
The Logic of Reliable and Efficient Inquiry

Oliver Schulte

October 3, 2001

Abstract. This paper pursues a thorough-going instrumentalist, or means-
ends, approach to the theory of inductive inference. I consider three epistemic aims:
convergence to a correct theory, fast convergence to a correct theory and steady con-
vergence to a correct theory (avoiding retractions). For each of these, two questions
arise: (1) What is the structure of inductive problems in which these aims are feasi-
ble? (2) When feasible, what are the inference methods that attain them? Formal
learning theory provides the tools for a complete set of answers to these questions.
As an illustration of the results, I apply means-ends analysis to various versions of
Goodman’s Riddle of Induction.

1. Means-Ends Solutions for Problems of Induction

Empirical inquiry begins with questions about the world, and uses evidence to find an-
swers. One of the major issues of epistemology is how inquiry should go about its task.
This question leads immediately to the topic of inductive inference, how to generalize be-
yond the available evidence to obtain an answer to the issues under investigation. Hume’s
Problem of Induction and Goodman’s Riddle are two classic, sharply focused illustrations
of the problems associated with inductive inference. Hume asks what the foundation of be-
liefs is that do not follow with deductive certainty from the available evidence. Goodman’s
Riddle challenges us to find epistemic principles for choosing among various alternative
generalizations. The fact that we are familiar with those predicates that occur frequently
in English, for example, does not count as an answer to Goodman’s challenge [Sober 1994].
A well-developed response to Hume’s problem is the fallibilist proposal that, although

we may never be certain of our generalizations, we can nonetheless find the right answer
to the questions of inquiry in the long run, or in “the limit of inquiry”. This concep-
tion of empirical success inspired the work of Peirce, James, Reichenbach, Putnam, and
others. This approach to induction aims for a means-ends standard of inductive ratio-
nality: We ought to use those inference methods that attain the goals of inquiry. The
task of methodology, then, is to determine the best means towards our epistemic aims.
This paper studies three particularly interesting epistemic ends: Convergence to a correct
theory, fast convergence to a correct theory, and steady convergence to a correct theory,
that is, avoiding retracting one’s theories as much as possible. We may think of speed and
avoiding retractions as standards of efficiency for inductive methods that find the truth
in the limit of inquiry.
Two questions arise: (1) What is the structure of inductive problems in which it is

possible to attain these cognitive ends–that is, when are they feasible? (2) When a
given cognitive aim is feasible, which methods attain it? I draw on the tools of formal
learning theory to give a complete set of answers to these questions. Formal learning
theory is a highly developed mathematical framework for carrying out the means-ends
analysis of inductive problems. The results of the analysis are rewarding: the efficiency
criteria that are the subject of this paper provide principled methodological recommen-
dations for drawing general conclusions from given data. To illustrate, I analyze several
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versions of Goodman’s Riddle of Induction, and show that the efficient inference meth-
ods project the natural generalization (“all emeralds are green” rather than “all emeralds
are grue”). This is no accident: It turns out that Goodman’s Riddle has exactly the
structure characteristic of efficient inductive inquiry. Other interesting inductive prob-
lems share this structure, for example the Occam-like problem of determining whether a
given entity exists or not, and inferring theories of reactions among elementary particles
[Schulte forthcoming, Schulte 1997]. This paper describes the structure common to all
inductive problems that permit efficient inquiry, and specifies the general form of efficient
inference methods. These results show that means-ends analysis does not depend on the
language in which evidence and hypotheses are described.
Let us begin with some fundamental notions from learning theory.

2. Discovery Problems
Learning theory studies several broad classes of inductive problems, such as making predic-
tions, testing hypotheses, inferring general theories, and others (for an up-to-date survey,
see [Kelly 1996]). I will examine the following type of problem: Consider a collection H
of mutually exclusive alternative hypotheses under investigation. Given a piece of evi-
dence e, which of the alternative hypotheses in H should the agent conjecture? Following
Popper’s and Kelly’s usage, I refer to such problems as discovery problems [Popper 1968],
[Kelly 1996].1 The general definition of a discovery problem is as follows. Let E be a set
of evidence items or experimental outcomes (observations of the colours of swans, ravens,
emeralds, etc., particle reactions, positions of planets, and so on). A data stream is an
infinite discrete sequence of evidence items from E. For example, if the evidence state-
ments are either “this emerald is green” or “this emerald is blue”, then one possible data
stream is the infinite sequence of observations of green emeralds. If ε is a data stream, then
εn denotes the n-th observation made along ε, and ε|n denotes the first n observations in
the data stream; see Figure 1. An empirical proposition is a set of data streams. For
example, since the empirical content of the hypothesis “all emeralds are green” is just the
data stream featuring only green emeralds–call it τ–I identify “all emeralds are green”
with the empirical proposition {τ}. If ε is a data stream, H an empirical hypothesis, and
ε ∈ H, I say that H is correct on, or true of, ε.2 An empirical proposition K represents
the inquirer’s background knowledge about what observation sequences are possible. Now
we are ready to define:

Definition 1. A discovery problem is a pair (H,K), where K is an empirical propo-
sition representing background knowledge, and H is a collection of mutually exclusive
empirical hypotheses–that is, if a hypothesis H ∈ H is correct on a data stream ε, then
no other hypothesis H 0 ∈ H is correct on ε.

An inference rule, or inductive method, δ produces an empirical proposition
δ(e) as its current theory in response to a finite evidence sequence e.3 Epistemolo-
gists have considered more complicated inductive methods, for example ones that revise
“degrees of belief” in light of new evidence (as Bayesian methods do; see for example

1 [Kelly 1996] does not require the alternative hypotheses to be mutually exclusive.
2The operative notion of correctness may embody virtues of theories other than truth, for example

empirical adequacy or problem-solving ability [Laudan 1977], [Kitcher 1993]. The results in this paper
presuppose only that correctness is some relation between hypotheses and data streams.

3This differs from Kelly’s treatment of discovery problems, which requires empirical methods to pro-
duce one of the hypotheses under investigation at each stage [Kelly 1996, Ch.9].
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[Howson and Urbach 1989]). In principle, means-ends analysis can guide agents in revis-
ing any epistemic state.4

Many important inductive problems from a variety of settings fit the formalism of dis-
covery problems. To name a few, language learning [Osherson et al. 1986]; parameter es-
timation and “model selection” in statistics; and inferring theories in scientific disciplines
such as particle physics [Schulte 1997] and cognitive neuropsychology [Glymour 1994],
[Bub 1994]. Some examples of discovery problems will illustrate the general notions in-
troduced in this section, as well as many of the points about inductive method that I shall
be making. It turns out that Goodmanian “Riddles of Induction” serve this purpose well.

3. Riddles of Induction
3.1. Green and Grue. In his “New Riddle of Induction”, Nelson Goodman intro-
duces an unusual color predicate for emeralds [Goodman 1983].

Suppose that all emeralds examined before a certain time t are green . . . Our
evidence statements assert that emerald a is green, that emerald b is green,
and so on . . .

Now let me introduce another predicate less familiar than “green”. It is the
predicate “grue” and it applies to all things examined before t just in case
they are green but to other things just in case they are blue. Then at time t
we have, for each evidence statement asserting that a given emerald is green,
a parallel evidence statement asserting that emerald is grue.

Goodman’s question is whether we should conjecture that all emeralds are green rather
than that all emeralds are grue when we obtain a sample of green emeralds examined before
time t, and if so, why. I shall treat this as a question about optimal inference in a discovery
problem, in which the set of alternative hypotheses comprises the universal generalizations
of the various colour predicates under consideration. To see what the empirical content
of these hypotheses is, notice that they determine, for each “examination time” n, a
unique colour for the emerald examined at n. Thus the empirical content of the claim
“all emeralds are green” is that at each time, the emerald examined at that time is green;
that is, the empirical content is the singleton {ε}, where εn = green for all n. The
empirical content of “all emeralds are grue” is that at times earlier than the critical time
t, the emerald examined at that time is green, and that at time t and later times, the
emerald examined is blue. That is, the empirical content of “all emeralds are grue” is the
singleton {τ}, where τ is the data stream such that τn = green if n < t and τn = blue
otherwise. Figure 2 shows these two data streams. If not all emeralds are examined,
then “all emeralds are green (grue)” may be empirically adequate yet false, namely if all
examined emeralds are green (grue) but the unexamined ones are not. In what follows, I
shall not be concerned with this possibility.5 In particular, for the sake of more natural
expression, I will use the term “all emeralds” to implicitly mean the same as “all examined

4Putnam showed how means-ends analysis yields a critique of “confirmation functions” that pro-
duce “degrees of confirmation” in light of new evidence [Putnam 1963]. For learning-theoretic treat-
ments of Bayesian conditioning see for example, [Earman 1992, Ch.9], [Osherson and Weinstein 1988],
[Kelly et al. 1997], [Kelly and Schulte 1995], [Juhl 1997].

