additional
complexity in learning if each functor is treated as a separate random variables.
Consider for example the Bayes net shown in Figure 10.

Fig. 10 A Bayes net with different predictors for Smokes(X) and Smokes(Y), and its ground-
ing for two individuals a and b. The Bayes net is not in main functor node form.

If we treat Smokes(X) and Smokes(Y) as entirely separate variables, learning
needs to consider additional edges similar to those already in the Bayes net, like
Smokes(X) → Cancer(X) and age(Y) → Smokes(Y). However, such edges are
redundant because the population variables X and Y are interchangeable as they
refer to the same entity set. In terms of ground instances, the two exchanges
connect exactly the same ground instances. Redundant edges can be avoided if

24

we restrict the model class to the main functor format, where for each function
symbol f (including relationships), there is a main functor node f(τ) such that
all other functor nodes f(τ ′) associated with the same functor are sources in the
graph, that is, they have no parents. The term “main functor node” expresses
that the main node is the main instance of functor f from the point of view of
modelling the conditional distribution of f .

Example. The Bayes net of Figure 2, reproduced in Figure 11, is in main functor
form. The Bayes net of Figure 10 is not in main functor node form because we
have two functor nodes for Smokes with nonzero indegree.

Fig. 11 An Bayes net in main functor node form where Smokes(Y) is the main functor for
Smokes(X). The ground Bayes net is the same as the ground Bayes net for the graph of
Figure 10.

Schulte et al. [52] provide a theoretical justification for the main functor node
format: under a mild assumption, every Bayes net B can be transformed into
an equivalent Bayes net B′ that is in main functor node form. Equivalence here
means that both Bayes nets have the same ground graph for any database. A
Functor Bayes Net is stratified if there is an ordering of the functors such that
for every edge f(τ)→ g(τ ′) in the Bayes net, either the functor symbol f precedes
the functor symbol g in the ordering, or f and g are the same. Both Bayes nets
in Figures 10 and 11 are stratified given the functor ordering age > Friend >
Smokes > Cancer .

Proposition 1 Let B be a stratified Bayes net. Then there is a Bayes net B′ in
main functor node form such that for every database D, the ground graph of B is
the same as the ground graph of B′.

For the proof see [52]. Figures 10 and 11 illustrate the proposition. Stratification
is a widely imposed condition on logic programs, because it increases the tractabil-
ity of reasoning with a relatively small loss of expressive power [33, Sec.3.5],[3].
Related ordering constraints have also appeared in previous statistical-relational
models [10,14].

While the transformed Bayes nets have the same groundings, they are not
equivalent at the variable or class level. For instance, in the model of Figure 10 the
maximum indegree is 2, whereas in the model of Figure 2 the maximum indegree
is 3. In effect, the main functor node format moves one or more parents from the
auxilliary functor nodes to the main functor node, which produces larger families.
In terms of Markov Logic Network clauses that result from moralization, the main
functor format therefore leads to longer rules. Our experiments below provide
empirical confirmation of this theoretical expectation.

25

8 Discussion: Population Variable Bound.

As both the statistical and the computational complexity of Functor Bayes nets
can be high, it is desirable to allow a user to specify a complexity bound to control
the trade-off between expressive power and computational difficulty. A key issue
is the length of the relationship chains that the algorithm needs to consider. The
number of relationship chains grows exponentially with this parameter. We expect
that more distantly related entities carry less information, so many SRL algorithms
assume a small bound on the length of possible slot chains, on the order of 3 or so.
A less restrictive way to bound the complexity of relationship chains is to allow the
user to specify a bound on the number of 1st-order or population variables that
occur in a family (child + parent nodes), following a proposal of Vardi [60]. Intu-
itively, this bounds the number of distinct (generic) objects that can be considered
in a single child-parent configuration. The computational complexity of comput-
ing sufficient statistics for a relationship set depends on the number of population
variables as well: with no bound, the problem is #P-complete [8, Prop.12.4]. With
a constant bound, sufficient statistics can be computed in polynomial time [60,
24].

The next section presents empirical evidence about the performance of the
learn-and-join algorithm on benchmark datasets.

9 Evaluation: Experimental Design

All experiments were done on a QUAD CPU Q6700 with a 2.66GHz CPU and
8GB of RAM. Our code and datasets are available on the world-wide web [1]. We
made use of the following existing implementations.

Single Table Bayes Net Search GES search [7] with the BDeu score as imple-
mented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; [57]).

MLN Parameter Learning The default weight training procedure [35] of the
Alchemy package [30], Version 30.

MLN Inference The MC-SAT inference algorithm [45] to compute a probability
estimate for each possible value of a descriptive attribute for a given object or
tuple of objects.

Join Data Tables The join data tables for a given relationship chain are com-
puted using a straightforward SQL inner join over the required relationship
and entity tables. Our database management system is MySQL Version 1.2.15.

The computation of the join data tables could be optimized in a number of
ways. For instance, like most Bayes net scores, the BDeu score requires only the
sufficient statistics, or database frequencies of events. Rather than materializing
the entire join data table, we could use indices or the SQL Count aggregate func-
tion to compute these summary statistics only. We did not include optimizations of
the database computations because data management is not the focus of our paper,
and we already achieve very fast learning without them. Thus the database is used
only to find the set of tuples that satisfy a given join condition (e.g., find the set
of (x, y) pairs such that Friend(X ,Y) = T ,Smokes(X) = T ,Smokes(Y) = F).

26

9.1 Datasets

We used two synthetic and five benchmark real-world datasets for our evaluation.

University Database. We manually created a small dataset, based on the schema
given in Table 2. The entity tables contain 38 students, 10 courses, and 6 Profes-
sors. The Registered table has 92 rows and the RA table has 25 rows.

University+ Database. To test learning algorithms with autocorrelations, we ex-
tended this database with a self-relationship Friend between Students and several
descriptive attributes of students, such that the ranking and coffee drinking habits
of a student are strongly correlated with the ranking and coffee drinking habits of
her friends, respectively.

MovieLens Database. The MovieLens dataset is from the UC Irvine machine learn-
ing repository. It contains two entity tables: User with 941 tuples and Item with
1,682 tuples, and one relationship table Rated with 80,000 ratings. The User table
has 3 descriptive attributes age, gender , occupation. We discretized the attribute
age into three bins with equal frequency. The table Item represents information
about the movies. It has 17 Boolean attributes that indicate the genres of a given
movie. We performed a preliminary data analysis and omitted genres that have
only weak correlations with the rating or user attributes, leaving a total of three
genres.

Mutagenesis Database. This dataset is widely used in ILP research [55]. Mutage-
nesis has two entity tables, Atom with 3 descriptive attributes, and Mole, with 5
descriptive attributes, including two attributes that are discretized into ten values
each (logp and lumo). It features two relationships MoleAtom indicating which
atoms are parts of which molecules, and Bond which relates two atoms and has 1
descriptive attribute.

Hepatitis Database. This dataset is a modified version of the PKDD02 Discov-
ery Challenge database. We adopted the modifications of Frank et al. [13], which
includes removing tests with null values. It contains data on the laboratory exam-
inations of hepatitis B and C infected patients. The examinations were realized
between 1982 and 2001 on 771 patients. The data are organized in 7 tables (4
entity tables, 3 relationship tables and 16 descriptive attributes). They contain
basic information about the patients, results of biopsy, information on interferon
therapy, results of out-hospital examinations, results of in-hospital examinations.

Mondial Database. This dataset contains data from multiple geographical web
data sources [36]. We follow the modification of She et al. [54], and use a subset
of the tables and features. Our dataset includes a self-relationship table Borders
that relates two countries.

27

Dataset #tuples #Ground atoms
University 171 513
Movielens 82623 170143
Mutagenesis 15218 35973
Hepatitis 12447 71597
Mondial 814 3366
UW-CSE 2099 3380

Table 3 Size of datasets in total number of table tuples and ground atoms. Each descriptive
attribute is represented as a separate function, so the number of ground atoms is larger than
that of tuples.

Dataset #tuples #Ground atoms
MovieLens1 (subsample) 1468 3485
MovieLens2 (subsample) 12714 27134
Mutagenesis1 (subsample) 3375 5868
Mutagenesis2 (subsample) 5675 9058
Hepatitis1 6162 41335

Table 4 Size of subdatasets in total number of table tuples and ground atoms. Each descrip-
tive attribute is represented as a separate function, so the number of ground atoms is larger
than that of tuples.

UW-CSE database. This dataset lists facts about the Department of Computer
Science and Engineering at the University of Washington (UW-CSE), such as
entities (e.g., Student, Professor) and their relationships (i.e. AdvisedBy, Publi-
cation) [8]. The dataset was obtained by crawling pages in the department’s Web
site (www.cs.washington.edu). Publications and AuthorOf relations were extracted
from the BibServ database (www.bibserv.org).

Table 3 lists the databases and their sizes in terms of total number of tuples
and number of ground atoms, which is the input format for Alchemy. To convert
attribute information from the relational database to ground atoms, we used a
key-value representation that introduces a binary predicate for each attribute of
entities. The first argument is the id of the entity and the second is the value of
the predicate for the entity. For example if the value of attribute gender for person
Bob is male, the input to the Markov Logic Network contains the ground atom
gender(Bob,male). Similarly, we introduce a ternary predicate for each attribute
of a link.2

Because several of the Alchemy systems returned no result on some of the real-
world datasets, we formed two subdatabases using standard subgraph subsampling
[12]. First, draw a random sample of entities from each entity table. Then restrict
the relationship tuples in each subdatabase to those that involve only the selected
entities. Table 4 lists the resulting subdatabases and their sizes in terms of total
number of tuples and number of ground atoms.

2 Another data format was explored by Kok and Domingos [27], which introduces a
single unary predicate for each possible value of the attribute. To illustrate, for instance
the attribute gender with values (male, female), is represented with two unary predicates
gendermale(Person), Salary female(Person). The effect is that the arguments to all predicates
are primary keys. Khosravi et al. [23] compared MLN learning with the two different data
formats and found comparable performance.

28

9.2 Graph Structures Learned by the Learn-and-Join algorithm

Figure 12 shows the learned Bayes nets for the University, Hepatitis, MovieLens,
and Mondial datasets. The graphs illustrate how the learn-and-join algorithm
learns models with complex dependency patterns.

10 Moralization vs. Other Structure Learning Methods: Basic
Comparisons

We begin with a set of comparisons on standard benchmarks that follows the
design and performance metrics of previous MLN structure learning studies [23,
37,28]. Then we focus on experiments that assess specific components of the learn-
and-join algorithm.

10.1 Comparison Systems and Performance Metrics

We compared the learn-and-join algorithm with 4 previous Markov Logic Network
structure learning methods implemented in different versions of Alchemy.

MBN uses the learn-and-join algorithm to learn a Functor Bayes net. To perform
inference, the Functor Bayes net is converted to a Markov Logic Network us-
ing moralization, which we refer to as the Moralized Bayes Net (see Section 3).
Weights for the moralized Bayes net are learned using Alchemy’s weight learn-
ing routine.

MSL uses beam search which begins by adding unit clauses to an Markov Logic
Network. MSL then considers all clauses of length two and always maintains
the n highest-scoring ones in the set. MSL terminates when it cannot find a
clause that improves upon the current Markov Logic Network’s score [26].