5There are several reasons why one might want to neglect it. We might assume that in the long run,
all existing emeralds will be examined. Or we might just not care about emeralds that are forever hidden
from sight; in other words, we may concern ourselves only with the empirical adequacy of a theory, along
the lines of [Van Fraassen 1980].
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emeralds”. For example, I will say that the conjecture “all emeralds are green” is correct,
or true, on the data stream ε along which only green emeralds are found forever.
We obtain different versions of Goodman’s Riddle of Induction by enlarging the set of

alternative hypotheses with other gruesome predicates. Let me remark at the outset that
my aim is not to interpret Goodman’s text, and I make no claim that any of the discovery
problems that I shall describe below are exactly what he had in mind. Indeed, the full
strength and generality of the theory presented in this paper becomes most apparent when
we apply it to a host of Riddles of Induction.
As is well-known, Goodman showed that “green” (and similarly, “blue”) may be de-

fined in terms of “grue” and “bleen”. Suppose that t is the critical time, such that an
emerald is grue (bleen) iff the emerald is examined before time t and found to be green
(blue), or the emerald is examined at or after time t and found to be blue (green). Then
an emerald is green iff it is examined before time t and found to be grue, or the emerald
is examined at or after time t and found to be bleen. In the grue-bleen reference frame,
we would define the empirical content of the hypothesis “all emeralds are green” to be
the singleton ε such that εn = grue if n < t, and εn = bleen if n ≥ t. As will become
apparent, it does not matter to my methodological analysis whether we use the green-blue
or the grue-bleen pair of predicates to define the relevant data streams. (I will return to
this point in Section 8.) For ease of exposition solely, I shall continue to define “grue”
predicates in terms of “green” and “blue”.

3.2. The One-Shot Riddle of Induction. One reading of Goodman’s Riddle is that
we are taking two colour predicates under consideration: The familiar “green” and the
unfamiliar “grue”, where grue is defined with respect to some fixed “critical time” t. Thus
we have two alternative hypotheses, “all emeralds are green” and “all emeralds are grue”,
or as Goodman would say, two candidates for “projection”. If these are the only two
serious possibilities, we may take it as background knowledge that either all emeralds are
green or that all emeralds are grue; see Figure 2. I refer to this version of the Riddle of
Induction as the one-shot Riddle of Induction. Let’s consider Goodman’s challenge
of what to project before the critical time in the one-shot Riddle. We can sidestep the
challenge by waiting until the critical time t before projecting anything. If the emerald
examined at the critical time t is green, we know for certain that not all emeralds are
grue. If the emerald examined at the critical time t is blue, we know for certain that not
all emeralds are green.
An empirical proposition P entails another empirical proposition P 0 just in case

P ⊆ P 0. If e is a finite evidence sequence, [e] denotes the empirical proposition containing
all and only those data streams with e as an initial segment. Now we may define the
cautious inference rule δC as follows, for any finite data sequence e (sample of examined
emeralds):

1. if [e] entails that Hgrue is false, δC(e) = Hgreen;

2. if [e] entails that Hgreen is false, δC(e) = Hgrue;

3. else δC(e) = Hgrue ∪Hgreen.
Figure 3 illustrates the cautious inference rule. This inference method shows that the

one-shot Riddle of Induction is a particularly easy discovery problem: An inquirer can
eventually decide conclusively which of the two alternatives (“all emeralds are green” and
“all emeralds are grue”) is true, and we can specify in advance a deadline by which the
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evidence settles the matter (namely the critical time t). This reflects the fact that the one-
shot Riddle of Induction does not pose a problem of induction as classical writers such as
Sextus Empiricus and Hume conceived of it. On the traditional conception, the essence of
the problem is that no matter how much evidence an inquirer may have obtained, further
observations may refute her generalizations.6 The one-shot Riddle of Induction is not
a problem of induction in this sense because there is a finite amount of evidence that
decides which of the two alternative generalizations is correct, namely the evidence up to
the critical time t.
Should an inquirer be cautious and wait until the critical time before projecting a

generalization about the colour of emeralds? The cautious method δC leads us to the
right generalization without errors along the way, and there is no risk that at the critical
time, we may have to take back a conjecture that is refuted at that time. If the critical
time is “tomorrow”, or, say, “a week from now”, this is an attractive way to proceed. But
if the critical time is “twenty years from now” it may seem too long to wait for conjectures
until then. One way of putting the point precisely is that the cautious method δC avoids
errors and retractions, but is slow to settle on the right generalization about the colour of
emeralds. We see this clearly if we contrast δC with the natural projection rule δN that
projects “all emeralds are green” if all emeralds examined so far are green.
An empirical proposition P is consistent with another empirical proposition P 0 iff

P ∩ P 0 6= ∅. Now we may formally define δN for all finite evidence sequences e (samples
of green emeralds):

1. if [e] is consistent with Hgreen, δN (e) = Hgreen;

2. else δN (e) = Hgrue.

Figure 3 shows the natural projection rule. In what sense is the natural projection rule
δN faster than the cautious method δC? If all emeralds are grue, then both δN and δC
settle on the right generalization (with certainty) at the critical time t, but not before then.
If all emeralds are green, again, δC settles on the right generalization at the critical time
t, but not before then; in contrast, the natural projection rule δN conjectures immediately
that all emeralds are green and thus settles on the truth at once (albeit without certainty).
So the natural projection rule never converges after the cautious rule. And if all emeralds
are green, the natural projection rule converges faster than the cautious rule (at time 1
rather than at the critical time t). In other words, the natural projection rule dominates
the cautious one with respect to time-to-truth. I shall define this notion of dominance
precisely in Section 5.
Thus in the one-shot Riddle of Induction, an inquirer has to make a choice between

two conflicting values: avoiding error and retractions, on the one hand, and converging to
the truth as fast as possible, on the other. In Section 7, I shall characterize the class of
discovery problems in which there is a tension between these groups of desiderata, and the
extent of the conflict between them in a given problem. The one-shot Riddle is an instance
of a discovery problem in which minimizing convergence time conflicts with avoiding errors

6Sextus writes: ”[The dogmatists] claim that the universal is established from the particulars by
means of induction. If this is so, they will effect it by reviewing either all the particulars or only some
of them. But if they review only some, their induction will be unreliable, since it is possible that some
of the particulars omitted in the induction may contradict the universal. If, on the other hand, their
review is to include all the particulars, theirs will be an impossible task, because particulars are infinite
and indefinite. Thus it turns out, I think, that induction, viewed from both ways, rests on a shaky
foundation” [Sextus Empiricus 1985, p.105].
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and retractions. In fact, it is the simplest possible problem of this kind: There are only
two possible data streams, and only two possible alternative hypotheses; any fewer data
streams or hypotheses, and we have a trivial inference problem in which background
knowledge entails the correct hypothesis a priori, before any evidence is obtained.

3.3. Finitely Iterated Riddles of Induction. If we are willing to investigate one
grue predicate with critical time t, why not another with critical time t0? Another plausible
version of the Riddle includes several gruesome predicates as candidates for projection,
each defined by a specific critical time. I call such variants iterated Riddles of Induction.
We may iterate the Riddle finitely or infinitely often; let’s consider the finite case first.
Suppose we iterate the Riddle m times, such that we include grue predicates with critical
time 1, 2, ...,m as alternatives to green. Denote the grue predicate with critical time t by
grue(t). The hypothesis that “all examined emeralds are grue(t)” is correct on a data
stream τ just in case τn = green if n < t and τn = blue otherwise, for all n > 0. I
denote this hypothesis by Hgrue(t). The m-iterated Riddle of Induction takes the
alternative hypotheses to be “all emeralds are green” and “all emeralds are grue(t)”,
for any natural number t ≤ m. If we assume as background knowledge that one of the
alternative hypotheses is true, them-iterated Riddle of Induction is the discovery problem
(Hm,Km), where Hm = {Hgrue(t) : 0 ≤ t ≤ m} ∪ {Hgreen}, and Km =

SHm. Figure 4
illustrates the possible data streams and alternative hypotheses in the 3-iterated Riddle
of Induction.
Like the one-shot version, no finitely iterated Riddle poses a problem of induction

in the classical sense either: an inquirer might wait until the last critical time–time
m–and then determine with certainty which of the possible generalizations about colour
predicates is correct. We may define this cautious procedure δmC for the m-iterated Riddle
of Induction by δmC (e) = K

m∩[e], for all finite data sequences e. As in the one-shot Riddle,
this cautious method eventually determines the correct generalizations about emerald
colours, no matter what the correct generalization is, and it does so without any errors
or retractions. Let’s compare δmC with the natural projection method δmN for the m-
iterated Riddle. The natural projection method δmN is defined as follows, for any finite
data sequence e (sample of emeralds):

1. δmN (e) = Hgreen if e is consistent with Hgreen;

2. otherwise δmN (e) = K
m ∩ [e].

The natural projection rule δmN determines the correct generalization about emerald
colours by time m at the latest, as the cautious procedure δmC does. But the natural
projection rule converges before the cautious one if all emeralds are green. Are there other
projection rules that match the speed of the natural one? Indeed there are: Consider a
rule δmt that projects any grue(t) predicate as long as the evidence is consistent with
grue(t), that is, as long as all examined emeralds are grue(t). For the sake of definiteness,
let’s say that δmt follows the natural projection rule δmN if the evidence falsifies Hgrue(t).
If all emeralds are in fact grue(t)–if Hgrue(t) is correct–the rule δ

m
t makes the correct

conjecture from time 1 onward, whereas the natural projection rule δmN conjectures that
all emeralds are green until time t− 1, and only then changes its mind7 to conclude that
all emeralds are grue(t). On the other hand, if all emeralds are green, then the natural

7Of course, rules do not have minds to change–only rule-followers do. But for my present purposes,
there is no equally brief and vivid alternative to speaking of a rule or a method changing its mind.
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Figure 4: The 3-Iterated Riddle of Induction
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projection rule is faster than any of the grue(t) rules. Thus the natural projection rule
δmN and the δmt rules do not dominate each other, as far as time-to-truth is concerned.
Yet the natural projection rule does better than all but one of the δmt rules at avoiding
retractions–in the sense that the natural projection rule may change its mind at most
once, whereas the unnatural projection rules might have to change their mind twice.
The one exception is the rule δmm rule that starts projecting Hgrue(m), that is, the colour
predicate with the latest critical time; this rule also changes its mind at most once. (For
a specific illustration of these observations, the reader may wish to trace the conjectures
of δ3N , the natural projection rule in the three-iterated Riddle of Induction–diagrammed
in Figure 4–and its alternatives δ32 and δ33.) Section 6 investigates avoiding retractions
as a performance criterion in detail.
The upshot is that, in the finitely m-iterated Riddle of Induction, efficiency crite-

ria such as minimizing convergence time and avoiding retractions select those rules that
project either “all emeralds are green” or “all emeralds are grue(m)” so long as these
hypotheses are consistent with the evidence, but rule out all other generalizations under
consideration.