LHL Lifted Hypergraph Learning [28] uses relational path finding to induce a
more compact representation of data, in the form of a hypergraph over clusters
of constants. Clauses represent associations among the clusters.

BUSL Applies relational path finding to ground atoms and variabilizes each
ground atom in a path. It then constructs a Markov network for the nodes
in the path, computes a single data table for the path, and learns edges be-
tween the nodes using a single-table Markov network learner [37].

LSM Learning Structural Motifs [29] uses random walks to identify densely con-
nected objects in data, and groups them and their associated relations into a
motif.

We use 3 performance metrics: Runtime, Accuracy, and Conditional log likeli-
hood. These measures have been used in previous studies of Markov Logic Network
learning [37,28,23].

Runtime The time taken to learn the model from the training dataset.
Accuracy (ACC) To define accuracy, we apply MLN inference to predict the

probability of an attribute value, and score the prediction as correct if the
most probable value is the true one. For example, to predict the gender of
person Bob, we apply MLN inference to the atoms gender(Bob,male) and

29

Fig. 12 The Bayes net structures learned by the learn-and-join algorithm for 4 datasets.

30

gender(Bob, female) (cf. Section 9.1). The result is correct if the predicted
probability of gender(Bob,male) is greater than that of gender(Bob, female).

Conditional Log-Likelihood (CLL) The conditional log-likelihood of a ground
atom in a database D given an Markov Logic Network is its log-probability
given the Markov Logic Network and D. The CLL directly measures how pre-
cise the estimated probabilities are.

For ACC and CLL the values we report are averages over all attribute pred-
icates. Khosravi et al. also report the AUC (area-under-curve) for predicates
that correspond to descriptive attributes with binary values (e.g. gender), for the
databases MovieLens and Mutagenesis [23]. As there are only few binary descrip-
tive attributes, we omit AUC from this study. For the existing binary predicates,
the AUC improvement of the MBN approach over previous Markov Logic Network
methods is similar to that for ACC and CLL. Mainly to study autocorrelations, we
report additional measures for the databases University+, Mondial, and UW-CSE,
so our first set of simulations reports results for the remaining databases.

10.2 Runtime Comparison

Table 5 shows the time taken in minutes for learning in each dataset. The Alchemy
times include both structure and parameter learning. For the MBN approach, we
report both the Bayes net structure learning time and the time required for the
subsequent parameter learning carried out by Alchemy.

Alchemy Methods LAJ
Dataset MSL LHL BUSL LSM MBN
University 5.02 3.54 0.5 0.01 0.03 + 0.032
MovieLens NT NT NT 0.45 1.2 +120
MovieLens1 44 34.52 50 0.03 0.05 + 0.33
MovieLens2 2760 3349 NT 0.06 0.12 + 5.10
Mutagenesis NT NT NT 0.53 0.5 + 106
Mutagenesis1 3360 3960 150 0.12 0.1 + 5
Mutagenesis2 NT NT NT 0.17 0.2 +12
Hepatitis NT NT NT 0.15 0.4 + 95.6
Hepatitis1 NT NT NT 0.1 0.2 + 4.8

Table 5 Runtime to produce a parametrized Markov Logic Network, in minutes. The MBN
column shows structure learning time + weight learning time. NT indicates non-termination.

Structure learning is very fast for both the MBN and the LSM method, orders
of magnitude faster than for the other methods. The total runtime for MBN is
dominated by the time required by Alchemy to find a parametrization for the mor-
alized Bayes net. On the smaller databases, this takes between 5-12 minutes. On
MovieLens, parametrization takes two hours, and on Mutagenesis, over 1.5 hours.
While finding optimal parameters for the MBN structures remains challenging,
the combined structure+weight learning system is much faster than the overall
structure + weight learning time of most of the Alchemy methods: They do not
scale to the complete datasets, and for the subdatabases, the MBN approach is
faster by a factor ranging from 200 to 1000.

31

These results are strong evidence that the MBN approach leverages the scala-
bility of Bayes net learning to achieve scalable Markov Logic Network learning on
databases of realistic size. The LSM method is very fast for all datasets. Inspec-
tion of the learned clauses by LSM shows that the rules are mostly just the unit
clauses that model marginal probabilities. This indicates underfitting the data, as
the following measurements of accuracy and conditional log-likelihood confirm.

10.3 Predictive Accuracy and Data Fit

Previous work on Markov Logic Network evaluation has used a “leave-one-out”
approach that learns Markov Logic Networks for a number of subdatabases with
a small subset omitted [37]. This is not feasible in our setting because even on a
training set of size about 15% of the original, finding an Markov Logic Network
structure using the slower Alchemy methods is barely possible. Given these com-
putational constraints, we investigated the predictive performance by learning an
Markov Logic Network on one randomly selected 2/3 of the subdatabases as a
training set, testing predictions on the remaining 1/3. While this does not provide
strong evidence about the generalization performance in absolute terms, it gives
information about the relative performance of the methods. In the next section we
give further cross validation results using the fastest Alchemy methods LSM and
LHL. Tables 6 and 7 report the average accuracy and conditional log-likelihood of
each real-world dataset. (The synthetic dataset University was too small for learn-
ing on a subset). Higher numbers indicate better performance and NT indicates
that the system was not able to return an Markov Logic Network for the dataset,
either crashing or timing out after 4 days of running. MBN achieved substantially
better predictions on all test sets, in the range of 10-20% for accuracy.

The CLL performance of LSM is acceptable overall. The parameter estimates
are biased towards uniform values, which leads to predictions whose magnitudes
are not extreme. Because the average accuracy is low, this means that when mis-
taken predictions are made, they are not made with great confidence. The LSM
pattern of low accuracy and acceptable log-likelihood is found in our other datasets
as well.