3.4. The Infinitely Iterated Riddle of Induction. There is no reason why we
should consider gruesome predicates only up to a certain last critical time m. After all,
when that critical time m comes, an inquirer may well consider the possibility that all
emeralds are grue(m + 1). Accordingly, the infinitely iterated Riddle of Induction
includes all grue(t) predicates as candidates for projection, for any natural number t.
Formally, the infinitely iterated Riddle of Induction is the discovery problem (Hω,Kω)
where Hω = {Hgrue(t) : t ∈ ω} ∪ {Hgreen}, and Kω =

SHω. Figure 5 illustrates the
infinitely iterated Riddle of Induction.
A fundamental difference between the infinitely iterated Riddle and the finitely iterated

versions is that the infinitely iterated Riddle poses a problem of induction in the classical
sense: No matter how many green emeralds have been observed, the next one might be
blue. Another way of saying that the infinitely iterated Riddle is a classical problem of
induction is that the cautious projection rule is no longer guaranteed to eventually settle
on the correct generalization about emerald colours: if all emeralds are green the cautious
rule will never make the inductive leap to this generalization. On the other hand, for each
Hgrue(t) hypothesis, it is still the case that the evidence will eventually decide–namely
by time t–whether Hgrue(t) is correct or not. This is an important logical asymmetry
between “all emeralds are green” and “all emeralds are grue(t)”. This asymmetry has
strong methodological consequences: We shall see in Section 6 that the only efficient
projection rule for the infinitely iterated Riddle, in the sense of minimizing convergence
time and avoiding retractions, is the natural one: conjecture that all emeralds are green
as long as all emeralds examined so far have been found to be green.

4. Convergence to the Truth and Nothing But the Truth
For different versions of the Riddle of Induction, the preceding sections compared various
inductive methods with respect to whether they reliably settled on a correct hypothesis,
whether they did so quickly, and whether they did so with as few vacillations–retractions
or mind changes–as possible. The remainder of this paper is a systematic study of these
criteria as they apply to discovery problems in general. I begin with reliable convergence
to a correct hypothesis.
Through the ages, skeptical arguments dating back to Sextus Empiricus have aimed at
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showing that we cannot establish generalizations from a finite sample with certainty–for
the very next observation might refute our general conclusions [Sextus Empiricus 1985].
Hume formulated this observation as his celebrated problem of induction [Hume 1984].
One fallibilist response is to give up the quest for certainty and require only that science
eventually settle on the right answer in the “limit of inquiry”, without ever producing
a signal that it has done so. As William James put it, “no bell tolls” when science has
found the right answer [James 1982]. This conception of empirical success runs through
the work of Peirce, James, Reichenbach, Putnam and others. For discovery problems, we
may render it in a precise manner as follows.

Definition 2. Let H be a collection of alternative hypotheses, ε a data stream, and let
H be the hypothesis from H that is correct on ε.

1. An inductive method δ converges to the correct hypothesis on ε by time n
⇐⇒ for all later times n0 > n, δ(ε|n0), δ’s theory on the data observed on ε up to
time n0 is consistent (i.e., δ(ε|n0) 6= ∅) and entails H.

2. An inductive method δ converges to the correct hypothesis on ε ⇐⇒ there is
a time n by which δ converges to H on ε.

As I noted, in the one-shot and finitely iterated versions of the Riddle, both the natural
and the cautious projection rule will eventually converge to the correct generalizations, no
matter what the correct generalization is. In the infinitely iterated version of the Riddle,
we have the same guarantee for the natural projection rule, but not for the cautious one:
If all emeralds are green, the cautious rule never makes the required inductive leap to
generalizing beyond the evidence. On the other hand, an inquirer may be cautious for as
long as she pleases even in the infinitely iterated Riddle, as long as she eventually projects
that all emeralds are green, when it is in fact the case that all emeralds are green. Long-
run convergence to the truth permits an agent to be skeptical for as long as she pleases,
but not forever.
Following [Kelly 1996], I refer to inductive methods that are guaranteed to eventually

entail the right answer no matter what the right answer is as (logically) reliable. Logical
reliability is the core concept of formal learning theory.

Definition 3. Let H be a collection of alternative hypotheses, and let K be given back-
ground knowledge. An inductive method δ is reliable for the discovery problem (H,K)
⇐⇒ δ converges to the correct hypothesis on every data stream ε consistent with back-
ground knowledge K.

Reliable methods succeed in finding the correct hypothesis where unreliable methods
fail. Those whose aim in inquiry is to find a correct theory prefer methods that con-
verge to the truth on a wider range of possibilities. For example, the thrust of Putnam’s
critique of Carnap’s confirmation functions [Putnam 1963] was that Carnap’s confirma-
tion functions are not the best for detecting regularities among the data, because there
are other methods that succeed in doing so over a wider range of possibilities. (For an
evaluation of Putnam’s argument, see [Kelly et al. 1994].) This is just the fundamental
decision-theoretic principle of admissibility applied to inductive methods. In general, an
act A is admissible if it is not dominated. An act B dominates an act A if B yields
outcomes that are necessarily at least as good as those that A produces, and possibly
better, where a given collection of “possible states of the world” determines the relevant
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sense of (epistemic) necessity and possibility. In our methodological setting, background
knowledge specifies the relevant possibilities (data streams). The admissibility principle
yields the following criterion for comparing the performance of two inductive methods
with respect to convergence over a range of possible data streams.

Definition 4. Let H be a collection of alternative hypotheses, and let K be given back-
ground knowledge. In the discovery problem (H,K), an inductive method δ dominates
another inductive method δ0 with respect to convergence ⇐⇒

1. on every data stream consistent with K, δ converges to the correct hypothesis on ε
if δ0 does, and

2. on some data stream ε consistent with K, δ converges to the correct hypothesis on
ε and δ0 does not.

An inductive method δ is convergence-admissible for a discovery problem (H,K)
⇐⇒ δ is not dominated in that problem with respect to convergence.

It is clear that reliable methods are convergence-admissible because they eventually
arrive at the truth on every data stream (consistent with given background knowledge).
The converse holds as well: less than fully reliable methods are dominated with respect
to convergence. Thus applying the admissibility principle to the aim of converging to the
truth leads to logical reliability.

Proposition 5. Let H be a collection of alternative hypotheses, and let K be given
background knowledge. An inductive method δ is convergence-admissible for the discovery
problem (H, K) ⇐⇒ δ is reliable for that problem.

Learning theorists have studied extensively the structure of discovery problems with
reliable solutions, as well as the properties of reliable methods for given discovery prob-
lems (see for example, [Kelly 1996], especially Chapter 9, and [Osherson et al. 1986]). I
continue with my exploration of epistemic aims in addition to reliable convergence to the
truth.

5. Fast Convergence to the Truth
Time is a resource of inquiry. An inquirer who wants a correct theory as soon as possible
prefers his methods to stabilize to a true belief sooner rather than later. Let us call the
time that a method δ requires to settle on a hypothesis from a collection of alternatives
H, on a given data stream ε, the modulus of δ on ε; I denote the modulus by mod(δ, ε).
Formally, mod(δ, ε) = the first time n by which δ converges to the correct hypothesis on
ε. If a method δ fails to converge to a true hypothesis on a data stream ε, then I take its
modulus on ε to be infinite, so mod(δ, ε) = ω. In isolation from other epistemic concerns,
minimizing convergence time is a trivial objective: An inquirer who never changes her ini-
tial conjecture converges immediately. The interesting question is which reliable methods
converge as fast as possible. We can use the admissibility principle to evaluate the speed
of a reliable method as follows.

Definition 6. Let H be a collection of alternative hypotheses, and let K be background
knowledge. In the discovery problem (H,K), an inductive method δ dominates another
inductive method δ0 with respect to convergence time ⇐⇒
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1. on every data stream ε consistent with K,mod(δ, ε) ≤ mod(δ0, ε), and
2. for some data stream ε consistent with K,mod(δ, ε) < mod(δ0, ε).

An inductive method δ is data-minimal for a discovery problem (H,K) ⇐⇒ δ is
not dominated in (H,K) with respect to convergence time by another method δ0 that is
reliable for (H,K).

The term “data-minimal” expresses the idea that methods that converge as soon as
possible make efficient use of the data (cf. [Gold 1967, Kelly 1996, Osherson et al. 1986]).
Data-minimal methods are exactly the ones that satisfy a simple, intuitive criterion. Let’s
say that a method δ projects its current conjecture H at a given stage of inquiry if δ
converges to H along some data stream consistent with background knowledge and the
evidence obtained by that stage. For example, in the three versions of Goodman’s Riddle,
the natural projection rule projects its current generalization at each stage of inquiry. The
cautious rule, on the other hand, does not project its current hypothesis before the critical
time, because it is not making a conjecture as to which of the alternative hypotheses is
correct. This leads to the following definitions.

Definition 7. Let δ be a discovery method for a discovery problem (H,K) and let e be
a finite data sequence, H ∈ H one of the alternative hypotheses.