Accuracy Alchemy Methods LAJ
Dataset MSL LHL BUSL LSM MBN

Movielens11 0.40 0.42 0.34 0.37 0.63
Movielens12 0.41 0.44 NT 0.49 0.62
Movielens NT NT NT 0.30 0.69

Mutagenesis1 0.34 0.31 0.37 0.30 0.69
Mutagenesis2 NT 0.35 NT 0.28 0.65

Hepatitis NT NT NT 0.32 0.54
Hepatitis1 NT NT NT 0.29 0.53

Table 6 The table compares accuracy performance of the moralization approach (MBN) vs.
previous Markov Logic Network learning methods. The data are obtained by training on 2/3
of the database and testing on the other 1/3. ACC is reported as an average over all attribute
predicates of the datasets.

32

Conditional Log-likelihood Alchemy Methods LAJ
Dataset MSL LHL BUSL LSM MBN

Movielens11 -4.22 -4.60 -2.80 -1.21 -1.15
Movielens12 -3.55 -3.38 NT -1.06 -1.33
Movielens NT NT NT -1.1 -0.98

Mutagenesis1 -4.45 -4.33 -2.54 -1.12 -1.85
Mutagenesis2 NT NT NT -1.18 -1.48

Hepatitis NT NT NT -1.26 -1.18
Hepatitis1 NT NT NT -1.34 -1.09

Table 7 The table compares conditional log likelihood performance of the moralization ap-
proach (MBN) vs. previous Markov Logic Network learning methods. The data are obtained
by training on 2/3 of the database and testing on the other 1/3. CLL is reported as an average
over all attribute predicates of the datasets.

Where the learning methods return a result on a database, we also measured
the predictions of the different Markov Logic Network models for the facts in the
training database. This indicates how well the Markov Logic Network summarizes
the statistical patterns in the data. These measurements test the log-linear equa-
tion (1) as a solution to the combining problem for inference (see Section 3). While
a small improvement in predictive accuracy may be due to overfitting, the very
large improvements we observe are evidence that the Markov Logic Network mod-
els produced by the Alchemy methods underfit and fail to represent statistically
significant dependencies in the data. Tables 8 and 9 show the results for Accuracy
and Conditional Log-likelihood. MBN achieved substantially better predictions on
all test sets, at least 20% for accuracy.

Accuracy Alchemy Methods LAJ
Dataset MSL LHL BUSL LSM MBN

University 0.37 0.37 0.38 0.40 0.84
Movielens11 0.43 0.42 0.36 0.39 0.69
Movielens12 0.42 0.48 NT 0.53 0.68
Movielens NT NT NT 0.34 0.74

Mutagenesis1 0.36 0.33 0.37 0.33 0.80
Mutagenesis2 NT NT NT 0.31 0.65

Hepatitis NT NT NT 0.33 0.57
Hepatitis1 NT NT NT 0.30 0.57

Table 8 The table compares accuracy performance of the moralization approach (MBN)
vs. previous Markov Logic Network learning methods. The data report the training error
where inference is performed over the training dataset. ACC is reported as an average over all
attribute predicates of the datasets.

10.4 UW-CSE Dataset

The UW-CSE dataset is naturally divided into 5 folds according to the subarea of
computer science, so learning studies have used a cross-validation approach [28,
37], which we follow. This dataset has been used extensively in previous Markov
Logic Network experiments, and it differs from the others in that it features a rel-
atively small set of 4 attributes relative to the set of 5 relationships. We therefore

33

Conditional Log-likelihood Alchemy Methods LAJ
Dataset MSL LHL BUSL LSM MBN

University -5.79 -5.91 -2.92 -0.82 -0.47
Movielens11 -4.09 -4.09 -2.44 -1.18 -1.06
Movielens12 -3.55 -3.38 NT -1.10 -1.09
Movielens NT NT NT -1.02 -0.6

Mutagenesis1 -4.33 -4.33 -2.54 -1.17 -0.62
Mutagenesis2 NT -4.65 NT -1.15 -0.7

Hepatitis NT NT NT -1.22 -1
Hepatitis1 NT NT NT -1.28 -1.03

Table 9 The table compares conditional log-likelihood performance of the moralization ap-
proach (MBN) vs. previous Markov Logic Network learning methods. The data report the
training error where inference is performed over the training dataset. CLL is reported as an
average over all attribute predicates of the datasets.

provide a more detailed set of measurements that compare predictive performance
for each attribute separately. As with the other datasets, the speed and predic-
tive accuracy of the learn-and-join algorithm is a substantive improvement. The
breakdown by attribute shows that while the extent of the improvement varies
with the predicates, the moralized Bayes net approach performs uniformly well on
all predicates.

Fig. 13 Predictive Accuracy by attribute, measured by 5-fold cross-validation. The methods
are ordered as shown, with MBN at the bottom.

Our results so far indicate that the two most recent Markov Logic Network
structure learning methods—Lifted Hypergraph Learning and Learning Structural
Motifs—show the best performance. This is confirmed in independent empirical

34

Fig. 14 Conditional Log-likelihood by attribute, measured by 5-fold cross-validation. The
methods are ordered as shown, with MBN at the bottom.

Table 10 Cross-validation averages for the UW-CSE dataset

UW-CSE MSL LHL LSM BUSL MBN
Time(min) 2160 2413 2 276 0.6

Accuracy 0.29 0.25 0.26 0.27 0.41
Conditional log-likelihood -3.85 -3.98 -1.37 -1.42 -1.43

studies by other researchers [29]. The remaining sections of the paper therefore
focus on comparing LHL and LSM with the moralization approach.