1. δ projects H at e along data stream ε ⇐⇒ for all evidence sequences e0 such
that e ⊆ e0 ⊂ ε:

(a) δ(e0) entails H, and

(b) δ(e0) is consistent.

2. δ projects H at e given background knowledge K ⇐⇒ there is a data stream ε
consistent with K such that δ projects H at e along ε.

3. δ projects its current hypothesis at e given K ⇐⇒ there is some (unique) hy-
pothesis H ∈ H such that δ projects H at e given K.

If a method fails to project its current hypothesis, then the method is certain to
eventually abandon the hypothesis no matter what future evidence it receives. So I use
the phrase “method δ takes its current conjecture seriously” as an alternative to “method
δ projects its current hypothesis”.
The next theorem says that data-minimal methods are exactly those that always take

their conjectures seriously.

Theorem 8. Let H be a collection of alternative empirical hypotheses, and let K be
given background knowledge. A reliable method δ is data-minimal for the discovery
problem (H,K) ⇐⇒ for each finite data sequence e consistent with K, δ projects its
current hypothesis at e given K.

It follows from Theorem 8 that in all three versions of the Riddle of Induction, the
natural projection rule is data-minimal, whereas the cautious projection rule is not. Note
that data-minimal reliable methods always produce consistent theories because a reliable
method does not converge to an inconsistent (and hence false) theory.
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6. Steady Convergence to the Truth
Thomas Kuhn argued that one reason for sticking with a scientific paradigm in trouble is
the cost of retraining and retooling the scientific community [Kuhn 1970]. The literature
around “minimal change” belief revision shows that minimizing the extent of retractions is
a plausible desideratum for theory change [Gärdenfors 1988]. Similarly, learning theorists
have investigated methods that avoid “mind changes”, [Putnam 1965, Sharma et al. 1997,
Case and Smith 1983]. For discovery methods, this motivates a different criterion for
evaluating the performance of a method on a given data stream: We want methods whose
conjectures vacillate as little as possible.
Let δ be a discovery method for a collection of alternatives H. I say that δ retracts

its conjecture on a data stream ε at time n+1, or changes its mind at ε|n+1, if δ(ε|n)
is consistent and entails a hypothesis H from H, but δ(ε|n + 1) either is inconsistent or
does not entail H. I denote the number of times that a method δ changes its mind on a
data stream ε by MC(δ, ε); formally, MC(δ, ε) = |{n : δ changes its mind at ε|n+1}|. If
δ does not stabilize to a hypothesis on a data stream ε, then MC(δ, ε) is infinite.
As with convergence to a true theory and convergence time, we can define a stan-

dard of performance for inductive methods by applying the admissibility principle to
the aim of avoiding retractions; I refer to this performance standard as mind-change—
minimality. It turns out that mind-change—minimality imposes stringent demands on
inductive methods: A reliable mind-change—minimal method exists for a given discovery
problem just in case the evidence is guaranteed to eventually entail the correct hypothesis
[Schulte forthcoming, Prop.8]. In other words, mind-change—minimality is unattainable
when there is a genuine problem of induction in the traditional sense. When there is no
genuine problem of induction, as in the finitely iterated Riddles, the mind-change—minimal
methods are the skeptical “wait-and-see” methods that wait until the evidence settles the
question at hand.
Learning theorists have examined another decision criterion by which we may evaluate

the performance of a method with respect to retractions: the classic minimax criterion.
Minimaxing retractions is possible even when there is a problem of induction. Indeed,
this criterion turns out to be a very fruitful principle for deriving plausible constraints on
the short-run inferences of reliable methods.
The minimax principle directs an agent to consider the worst-case results of her options

and to choose the act whose worst-case outcome is the best. So to minimax retractions
with respect to given background knowledge K, we consider the maximum number of
times that a method might change its mind assuming that K is true, which is given by
max{MC(δ, ε) : ε ∈ K}.8 If max{MC(δ, ε) : ε ∈ K} < max{MC(δ0, ε) : ε ∈ K},
minimaxing retractions directs us to prefer the method δ to the method δ0. The principle
of minimaxing retractions by itself is trivial, because the skeptic who always conjectures
exactly the evidence never retracts anything. But using the minimax criterion to select
among the reliable methods the ones that minimax retractions yields interesting results,
as we shall see shortly. The following definition makes precise how to use the minimax
criterion in this way.

Definition 9. Suppose that δ is a reliable discovery method for alternative hypotheses H
given background knowledge K. Then δ minimaxes retractions ⇐⇒ there is no other
reliable method δ0 for the discovery problem (H,K) such that max{MC(δ, ε) : ε ∈ K} >
max{MC(δ0, ε) : ε ∈ K}.

8 If {MC(δ, ε) : ε ∈ K} has no maximum, let max{MC(δ, ε) : ε ∈ K} = ω.



The Logic of Reliable and Efficient Inquiry 17

If there is no bound on the number of times that a reliable method may have to change
its mind to arrive at the truth, max{MC(δ, ε) : ε ∈ K} is infinite for all reliable methods δ,
and the minimax criterion has no interesting consequences (for examples of such discovery
problems see [Kelly 1996, Ch.4], or the Hypergrue problem described at the end of Section
6).9 But if we can guarantee that a reliable method δ can succeed in identifying the correct
hypothesis without ever using more than n mind changes, the principle selects the method
with the best such bound on vacillations. I say that a method δ identifies a true hypothesis
from a collection of alternatives H given background knowledge K with at most nmind
changes if δ is a reliable method for H given K, and max{MC(δ, ε) : ε ∈ K} ≤ n. The
goal of minimaxing retractions leads us to seek methods that succeed with as few mind
changes as possible; learning theorists refer to this paradigm as discovery with bounded
mind changes [Kelly 1996, Ch.9].
To get a feel for what minimaxing mind changes is like, let us consider the three

versions of Goodman’s Riddle of Induction. In the one-shot version, we can simply wait
until the critical time when the evidence entails which of the two possible colour predicates
is correct. This method succeeds with 0 retractions and hence minimaxes mind changes.
Note that making a conjecture before the critical time–as data-minimality requires by
Theorem 8–does not minimax retractions: if a reliable method conjectures at time t0 < t
that all emeralds are green or that all emeralds are grue(t), the subsequent emerald
colours may be such that the method has to change its mind again. For example, if a
method δ projects that all emeralds are green after the first emerald is found to be green,
as the natural projection rule does, the emerald examined at the critical time t may be
blue, forcing δ to change its mind. Similarly, in the finitely iterated version of the Riddle,
minimaxing retractions requires a method to be “skeptical” and to not go beyond the
evidence in its conjectures.
The infinitely iterated Riddle of Induction is different, because in this problem it is

not possible to reliably converge to the correct hypothesis with 0 retractions: After some
run of green emeralds, a reliable method δ must project that all emeralds are green.
Otherwise δ fails to conjecture that all emeralds are green when in fact they are, and
hence is unreliable. So let k be the first time such that after k green emeralds have
been examined, δ projects that all examined emeralds are green. Then if a future emerald
examined after time k turns out to be blue, δ has to (eventually) retract its hypothesis that
all examined emeralds are green, or else again δ is unreliable. Since this argument applies
to any reliable method δ, in the infinitely iterated Riddle it is impossible to reliably find
the correct colour generalization with no retractions. The reason is that in that version of
the Riddle, background knowledge and the available evidence never conclusively establish
that all emeralds are green, and hence reliable methods must take an “inductive leap”
and eventually go beyond the evidence if the data continue to be consistent with that
hypothesis. This is so whenever there is a genuine problem of induction: If the evidence,
together with background knowledge, never entails that H is true, then after some finite
amount of evidence, a reliable method must make an inductive leap to conjecture H,
and after that point the evidence may be such that H is false. Conversely, if there is no
genuine problem of induction in a given discovery problem, a method can reliably identify
the correct hypothesis by waiting until the evidence settles the matter. Hence it is possible

9However, [Jain and Sharma 1997] define ordinal-valued mind-change bounds for learning methods (see
also [Sharma et al. 1997], [Freivalds and Smith 1993]). Even when there is no finite worst-case bound on
the number mind changes that a reliable learner may have to undergo in a given discovery problem, there
may be an ordinal bound.
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to reliably solve a discovery problem with 0 retractions just in case the problem is not
genuinely inductive. This leads to the following characterization of discovery problems
that require no mind changes.

Proposition 10. Let H be a collection of alternative hypotheses, and let K be given
background knowledge. Then there is a reliable discovery method for the discovery prob-
lem (H, K) that never retracts its conjectures ⇐⇒ for each data stream ε consistent
with background knowledge K, there is a time t such that K ∩ [ε|t] entails the hypothesis
H ∈ H that is correct on ε.