10.5 Comparison with Inductive Logic Programming on Mutagenesis

We compare the performance of the learn-and-join algorithm for a classification
task, predicting the mutagenicity of chemical compounds. This problem has been
extensively studied in Inductive Logic Programming (ILP). The purpose of this
comparison is to benchmark the predictive performance of the moralization ap-
proach against discriminative learning by methods that are different from Markov
Logic Network learners.

The class attribute is the mutagenicity (log p). Compounds recorded as hav-
ing positive mutagenicity are labeled active (positive examples) and compounds
recoreded as having 0 or negative mutagenicity are labeled inactive (negative exam-
ples). The database contains a total of 188 compounds. Whereas Inductive Logic
Programming methods are discriminative, the moralization method performs gen-
erative learning over all attributes, a significantly more difficult task. We compare
the predictive accuracy of the Moralized Bayes net with well-known ILP methods.
Table 11 presents the results of Lodhi and Muggleton [34]. For the STILL system,

35

we followed the creators’ evaluation methodology of using a randomly chosen train-
ing and test set. The other systems are evaluated using 10-fold cross-validation.
The table shows that the classification performance of the generative Moralized
Bayes net model matches that of the discriminative Inductive Logic Programming
models.

Method Evaluation Accuracy Reference
MBN 10-fold 0.87
P-progol 10-fold 0.88 [38]
FOIL 10-fold 0.867 [47]
STILL 90%train-10%test 0.936 [53]
MBN 90%train-10%test 0.944

Table 11 A comparison of the Moralized Bayes net method with standard Inductive Logic
Programming systems trained to predict mutagenicity. Although Bayes net learning produces
a generative model, its performance is competitive with discriminative learners.

11 Learning Autocorrelations

In this section we focus on databases that feature self-relationships between en-
tities of the same type. Such schemas potentially give rise to autocorrelations
where the value of an attribute for an entity can be predicted by the value of
the same attribute for related entities. While recursive dependencies are a key
statistical phenomenon in relational data, discovering valid autocorrelations has
been a challenge for statistical-relational methods [21,41]. We investigate how well
our approach using the main functor form discovers autocorrelations compared to
general Markov Logic structure learning methods. Our benchmark databases are
the synthetic University+ dataset and the real-world Mondial database. Table 12
shows the recursive dependencies discovered by the learn-and-join algorithm on
each database. We use clausal notation of the form child ← {parents}. Neither of
the Markov Logic methods LHL nor LSM discovered any recursive dependencies.

Table 13 and 14 show the runtime and average predictive performance. The
time reported for MBN includes both structure and parameter learning. To achieve
a high resolution, results on Mondial are based on 5-fold cross validation. The
University dataset is small, so we test and train on the same dataset. As in the
previous experiments, both MBN and LSM are fast. The predictive accuracy us-
ing Markov Logic Network inference was much better in the moralized Bayes net
model (average accuracy improved by 25% or more). This indicates that the discov-
ered recursive dependencies are important for improving predictions. For further
discussion, please see [52].

12 Lesion Studies

In this section we study the effects of relaxing different constraints used in the
learn-and-join algorithm. We focus on the main functor constraint for learning

36

Database Recursive Dependency Discovered
University gpa(X)← ranking(X), grade(X,Y), registered(X,Y), friend(X,Z), gpa(Z)
University coffee(X)← coffee(Y), friend(X ,Y)
Mondial religion(X)← continent(X), border(X ,Y), religion(Y)
Mondial continent(X)← border(X,Y), continent(Y), gdp(X), religion(Y)

Table 12 Autocorrelations discovered by the learn-and-join algorithm using the main functor
constraints.

MBN LSM LHL
Time (seconds) 12 1 2941
Accuracy 0.85 0.44 0.47
CLL -0.8 -2.21 -4.68

Table 13 Results on the University+
database.

MBN LSM LHL
Time (seconds) 50 2 15323
Accuracy 0.50 0.26 26
CLL -1.05 -1.43 -3.69

Table 14 Results on the Mondial
database.

autocorrelations, and on the lattice constraints. The other constraints simply re-
flect the semantics of the relational schema rather than learning principles. All
results are based on 5-fold cross validation. We report a number of quantities for
comparing the learned structures.

SLtime(s) Structure learning time in seconds
Numrules Number of clauses in the Markov Logic Network excluding rules with

weight 0.
AvgLength The average number of atoms per clause.
AvgAbWt The average absolute weight value.

Because constraints curtail the search space, we expect constrained methods
to have the following effects compared with unconstrained methods.

1. Faster run-time.
2. A simpler model with fewer rules.
3. If the constraints are chosen well, they should allow the system to identify

important rules and not impair predictive performance.

12.1 Main Functor Constraints

We remove the constraints of specifying a main functor node to study its impor-
tance. This means that we introduce a copy of an entity table that is potentially
involved in an autocorrelation (e.g., in the University+ database, there are two
tables Student1 ,Student2). This duplication approach is used in other relational
learning systems (e.g., [63,62]). The unconstrained method applies the learn-and-
join algorithm in the same way to all entity tables, including the copies. We in-
vestigated the following main hypotheses about the effect of the main functor
constraint.

1. There should be a tendency towards longer clauses associated with the main
functor node (see Section 7).

2. Since Proposition 1 implies that the ground models with and without the
constraint are the same, predictive accuracy should be similar.

37

3. The duplicate edges should lead to duplicate clauses without improvement in
predictive performance since the ground models are the same.

Table 15 shows the results for University and Table 16 shows the results for
Mondial dataset. Constraint is the learn-and-join algorithm with the main functor
constraint, whereas Duplicate is the learn-and-join algorithm applied naively to
the duplicate tables without the constraint. As expected, the constraint speeds
up structure learning, appreciably in the case of the larger Mondial dataset. The
number of clauses is significantly less (50-60), while on average clauses are longer.
The size of the weights indicates that the main functor constraint focuses the
algorithm on the important rules.

University+ Constraint Duplicate
SLtime(s) 3.1 3.2
Rules 289 350
AvgAbWt 2.08 1.86
AvgLength 4.26 4.11
ACC 0.86 0.86
CLL -0.89 -0.89

Table 15 Comparison to study the effects of removing Main Functor Constraints on Univer-
sity+ dataset.

Mondial Constraint Duplicate
SLtime(s) 8.9 13.1

Rules 739 798
AvgAbWt 0.22 0.23

AvgLength 3.98 3.8
ACC 0.43 0.43
CLL -1.39 -1.39

Table 16 Comparison to study the effects of removing Main Functor Constraints on Mondial
dataset.

We also report the number of clauses of a given chain length. Since a clause
contains conditions on both attributes and links, we use the maximal slot chain
length: The chain length of a rule is computed as the maximal length of a sequence
of predicates appearing in the rule such that the database tables corresponding
to the predicates are related by foreign key pointers [16]. The measurements show
that the algorithm can find long chains, although informative long chains are rare.

12.2 Lattice Constraints

A key feature of the learn-and-join algorithm is the use of lattice constraints.
In terms of the join lattice, Bayes nets for join tables higher in the lattice in-
herit the edges from Bayes nets for join tables lower in the lattice. We remove
this constraint to assess its effect on learning. If the Bayes nets learned for dif-
ferent join tables are no longer constrained to be consistent with each other, the

38

!"#$%
!"&&% !"&'%

!"!&% !"!'%

!"#$%
!"&(% !"&)%

!"!&% !"!'%

)% #% &% '% $%

!"#$%&'(
*+,-./01,.% 2345160.7%

!"!8%

!"89%

!"!&%!"!'%

!"9'%

!"!#%

)% #% &%

)#%*+,-%./(
*+,-./01,.% 2345160.7%

Fig. 15 The percentage of rules of a given chain length for Mondial and University+ dataset
in the autocorrrelation lesion study.

question arises how to merge them into a single Bayes net. One possibility is
to learn a Bayes net for the maximum join table (e.g., for the relationship set
Registered(S ,C),Teaches(P ,C) in Figure 4). However, in experiments we found
that for our benchmark datasets, the maximum join table is too small to yield
meaningful results, because too few tuples meet the join conditions (e.g., not
many students are RAs). We therefore investigated an intermediate approach
where different Bayes nets are learned for single relationship tables joined with
the associated entity tables (e.g., Registered(S ,C) on Student on Course). In our
benchmark datasets, there were very few conflicts between the edges in different
Bayes nets, which we broke randomly. So we could obtain a single acyclic graph
for the database by merging the graphs of the intermediate joins; we refer to this
approach as the intermediate method.

Tables 17, 18, and 19 shows the results for the University+, Hepatitis, and
Mondial datasets. The numbers are averages from 5-fold cross validation. Folds
are formed by randomly selecting entities as described in Section 9.1. The lattice
constraints speed up the learning time spent on join tables, which is the domi-
nant factor. The constrained model features fewer rules with comparatively higher
weights. The average predictive accuracy was somewhat higher than with the un-
constrained model, whereas the conditional log-likelihood performance was very
similar. This is evidence that the constraints helped identify predictively relevant
clauses.

University+ Constraint Intermediate
SLtime(s) 3.1 3.3

Rules 289 443
AvgAbWt 2.08 1.86

AvgLength 4.26 4.94
ACC 0.86 0.84
CLL -0.89 -0.9

Table 17 Comparison to study the effects of removing Lattice Constraints on the University+
dataset.

39

Hepatitis Constraint Intermediate
SLtime(s) 5.2 6.1

Rules 818 848
AvgAbWt 1.68 1.53

AvgLength 4.15 4.11
ACC 0.47 0.41
CLL -1.31 -1.34

Table 18 Comparison to study the effects of removing Lattice Constraints on the Hepatitis
dataset.

Mondial Constraint Intermediate
SLtime(s) 8.9 13.2

Rules 739 1053
AvgAbWt 0.22 0.24

AvgLength 3.98 4.66
ACC 0.43 0.37
CLL -1.39 -1.39

Table 19 Comparison to study the effects of removing Lattice Constraints on Mondial dataset

!"#$% !"#%
!"&&%

!"''%
!"(&%

!"!#%

&%)% '%

!"#$%%&'($)$&")'
*+,-./01,.% 213%4+1,%

!")5% !"''% !"'#%

!"!'% !"!#%
!")% !")5%

!"#%

!"&#%

&%)% '% #% 5%

*+,(-$.'/$)$&")'
*+,-./01,.% 213%4+1,%

!"!6%

!"67%

!"!'%!"!'%

!"7#%

!"!'%

&%)% '%

0,-1"2&-)3'/$)$&")'
*+,-./01,.% 213%4+1,%

Fig. 16 The percentage of rules of a given chain length for Hepatitis, Mondial, and University
dataset in the Lattice constraint lesion study.

13 Conclusion and Future Work

This paper considered the task of building a statistical-relational model for databases
with many descriptive attributes. We combined Bayes net learning, one of the
most successful machine learning techniques, with Markov Logic networks, one of
the most successful statistical-relational formalisms. The main algorithmic con-
tribution is an efficient new structure learning algorithm for a relational Bayes
net that models the joint frequency distribution over attributes in the database,
given the links between entities. Moralizing the Bayes net leads to a Markov Logic
Network structure. Our evaluation on benchmark databases with descriptive at-
tributes shows that compared to current Markov Logic Network structure learning
methods, the approach using moralization improves the scalability and run-time
performance by orders of magnitude. With standard parameter estimation algo-
rithms and prediction metrics, the moralized Markov Logic Network structures
make substantially more accurate predictions. We discuss future work for address-
ing the limitations of our current system.