Thus all reliable methods require at least one mind change to solve the infinitely iter-
ated Riddle. The natural projection rule requires at most one mind change: If all examined
emeralds are in fact green, the rule converges to the correct belief with 0 retractions. And
if all examined emeralds are grue(t) for some critical time t, the natural projection rule
changes its mind once at time t and never thereafter. Since there is a reliable discovery
method for the infinitely iterated Riddle that requires at most one mind change, mini-
maxing retractions rules out all methods that might use more than one. Which reliable
projection rules change their mind at most once? Strikingly, none of the unnatural ones
that project a grue predicate after examining a sample of green predicates.10 For consider
a reliable method δ that examines k green emeralds and then projects that all examined
emeralds are grue(t), for some later time t > k. Now suppose that we continue to find
green emeralds beyond time t. Then the evidence falsifies δ’s earlier conjecture, and even-
tually δ retracts “all examined emeralds are grue(t)” since δ is reliable–one retraction.
Indeed, if all examined emeralds continue to be green, δ must eventually project that all
emeralds are green, say at time l. But then at some later time l0 > l, a blue emerald may
be found, again falsifying δ’s conjecture, and forcing δ to change its mind for a second
time.
Since this argument applies to any projection rule that projects a grue(t) predicate

after finding nothing but green emeralds, reliability and minimaxing retractions allow only
those rules that, for a finite “waiting time” don’t go beyond the evidence while finding
green emeralds, and then eventually project “all emeralds are green”. Now by Theorem 8,
data-minimality does not permit inductive methods to “wait for more evidence” before
conjecturing one of the alternative hypotheses. And as we have seen, minimaxing retrac-
tions requires them to project “all emeralds are green” when all emeralds observed so
far are green. Data-minimal methods must also immediately conclude that all emeralds
are grue(t) when the first blue emerald appears at time t. Thus reliability together with
data-minimality and minimaxing retractions single out the natural projection rule as the
only optimal one. The next proposition records this observation.

Proposition 11 [with Kevin Kelly]. In the infinitely iterated Riddle of Induction, the
natural projection rule is the only reliable and data-minimal projection rule that mini-
maxes retractions.

Next, let’s consider a finitely iterated Riddle, say with the latest critical time at stage
m. As we saw in Section 3.3, it is possible to find the correct generalization in this version
by simply waiting until stage m. This cautious procedure δmC requires 0 retractions, and
hence minimaxes retractions, but it is not data-minimal because it does not project any
hypothesis until stage m. Suppose we apply the criterion of minimaxing retractions to
10Kevin Kelly was the first to notice this fact.
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select among the data-minimal reliable projection rules the ones with the best bound
on mind changes–which methods are optimal in that sense? By Theorem 8, a data-
minimal rule must immediately project a generalization (for example “all emeralds are
grue(m)”). But that generalization may turn out to be false (for example if the m-th
examined emerald is green). Then the data-minimal rule has to change its mind. Thus all
reliable data-minimal projection rules in the m-iterated Riddle must change their mind at
least once (for m > 1). Which ones don’t change their mind more than once? There are
exactly two: the natural projection rule, and the δmm rule that projects “all emeralds are
gruem” so long as that conjecture is consistent with the evidence. Contrast this with a
data-minimal rule δmm−1 that begins by projecting “all emeralds are grue(m− 1)”. Then
if the first m − 1 emeralds are green, the conjecture “all emeralds are grue(m − 1)” is
falsified, and δmm−1 has to change its mind immediately (since δ

m
m−1 is data-minimal). But

no matter whether δmm−1 then projects that all emeralds are green or that all emeralds
are grue(m), its conjecture may be falsified again, and δmm−1 must change its mind for a
second time. This shows that among the data-minimal projection rules in the m-iterated
Riddle of Induction, only the natural projection rule and δmm minimax retractions.

Proposition 12. In a finitely iterated Riddle of Induction, let m be the last “critical
time”. Let δmm be the projection rule that projects “all emeralds are grue(m)” until the
evidence falsifies this conjecture and let δmN be the natural projection rule. The two rules
δmm and δmN are the only reliable and data-minimal rules that succeed with at most one
mind change.

To sum up: In the infinitely iterated Riddle, it is possible to have a data-minimal
projection rule that minimaxes retractions. The only such rule is the natural one. In the
finitely,m-iterated Riddle, minimizing time-to-truth conflicts with avoiding retractions. If
we put minimizing time-to-truth first, and then use the criterion of minimaxing retractions
to select among reliable data-minimal projection rules, we have a choice between the
natural projection rule and the δmm rule (“all emeralds are grue(m)”).
These examples show that reliability and efficiency criteria yield interesting, principled

and plausible recommendations for what inductive methods should conjecture in the short
run. The same is true if we apply the means-ends analysis to more puzzling Riddles of
Induction. For example, consider a Riddle that allows for n colour changes from blue to
green and back. That is, a data stream is possible in this Riddle just in case a blue emerald
follows a green one, or vice versa, no more than n times.11 The infinitely iterated Riddle of
Induction has n = 1. The alternative hypotheses are the universal generalizations whose
empirical content is exactly one data stream. In the n-colour change Riddle, it is possible
to reliably identify the correct universal generalization about emerald colours (that is,
the actual data stream) with at most n retractions. And the only data-minimal reliable
method that accomplishes this and minimaxes retractions projects that all emeralds are
green as long as all emeralds examined so far are green. On the other hand, there is another
Riddle in which it is impossible to succeed with any bounded number of retractions, so the
directive to minimax retractions does not apply; I refer to this Riddle as the “Hypergrue
Problem”. (The problem and its name are due to Kevin Kelly.) In the Hypergrue Problem,
the number of possible colour changes increases with time, such that if the first colour
change occurs at stage t, then t more colour changes are possible afterwards–but no more
than t.
11Defining the alternative possibilities in terms of blue-green colour changes is not “privileging green”

over grue, just convenient.
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To analyze these examples and other discovery problems, we do well to equip ourselves
with some fundamental mathematical tools for investigating data-minimality and the
mind-change complexity of inductive problems.

7. The Topology of Fast and Steady Reliable Inquiry

Proposition 10 characterizes the discovery problems in which reliable methods need no
mind changes. This section generalizes the proposition to any bound n on the number
of times that a reliable method might change its mind. What is the structure of those
discovery problems that don’t require more than n retractions? I answer this question in
terms of the topology of the alternative hypotheses12 , determined by the given background
knowledge. The finite versions of the Goodmanian Riddle show that data-minimality–
minimizing convergence time–may require extra mind changes. In other problems, such
as the infinitely iterated Riddle of Induction, there is no such conflict. I characterize the
number of mind changes that a reliable data-minimal method might have to undergo in a
given discovery problem. Together, the two characterizations measure the extent to which
data-minimality conflicts with avoiding retractions in a given discovery problem.

7.1. Necessary and Sufficient Conditions for Discovery With Bounded Mind
Changes. A reliable discovery method δ identifies a correct hypothesis from a collection
of alternatives H with at most n mind changes given background knowledge K if δ does
not change its mind more than n times on any data stream ε consistent with K. That is,
δ succeeds with at most n mind changes if δ is a reliable discovery method for H given
K, and max{MC(δ, ε) : ε ∈ K} ≤ n. The next theorem characterizes what background
knowledge K must be like if there is a discovery method δ that reliably identifies a correct
hypothesis from a collection of alternatives H and never changes its mind more than n
times on any data stream ε consistent with K. I define the characteristic condition induc-
tively, starting with discovery without any mind changes. Consider an initial conjecture
H. Suppose that H is not certain (i.e., the background knowledge K does not entail H).
Then any reliable discovery method starting with H has to change its mind if H is false.
If after this mind change, still n more mind changes are required, a total of n + 1 mind
changes may result. So if a reliable discovery method δ whose initial conjecture is H never
requires more than n mind changes, there must be some point at which δ can change its
mind and incur no more than n − 1 mind changes whenever H is false. The structures
that meet this requirement look like “feathers” ([Kelly 1996, Ch.4]). I write Fn(K,H) for
“K is an n-feather for H”. The intended interpretation of Fn(K,H) is “every reliable
discovery method starting with H requires at least n+ 1 mind changes given K”.

Definition 13. Let H be a collection of empirical hypotheses, and let K be background
knowledge. Let H(ε) stand for the (unique) member of H correct on ε ∈ K. Write
Fn(K,H) for “K is an n-feather for H”, and define this notion as follows.

1. F0(K,H)⇐⇒ ∃ε ∈ K −H.
2. Fn+1(K,H)⇐⇒ ∃ε ∈ K −H.∀k: Fn(K ∩ [ε|k],H(ε)).
To illustrate this definition, the background knowledgeK in the infinitely iterated Rid-

dle of Induction is a 0-feather forHgreen (“all emeralds are green”)–that is, F0(K,Hgreen)
holds–because Hgreen is not true on every data stream consistent with K (see Figure 5).
12 [Schulte and Juhl 1997] and [Kelly 1996, Ch.4] define the relevant topology on the space of data

streams.
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But K is not a 1-feather for Hgreen, that is, ¬F1(K,Hgreen) holds: for every data
stream ε in K on which Hgreen is false–on which a blue emerald is observed at, say time
k–there is an initial segment ε|k, such that K ∩ [ε|k] is not a 0-feather for Hgrue(k) (“all
emeralds are grue(k)”), that is, Hgrue(k) is entailed by K ∩ [ε|k]. By contrast, K is a 1-
feather for any Hgrue(t), that is, F1(K,Hgrue(t)) holds: A given hypothesis Hgrue(t) is false
on the sequence τ of all green emeralds. And no initial segment τ |k entails Hgreen = H(τ).
So K ∩ τ |k is a 0-feather for Hgreen.
Figure 6 displays the general structure of 0 and 1-feathers, and Figure 7 illustrates

2-feathers and 3-feathers.
The next lemma shows that feather structures characterize how many mind changes

are required by a discovery method that starts with a certain initial conjecture.

Lemma 14. Let H be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable discovery method δ for the discovery problem
(H,K) such that
1. δ succeeds with at most n mind changes, and

2. δ(∅) is consistent and entails H
⇐⇒ (K,H) is not an n-feather (that is, ¬Fn(K,H)).
The last complication is that a reliable method may delay conjecturing any of the

alternative hypotheses. In fact, minimaxing retractions can require arbitrarily long delays.
In the one-shot Riddle of Induction, for example, a method has to wait until the critical
time t before projecting either of the two alternatives. Thus the full characterization
of discovery with bounded mind changes is this: A reliable method must use at least
n+1 mind changes, if and only if, there is one data stream ε consistent with background
knowledge K such that every initial segment ε|k is an n-feather for every hypothesis H
under consideration.