Parameter Estimation. In this work we used generic Markov Logic Network
algorithms for parameter estimation implemented in the Alchemy package. While
the parameter estimation routines of Alchemy run much faster than the structure
learning routines, on some datasets we found that parameter estimation can still
take a long time. As Markov Logic Networks obtained by moralization have a

40

special structure, it may be possible to design fast parameter estimation routines
for them.

Link Prediction. The learn-and-join algorithm learns a model of the distribu-
tion over descriptive attributes conditional on the relationship information in the
database. An important project is to extend the learn-and-join algorithm so that
it can learn not only dependencies among attributes, but also among relationships
(e.g. Daughter(X ,Y) implies Parent(X ,Y)). Since previous Markov Logic Net-
work algorithms have performed well in link modelling, an interesting approach
would be a hybrid system that uses the output of the learn-and-join algorithm
as a starting point for an Alchemy-based structure learning system. In principle,
the key ideas of the learn-and-join algorithm such as the lattice and main functor
node constraints are also applicable to link prediction problems.

Acknowledgements This research was supported by a Discovery Grant from the Natural
Sciences and Engineering Council of Canada (NSERC). Preliminary results were presented
at the 2010 AAAI conference, the 2011 ILP conference, to the AI group at the University
of British Columbia, and the IJCAI-STRUCK and IJCAI-GKR workshops (2009). We are
grateful to the audiences for helpful questions and comments, especially Lise Getoor.

References

1. Learn and join algorithm code. URL = http://www.cs.sfu.ca/~oschulte/jbn/.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.

In Proc International Conference on Very Large Databases, pages 478–499, Santiage,
Chile, 1994. Morgan Kaufmann, Los Altos, CA.

3. Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Generation Comput.,
9(3/4):335–364, 1991.

4. Marenglen Biba, Stefano Ferilli, and Floriana Esposito. Structure learning of Markov logic
networks through iterated local search. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, and Nikolaos M. Avouris, editors, ECAI, pages 361–365, 2008.

5. Ivan Bratko. Prolog (3rd ed.): programming for artificial intelligence. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

6. Hailiang Chen, Hongyan Liu, Jiawei Han, and Xiaoxin Yin. Exploring optimization of
semantic relationship graph for multi-relational Bayesian classification. Decision Support
Systems, July 2009.

7. D. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2003.

8. Pedro Domingos and Matthew Richardson. Markov logic: A unifying framework for sta-
tistical relational learning. In Introduction to Statistical Relational Learning [18].

9. Justin Domke, Alap Karapurkar, and Yiannis Aloimonos. Who killed the directed model?
In CVPR, pages 1–8, 2008.

10. Daan Fierens. On the relationship between logical bayesian networks and probabilistic
logic programming based on the distribution semantics. In Luc De Raedt, editor, ILP,
volume 5989 of Lecture Notes in Computer Science, pages 17–24. Springer, 2009.

11. Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, and Jan Ramon. Logical bayesian
networks and their relation to other probabilistic logical models. In Stefan Kramer and
Bernhard Pfahringer, editors, ILP, volume 3625 of Lecture Notes in Computer Science,
pages 121–135. Springer, 2005.

12. O. Frank. Estimation of graph totals. Scandinavian Journal of Statistics, pages 81–89,
1977.

13. Richard Frank, Flavia Moser, and Martin Ester. A method for multi-relational classifica-
tion using single and multi-feature aggregation functions. In proceeding of Pkdd, 2007.

14. Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic rela-
tional models. In In IJCAI, pages 1300–1309. Springer-Verlag, 1999.

15. Dan Geiger and David Heckerman. Knowledge representation and inference in similarity
networks and bayesian multinets. Artif. Intell., 82(1-2):45–74, 1996.

41

16. Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Benjamin Taskar. Probabilistic
relational models. In Introduction to Statistical Relational Learning [18], chapter 5, pages
129–173.

17. Lise Getoor and John Grant. Prl: A probabilistic relational language. Machine Learning,
62(1-2):7–31, 2006.

18. Lise Getoor and Ben Tasker. Introduction to statistical relational learning. MIT Press,
2007.

19. D. Heckerman, C. Meek, and D. Koller. Probabilistic entity-relationship models, PRMs,
and plate models. In Getoor and Taskar [18].

20. Tuyen N. Huynh and Raymond J. Mooney. Discriminative structure and parameter learn-
ing for markov logic networks. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis, editors, ICML, pages 416–423. ACM, 2008.

21. David Jensen and Jennifer Neville. Linkage and autocorrelation cause feature selection
bias in relational learning (2002). In In Proceedings of the 19th International Conference
on Machine Learning, 2002.

22. Kristian Kersting and Luc de Raedt. Bayesian logic programming: Theory and tool. In
Introduction to Statistical Relational Learning [18], chapter 10, pages 291–318.

23. Hassan Khosravi, Oliver Schulte andTong Man, Xiaoyuan Xu, and Bahareh Bina. Struc-
ture learning for Markov logic networks with many descriptive attributes. In Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence (AAAI)., pages 487–493, 2010.

24. Hassan Khosravi, Oliver Schulte, and Bahareh Bina. Virtual joins with nonexistent links.
19th Conference on Inductive Logic Programming (ILP), 2009. URL = http://www.cs.
kuleuven.be/~dtai/ilp-mlg-srl/papers/ILP09-39.pdf.

25. Anthony C. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM, 29(3):699–717, 1982.

26. Stanley Kok and Pedro Domingos. Learning the structure of Markov logic networks. In
Luc De Raedt and Stefan Wrobel, editors, ICML, pages 441–448. ACM, 2005.