Theorem 15. LetH be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable discovery method δ for H given K that succeeds
with at most n mind changes ⇐⇒ for every data stream ε consistent with K, there is a
time k such that (K ∩ [ε|k],H(ε)) is not an n-feather (that is, ¬Fn(K ∩ [ε|k],H(ε)).
From Theorem 15, we can derive a universal method δMC for reliably identifying

a correct hypothesis from H given K when (K,H) is not an n-feather. Say that the
dimension of (K,H) is n if (K,H) is an n-feather but not an n+1 feather. The universal
method δMC begins by conjecturing nothing but the evidence until (K ∩ [e],H) is of
dimension n, for some H ∈ H; then δMC conjectures H. Let a finite data sequence e ∗ x
be given (i.e., e followed by one datum x); if there is an H 0 such that (K ∩ [e∗x],H 0) is of
lower dimension than (K∩[e∗x],H), then δMC(e∗x) = H 0; otherwise δMC(e∗x) = δMC(e).
Theorem 15 settles the status of the “Hypergrue” problem posed at the end of Section

6: it is possible to reliably find the correct generalization about colour predicates, but not
with a bounded number of mind changes. For the positive part of the claim, consider the
natural projection method that conjectures that all emeralds are green until a blue-green
colour change occurs. If all emeralds are green, this method converges to the correct
generalization. Otherwise, let t be the first time at which a blue emerald is observed. By
the definition of the Hypergrue problem, at most t more colour changes are now possible.



The Logic of Reliable and Efficient Inquiry 22
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Figure 6: “Feather” Structures characterize Discovery with Bounded Mind Changes. The
figure illustrates 0-feathers and 1-feathers.
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Figure 7: 2-feathers and 3-feathers
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This means that the evidence together with the applicable background knowledge Khyper

does not constitute a t+1 feather, and hence the universal method δMC now settles on the
correct generalization about emerald colours with no more than t mind changes. For the
impossibility claim, let an inductive method δ be given and suppose that δ changes its mind
at most n times on any data stream consistent with the background knowledge Khyper

specified in the Hypergrue problem. Let e be the evidence sequence consisting of n + 1
green emeralds. Then (Khyper ∩ [e], {ε}) is an n-feather for every universal generalization
{ε} consistent with Khyper∩ [e], and so no reliable method finds the correct generalization
about emerald colours with at most n mind changes given Khyper ∩ [e]. In particular, δ is
not reliable for the Hypergrue problem given Khyper ∩ [e], and hence not given Khyper.13

7.2. Necessary and Sufficient Conditions for Data-Minimal Discovery With
Bounded Mind Changes. Sometimes it is possible to minimax retractions with a
reliable and data-minimal method. In such cases inductive inquiry can epistemically
“have it all”, and the inferences of reliable and efficient methods have special intuitive
appeal. Other problems such as the finitely iterated versions of the Riddle pose a hard
choice between avoiding retractions and time-to-truth. In what problems does this tension
arise, and how serious is it?
The next theorem determines the exact extent to which data-minimal methods may

have to undergo extra mind changes to solve an inductive problem, compared to slower
methods whose convergence time is not optimal. I begin with a variant of Definition 13. If
a reliable data-minimal discovery method can succeed with nmind changes, then whenever
the previous conjecture H of a data-minimal method is refuted, the method must be able
to immediately change its mind to a conjecture H 0 after which no more than n− 1 mind
changes are required. Another way of putting the matter is that the universal method δMC

for discovery with bounded mind changes is not data-minimal unless for some hypothesis
H 0, (K ∩ [e ∗x],H 0) is of lower dimension than (K ∩ [e ∗x],H) whenever e ∗x falsifies the
previous conjecture H of δMC . Clause 2b of the next definition reflects this observation.
The intended interpretation of DM-Fn(K,H)–read “background knowledge K is a data-
minimal—n-feather for hypothesis H”–is “a reliable data-minimal method whose initial
conjecture is H requires at least n+ 1 mind changes”.

Definition 16. Let H be a collection of empirical hypotheses, and let K be background
knowledge.

1. DM-F0(K,H)⇐⇒ ∃ε ∈ K −H
2. DM-Fn+1(K,H)⇐⇒ if H is consistent with K, then ∃ε ∈ K −H such that

(a) ∀k :DM-Fn(K ∩ [ε|k],H(ε)), or
(b) ∃k : K ∩ [ε|k] entails that H is false, and ∀H 0 in H consistent with K ∩ [ε|k]:

DM-Fn(K ∩ [ε|k],H 0).

To illustrate this definition, consider the twice iterated Riddle of Induction with back-
ground knowledge K2. This background knowledge is a DM-0-feather for all universal
13 [Jain and Sharma 1997] and [Sharma et al. 1997] present an interesting generalization of mind change

complexity that allows us to classify the difficulty of Hypergrue in a more informative way. By their defin-
ition of ordinal-valued mind change bounds (originally due to [Freivalds and Smith 1993]), the Hypergrue
problem can be solved with ω · 2 mind changes.
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generalizations–that is, DM-F0(K, {ε}) holds for any ε ∈ K2–because K2 does not
entail any universal generalization. But (K2,Hgreen) and (K2,Hgrue(2)) are not DM-
1-feathers–that is, ¬DM-F1(K,Hgreen) and ¬DM-F1(K,Hgrue(2)) hold–because, first,
along every data stream ε on which, for example, Hgreen is false, eventually the evidence
entails the correct hypothesis. And second, there is no evidence that falsifies Hgreen with-
out entailing an alternative hypothesis. But (K2,Hgrue(1)) is a DM-1-feather: For the
evidence sequence e featuring one green emerald falsifies Hgrue(1), but does not entail an
alternative hypothesis; formally, for all {ε} consistent with K2 ∩ [e], we have that DM-
F0(K

2∩[e], {ε}) holds. Accordingly, a data-minimal projection rule whose first conjecture
is “all emeralds are grue(2)” might have to change its mind twice.
Since data-minimal methods must immediately project one of the alternative hypothe-

ses, a data-minimal method cannot wait for evidence before making a conjecture; otherwise
the characterization is analogous to Theorem 15.

Theorem 17. LetH be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable method δ for the discovery problem (H,K) such
that

1. δ(∅) is consistent and entails H, and
2. δ requires at most n mind changes, and

3. δ is data-minimal

⇐⇒ (K,H) is not a data-minimal n-feather (that is, ¬DM-Fn(K,H)).
Let’s return to the version of the Riddle of Induction from the end of Section 6 that

allows at most n blue-green colour changes to occur. In this Riddle, any reliable data-
minimal projection rule δ that minimaxes retractions conjectures that all emeralds are
green as long as all emeralds examined so far are green. Here’s why: By Theorem 8,
any data-minimal reliable projection rule δ must immediately entail some conjecture H.
Suppose that δ(∅) is inconsistent with Hgreen. Then along the data stream ε of all green
emeralds, δ must eventually change its mind to Hgreen; let the first such time be k. Then
K ∩ [ε|k] is still an n− 1-feather (and thus a data-minimal n− 1-feather), and so δ may
be forced to change its mind n more times, for a total of n + 1 mind changes. Thus
any data-minimal reliable projection rule projects “all emeralds are green” as long as all
emeralds observed so far are green.

8. Conclusion
Means-ends epistemology takes the answer to the question “why ought we to draw this
inference rather than that one?” to be of the form “because this inference method is the
best for the aims of inquiry”. This paper studied three natural and interesting epistemic
objectives: reliable convergence to a correct theory, fast convergence to a correct theory,
and steady convergence to a correct theory (avoiding retractions). We may consider the
latter two criteria as standards of efficiency for reliable empirical methods.
I investigated the structure of those inductive problems in which these goals are fea-

sible, and gave necessary and sufficient conditions that characterize this structure. I
specified the principles that guide inductive methods designed to attain these epistemic
goals where they are feasible. As an illustration, I applied these results to various versions
of Goodman’s Riddle of Induction. In the infinitary version of Goodman’s Riddle, there
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is only one efficient inference rule for this problem; it turns out to be the natural rule
(project that “all emeralds are green” as long as all observed emeralds are green). The
characterization results established in this paper show that whether an inductive problem
has the requisite structure for reliable efficient inquiry depends only on logical relations
of entailment between possible evidence items and the hypotheses under investigation.
Since acceptable translations from one language into another preserve logical entailment,
it does not matter to the methodology of reliable efficient inquiry what language we use
to describe evidence and hypotheses. In particular, the means-ends solution to Good-
man’s Riddle does not depend on whether we choose the “blue-green” or the “grue-bleen”
language for describing the problem.
This may surprise the reader–did Goodman not show that the blue-green and grue-

bleen pairs of predicates are interchangeable, in the sense that one pair can be defined
in terms of the other? The answer is that my analysis turns on logical (and topological)
asymmetries between the universal generalizations of these predicates. These asymmetries
depend on a pragmatic factor, namely which hypotheses we are willing to entertain as
candidates for projection (more generally, they depend on what hypotheses are consistent
with the inquirer’s background assumptions). When we allow grue predicates for all
critical times as candidates for projection, “all emeralds are green” is different from “all
emeralds are grue (with a given critical time t)”, because the classical problem of induction
arises for the former but not for the latter. That is to say, no matter how many green
emeralds have been found, our background knowledge allows that the next one may be
blue, and thus that “all emeralds are green” may be false. In contrast, if all emeralds
up to and including the critical time t are grue, the only candidate for projection is “all
emeralds are grue”, because in that case the evidence falsifies “all emeralds are green” as
well as all “grue” predicates with critical times other than t.
The characterization theorems for reliable efficient inquiry invite us to apply means-

ends analysis to other inductive problems. For example, it turns out that the Occam-like
problem of determining whether a given entity exists shares with Goodman’s Riddle the
structure characteristic of reliable efficient inquiry, and so does the problem of inferring
theories of reactions among elementary particles [Schulte forthcoming, Schulte 1997]. In
these cases too standards of efficiency yield interesting methodological recommendations:
A version of Occam’s Razor in the Occam problem, and a form of “choose the closest fit to
the data” in the particle problem. Thus one important strength of means-ends analysis is
that it reveals epistemologically significant, common structure among superficially quite
different empirical problems. The characterization theorems show that this structure does
not depend on the language in which evidence and hypotheses are described.
The goal of this paper was to contribute an explicit, general characterization of the

structure and logic of reliable efficient inquiry to the foundations of means-ends episte-
mology, and to illustrate some of the rewarding applications of this approach to questions
about inductive inference.
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9. Proofs
Proposition 5. Let H be a collection of alternative hypotheses, and let K be given
background knowledge. An inductive method δ is convergence-admissible for the discovery
problem (H, K) ⇐⇒ δ is reliable for that problem.

Proof. (⇐=) Immediate.
(=⇒) I show the contrapositive. Suppose that δ is not reliable for (H,K). Then there

is a data stream ε consistent with K such that δ fails to converge to the truth on ε.
Let H ∈ H be the hypothesis correct on ε, and define δ0 like this: Conjecture H while
the data are consistent with ε. If the observations deviate from ε, δ0 follows δ. Then δ0

converges to the correct hypothesis H on ε, and converges to the same hypothesis as δ on
all other data streams. Hence δ0 dominates δ with respect to convergence, and δ is not
convergence-admissible.

Theorem 8. Let H be a collection of alternative hypotheses, and let K be given back-
ground knowledge. A reliable method δ is data-minimal for the discovery problem (H,
K)⇐⇒ for each finite data sequence e consistent with K, δ projects its current hypothesis
at e given K.

Proof. (=⇒) I show the contrapositive. Suppose that there is some finite evidence
sequence e (consistent with K) such that δ does not projects its conjecture at e given K.
Let e1 be a shortest data sequence that extends e such that δ does project an hypothesis
H from H that is entailed by δ(e1) along some data stream ε ∈ K. Since δ does not
project δ(e), e1 must properly extend e; hence we may take e1 = e0 ∗ x, where x is the
last datum that appears in e1. Now define δ

0 by δ0(e0) = δ(e1), and δ0(e0) = δ(e0) at all
data sequences e0 different from e0. I show that δ

0 weakly dominates δ. By construction,
δ0 projects the hypothesis H along ε at e0. Thus mod(δ

0, ε) ≤ lh(e0). By contrast, the
choice of e0 implies that δ does not stabilize to H along ε at e0, so lh(e0) < mod(δ, ε).
Hence mod(δ0, ε) < mod(δ, ε); that is, δ0 converges on ε faster than δ does. Furthermore,
on no data stream consistent with background knowledge K does δ0 converges after δ.
For the only place at which δ and δ0 differ is e0, and by assumption δ is not converging at
e0 on any data stream ε consistent with K , since e0 is shorter than e1 and so δ doesn’t
take its conjecture at e0 seriously given K. This establishes that δ

0 weakly dominates δ.
(⇐=) Suppose that δ always takes its conjectures seriously given K. Consider some

other reliable method δ0 that converges faster than δ on some data stream ε ∈ K (i.e.,
mod(δ0, ε) < mod(δ, ε)). Let H be the hypothesis correct on ε, and let k be the first
time after δ0 converges on ε (that is, k ≥ mod(δ0, ε)) such that δ(ε|k) entails H 0 which
is inconsistent with H. Now by hypothesis, δ projects its conjecture H 0 along some data
stream τ ∈ K at ε|k; that is, k ≥ mod(δ, τ). Since δ0 projects H along ε at k, δ0 does
not entail H 0 at ε|k = τ |k. Thus mod(δ0, τ) > k ≥ mod(δ, τ). So δ0 does not dominate δ
in convergence time. Since any method δ0 that dominates δ in convergence time must be
faster than δ on some data stream ε ∈ K, this argument shows that δ is data-minimal.

Proposition 10. Let H be a collection of alternative hypotheses, and let K be given
background knowledge. Then there is a reliable discovery method for the discovery prob-
lem (H, K) that never retracts its conjectures ⇐⇒ for each data stream ε consistent
with background knowledge K, there is a time t such that K ∩ [ε|t] entails the hypothesis
H ∈ H that is correct on ε.
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Proof. (=⇒) I show the contrapositive. Suppose that for some data stream ε ∈ K,
K∩ [ε|t] does not entail the correct hypothesis H at any time t. Let δ be a reliable method
for (H,K); at some stage n, δ stabilizes to H along ε, such that δ(ε|n) entails H. By
assumption, K ∩ [ε|n] does not entail H, and thus there is a data stream τ ∈ K extending
ε|n on which H is false. Since δ is reliable, δ changes its mind on τ after stage n from H
to another hypothesis. Thus δ retracts its hypothesis at least once, and so does any other
reliable method for (H,K).
(⇐=) If the right-hand side holds, the cautious method δC that waits until the evidence

is reliable and never retracts its conjectures.

Proposition 11 [with Kevin Kelly]. In the infinitely iterated Riddle of Induction, the
natural projection rule is the only reliable and data-minimal projection rule that mini-
maxes retractions.

Proof. The natural projection rule δN conjectures that all emeralds are green until
it encounters a blue one; suppose that the k-th emerald is blue. Then δN concludes
that all emeralds are grue(k). If all emeralds are green, then δN converges to the right
generalization immediately. Otherwise, δN changes its mind, for the first time, after the
first blue emerald turns up. Hence–assuming that all emeralds are green or grue(k) for
some k–δN finds the correct generalization with at most one mind change. Finally, δN
always takes its conjectures seriously, so by Theorem 8, δN is data-minimal.
Now consider any projection rule δ that is reliable, data-minimal and minimaxes mind

changes; I show that δ = δN . Since δ is reliable, δ must eventually infer that all emeralds
are green if only green emeralds are observed. Let m be the minimal number of green
emeralds from which δ generalizes that all emeralds are green. I argue that m = 1,
that is, δ must immediately infer that all emeralds are green when one green emerald is
observed. For suppose otherwise (m > 1). Since δ is data-minimal, δ must project some
hypothesis other than “all emeralds are green” before the m-th green emerald is observed.
That is, δ changes its mind when the m-th emerald appears. But after δ has inferred
that all emeralds are green from the sample of m green emeralds, a blue emerald may be
found, say at time k, which establishes that all emeralds are grue(k). Since δ is reliable
and data-minimal, δ must then change its mind for the second time to conclude that all
emeralds are grue(k). So if m > 1, then δ does not minimax retractions; thus δ infers
that all emeralds are green after seeing the first green emerald. Since δ is data-minimal,
δ projects this hypothesis as long as all observed emeralds are green. And again by data-
minimality, δ concludes immediately that all emeralds are grue(k) if the k-th emerald
is blue. Thus δ = δN ; that is, the only reliable and data-minimal projection rule that
minimaxes retractions in the Riddle of Induction is the natural projection rule.

Proposition 12. In a finitely iterated Riddle of Induction, let m be the last “critical
time”. Let δmm be the projection rule that projects “all emeralds are grue(m)” until the
evidence falsifies this conjecture and let δmN be the natural projection rule. The two rules
δmm and δmN are the only reliable and data-minimal rules that succeed with at most one
mind change.

Proof. It is clear that both δmm and δmN are reliable, data-minimal and use at most
one mind change. Consider some other data-minimal rule δ that is reliable for the m-
iterated Riddle of Induction. Since δ is reliable, its initial conjecture on no evidence must
be “all emeralds are grue(m0)” for some m0 < m. The evidence sequence e comprising m0
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green emeralds is then consistent with background knowledge and falsifies δ’s conjecture.
Since δ is data-minimal, δ must change its mind at e immediately. Now there are at least
two alternative hypotheses consistent with background knowledge and e, namely Hgrue(m)
and Hgreen. So no matter what δ conjectures at e, the conjecture may turn out to be false,
in which case δ has to change its mind for a second time. Since this argument applies to
any reliable and data-minimal projection rule in the m-iterated Riddle of Induction, the
only reliable and data-minimal rules that succeed with at most one mind change are δmm
and δmN .

Lemma 14. Let H be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable discovery method δ for the discovery problem
(H, K) such that
1. δ succeeds with at most n mind changes, and

2. δ(∅) is consistent and entails H
⇐⇒(K,H) is not an n-feather (that is, ¬Fn(K,H)).
Proof. The proof is by induction on n.
Base Case, n = 0.
(⇐) Suppose that (K,H) is not a 0-feather. Then H is a priori certain, that is, K

entails H. So the method δ that always conjectures H reliably identifies the truth from
H with 0 retractions.
(⇒) Suppose that (K,H) is a 0-feather. Then there exists a data stream ε ∈ K −H.