27. Stanley Kok and Pedro Domingos. Statistical predicate invention. In ICML, pages 433–
440. ACM, 2007.

28. Stanley Kok and Pedro Domingos. Learning markov logic network structure via hyper-
graph lifting. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman,
editors, ICML, pages 64–71. ACM, 2009.

29. Stanley Kok and Pedro Domingos. Learning markov logic networks using structural motifs.
In ICML’10, pages 551–558. 2010.

30. Stanley Kok, M. Summer, Matthew Richardson, Parag Singla, H. Poon, D. Lowd, J. Wang,
and Pedro Domingos. The Alchemy system for statistical relational AI. Technical report,
University of Washington., 2009.

31. Daphne Koller and Avi Pfeffer. Learning probabilities for noisy first-order rules. In IJCAI,
pages 1316–1323, 1997.

32. Wim Van Laer and Luc de Raedt. How to upgrade propositional learners to first-order
logic: A case study. In Relational Data Mining. Springer Verlag, 2001.

33. Vladimir Lifschitz. Foundations of logic programming. Principles of Knowledge Repre-
sentation, CSLI Publications, 1996.

34. Huma Lodhi and Stephen Muggleton. Is mutagenesis still challenging? In Inductive Logic
Programming, pages 35,40, 2005.

35. Daniel Lowd and Pedro Domingos. Efficient weight learning for Markov logic networks.
In PKDD, pages 200–211, 2007.

36. Wolfgang May. Information extraction and integration: The mondial case study. Technical
report, Universitat Freiburg, Institut für Informatik, 1999.

37. Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of Markov logic network
structure. In ICML, pages 625–632. ACM, 2007.

38. Ashwin Srinivasan Muggleton, Ashwin Srinivasan, S. H. Muggleton, M. J. E. Sternberg,
and R. D. King. Theories for mutagenicity: A study in first-order and feature-based
induction. Artificial Intelligence, 85:277–299, 1996.

39. Sriraam Natarajan, Prasad Tadepalli, Thomas G. Dietterich, and Alan Fern. Learning
first-order probabilistic models with combining rules. Annals of Mathematics and Artifical
Intelligence, 54(1-3):223–256, 2008.

40. Jennifer Neville and David Jensen. Relational dependency networks. In An Introduction
to Statistical Relational Learning [18], chapter 8.

41. Jennifer Neville and David Jensen. Relational dependency networks. J. Mach. Learn.
Res., 8:653–692, 2007.

42

42. Liem Ngo and Peter Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theor. Comput. Sci., 171(1-2):147–177, 1997.

43. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
44. David Poole. First-order probabilistic inference. In Georg Gottlob and Toby Walsh,

editors, IJCAI, pages 985–991. Morgan Kaufmann, 2003.
45. Hoifung Poon and Pedro Domingos. Sound and efficient inference with probabilistic and

deterministic dependencies. In AAAI. AAAI Press, 2006.
46. Alexandrin Popescul and Lyle Ungar. Feature generation and selection in multi-relational

learning. In An Introduction to Statistical Relational Learning [18], chapter 8.
47. J. Quinlan. Boosting first-order learning. In Algorithmic Learning Theory, pages 143–155.

Springer, 1996.
48. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 2010.
49. Mark Schmidt, Kevin Murphy, Glenn Fung, and Rómer Rosales. Structure learning in

random fields for heart motion abnormality detection. In CVPR, 2008.
50. Oliver Schulte. A tractable pseudo-likelihood function for Bayes Nets applied to relational

datasets. In SIAM SDM, pages 462–473, 2011.
51. Oliver Schulte, Hassan Khosravi, and Bahareh Bina. Bayes nets for combining logical

and probabilistic structure. In Proceedings STRUCK Workshop on Learning Structural
Knowledge From Observations. IJCAI-09, 2009.

52. Oliver Schulte, Hassan Khosravi, Tong Man, and Tianxiang Gao. Learning directed rela-
tional models with recursive dependencies. In Inductive Logic Programming, 2011.

53. Michele Sebag and Celine Rouveirol. Tractable induction and classification in first order
logic via stochastic matching, 1997.

54. Rong She, Ke Wang, and Yabo Xu. Pushing feature selection ahead of join. 2005.
55. A. Srinivasan, SH Muggleton, MJE Sternberg, and RD King. Theories for mutagenicity: A

study in first-order and feature-based induction. Artificial Intelligence, 85(1-2):277–299,
1996.

56. Benjamin Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models
for relational data. In Adnan Darwiche and Nir Friedman, editors, UAI, pages 485–492.
Morgan Kaufmann, 2002.

57. CMU The Tetrad Group, Department of Philosophy. The Tetrad project: Causal models
and statistical data, 2008. http://www.phil.cmu.edu/projects/tetrad/.

58. Robert E. Tillman, David Danks, and Clark Glymour. Integrating locally learned causal
structures with overlapping variables. In Daphne Koller, Dale Schuurmans, Yoshua Bengio,
and Léon Bottou, editors, NIPS, pages 1665–1672. MIT Press, 2008.

59. J. D. Ullman. Principles of database systems. 2. Computer Science Press, 1982.
60. Moshe Y. Vardi. On the complexity of bounded-variable queries. In PODS, pages 266–276.

ACM Press, 1995.
61. M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to decision models.

Knowledge Engineering Review, 7:35–53, 1992.
62. Xiaoxin Yin and Jiawei Han. Exploring the power of heuristics and links in multi-relational

data mining. In ISMIS’08: Proceedings of the 17th international conference on Founda-
tions of intelligent systems, pages 17–27, Berlin, Heidelberg, 2008. Springer-Verlag.

63. Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S. Yu. Crossmine: Efficient classification
across multiple database relations. In Constraint-Based Mining and Inductive Databases,
pages 172–195, 2004.