Let δ be any reliable method that starts with H (i.e., δ(∅) entails H). Since δ is reliable,
δ changes its mind on ε at least once. Hence every reliable method that starts with H
may change its mind at least once.
Inductive Step: Assume the hypothesis for n and consider n+ 1.
(⇐) Suppose that (K,H) is not an n+1-feather. Then for every data stream ε ∈ K−H,

there is a time k such that ¬Fn(K ∩ [ε|k],H(ε)). By inductive hypothesis, for each such
point ε|k, we may choose a method δε|k and a hypothesis Hε|k such that δ(∅) = Hε|k and
δ succeeds with at most n mind changes given K ∩ [ε|k].
Now define a discovery method δ that reliably identifies a correct hypothesis from H

given K with no more than n+ 1 mind changes, starting with H:

1. δ(∅) = K ∩H;
2. If there is a time k such that

(a) 0 < k ≤ lh(e), and
(b) (K ∩ [ε|k]) is not an n+ 1-feather for some H 0 in H,
then let k be the least such time and conjecture δε|k(e) .

3. Otherwise, conjecture K ∩ [e] ∩H.
To see that δ succeeds with at most n + 1 mind changes, consider any data stream

ε ∈ K.
Case 1 : Clause 3 always obtains along ε. Then δ converges to H with 0 retractions.

Since (K,H) is not an n+ 1-feather, we have that ε ∈ H, and δ is correct.
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Case 2 : Clause 2 obtains at some point k along ε. Assume that k is the first such
point. Then on ε, time k is the earliest at which δ might change its mind. After time k,
δ follows δε|k and hence succeeds with at most n mind changes. Hence overall, δ changes
its mind at most n+ 1 times along ε. Since this is true for any data stream ε consistent
with background knowledge K, δ requires at most n+ 1 mind changes.
(⇒) Suppose that (K,H) is an n+1-feather. Then there is a data stream ε ∈ K −H

such that for all times k, (K ∩ [ε|k],H(ε)) is an n-feather (i.e., Fn(K ∩ [ε|k],H(ε)) holds).
Let δ be any reliable discovery method that starts with H (i.e., δ(∅) |= H). Then some
time along ε, δ changes its mind to H(ε); let k be the first such time. By inductive
hypothesis, any method δ0 that begins with H(ε) requires at least n+1 mind changes on
some data stream τ ∈ K ∩ [ε|k]. In particular, the following method δ0 does.

1. δ0(∅) = H(ε);
2. if e ⊆ ε|k, δ0(e) = H(ε);
3. if ε|k ⊆ e, δ0(e) = δ(e).

By construction, on K∩ [ε|k], δ0 changes its mind only after ε|k, and hence changes its
mind on K ∩ [ε|k] exactly when δ does. Hence δ changes its mind at least n+ 1 times on
some data stream τ ∈ K ∩ [ε|k]. Since δ also changes its mind before τ |k = ε|k, δ requires
at least n+ 2 mind changes. Hence any reliable method starting with H may change its
mind at least n+2 times when (K,H) is an n+1-feather, which completes the inductive
step.

Theorem 15. LetH be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable discovery method δ for the discovery problem
(H,K) that succeeds with at most n mind changes ⇐⇒ for every data stream ε consis-
tent with K, there is a time k such that (K ∩ [ε|k],H(ε)) is not an n-feather (that is,
¬Fn(K ∩ [ε|k],H(ε) ).
Proof. (⇐) Suppose that for every data stream ε consistent with K, there is a time

k such that (K ∩ [ε|k],H(ε)) is not an n-feather (i.e., ¬Fn(K ∩ [ε|k],H(ε)). By Lemma
14, for each such point ε|k, we may choose a method δε|k and a hypothesis Hε|k such that
δ(∅) = Hε|k and δ succeeds with at most n mind changes given K ∩ [ε|k]. Now define a
discovery method δ that reliably identifies a correct hypothesis from H given K with no
more than n mind changes:

1. If there is a time k such that

(a) 0 < k ≤ lh(e), and
(b) (K ∩ [ε|k],H 0) is not an n-feather for some H 0 in H,
then let k be the least such time and conjecture δε|k(e).

2. Otherwise, conjecture K ∩ [e].
For any data stream ε ∈ K, there eventually comes a first time k when (K ∩ [ε|k],H 0)

is not an n-feather for some H 0 in H. After time k, δ follows δε|k and hence succeeds with
at most n mind changes. Before time k, δ conjectures only the evidence and hence does
not change its mind.
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(=⇒) Conversely, suppose that there is a data stream ε ∈ K such that for all times k
(K ∩ [ε|k],H(ε)) is an n-feather (i.e., Fn(K ∩ [ε|k],H(ε)). Let δ be any reliable discovery
method. Then there is a first time k along ε at which δ conjectures H(ε). By the same
argument as in Lemma 14, δ requires at least n + 1 mind changes on some data stream
τ ∈ K ∩ [ε|k].
Theorem 17. LetH be a collection of alternative hypotheses, and let background knowl-
edge K be given. Then there is a reliable method δ for the discovery problem (H,K) such
that

1. δ(∅) is consistent and entails H, and
2. δ requires at most n mind changes, and

3. δ is data-minimal

⇐⇒ (K,H) is not a data-minimal n-feather (that is, ¬DM-Fn(K,H).)
Proof. The proof is by induction on n. The base case follows as in the proof of

Theorem 15.
Inductive Step: Assume the hypothesis for n and consider n+ 1.
(⇒) Suppose that (K,H) is a data-minimal n + 1-feather, that is, DM-Fn+1(K,H)

holds. Let δ be any reliable data-minimal discovery method for (H,K) that starts with
H. It follows from Theorem 8 that H is consistent with K. So by Definition 16 of
DM-Fn(K,H), we have that there is an ε such that

1. ∀k : DM-Fn(K ∩ [ε|k],H(ε)), or
2. ∃k : K ∩ [ε|k] entails that H is false, and ∀H 0 in H consistent with K ∩ [ε|k]:
DM-Fn(K ∩ [ε|k],H 0).

Case 1 : ∀k : DM-Fn(K ∩ [ε|k],H(ε)). The argument proceeds as in the proof of
Theorem 15: A reliable data-minimal method δ must eventually change its mind, say
at ε|k, to H(ε). But then by the assumption of this case, DM-Fn(K ∩ [ε|k],H(ε)), so δ
requires at least n+ 1 more mind changes by inductive hypothesis.
Case 2 : ∃k : K ∩ [ε|k] entails that H is false, and ∀H 0 in H consistent with K ∩ [ε|k]:

DM-Fn(K ∩ [ε|k],H 0). Let k be the first time that witnesses the condition of this case.
Since ε|k falsifies H given K, and δ is data-minimal, it follows from Theorem 8 that δ
changes its mind at ε|k, to a hypothesis H 0 that is consistent with K ∩ [ε|k]. But then
we have that DM-Fn(K ∩ [ε|k],H 0), so by inductive hypothesis, δ requires at least n+ 1
more mind changes. Hence in either case, δ requires at least n+ 2 mind changes.
(⇐) Suppose that (K,H) is not a data-minimal n+1-feather, that is, ¬DM-Fn(K,H).

At each point ε|k for which there is some H 0 in H such that (K ∩ [ε|k],H 0) is not a
data-minimal n-feather (i.e., ¬DM-Fn(K ∩ [ε|k],H 0)), apply the inductive hypothesis to
(K ∩ [ε|k],H 0) and choose a method δ0ε|k and a hypothesis Hε|k with the properties that

1. δ0ε|k(∅) = Hε|k;

2. δ0ε|k identifies a correct hypothesis from H given K ∩ [ε|k] with at most n mind
changes;

3. δ0ε|k is data-minimal given K ∩ [ε|k].
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If H is consistent with K ∩ [ε|k], I modify δ0ε|k as follows: Choose τ ε|k ∈ K ∩ [ε|k]∩H.
Set δε|k(e) = K ∩ [e] ∩ H if e ⊂ τ , and δε|k(e) = δ0ε|k otherwise. Note that δε|k is
data-minimal and reliable given K ∩ [ε|k] since δ0ε|k is.
Since (K,H) is not a data-minimal n + 1-feather, H is consistent with K. Choose a

data stream τ ∈ K that makes H true. Now define a data-minimal discovery method δ
that reliably identifies a correct hypothesis from H given K with no more than n+1 mind
changes:

1. If e ⊂ τ , δ(e) = K ∩ [e] ∩H;
2. Else if there is a time k such that

(a) 0 < k ≤ lh(e) and
(b) (K ∩ [e|k],H 0) is not an n-feather for some H 0 in H

then let k be the least such time and conjecture δε|k(e) .

3. else conjecture H.

By definition δ starts with H, i.e. δ(∅) = K ∩ [e]∩H. I show that δ and identifies the
correct hypothesis from H using no more than n+ 1 mind-changes. Let ε ∈ K .
Case 1: Clause 1 always obtains along ε. Then ε = τ , and so δ stabilizes to the correct

hypothesis H along ε (immediately).
Case 2: Clause 1 fails at some point m along ε . I consider two further cases.
Case 2a: Clause 2 is satisfied at some k along ε; let k be the first such time. Two

more subcases.
Case 2a1: k ≥ m. Then δ conjectures H until ε|k (by Clause 3) and then follows δε|k,

which identifies the correct hypothesis from H given K ∩ [ε|k] along ε. If ε = τ ε|k, then
δ again does not change its mind along ε at all. Otherwise δε|k might change its mind at
some time k0 ≥ k from H to follow δ0ε|m, and thereafter requires at most n mind-changes
. Hence δ identifies the correct hypothesis along ε using at most n+ 1 mind-changes.
Case 2a2: k < m. Then δε|k projects H along τ until τ |m = ε|m. Thereafter δε|k

follows δ0ε|k.
Case 2b: Clause 2 always fails along ε. Then by the definition of a DM-n+1-feather,

H is true on ε. By construction δ stabilizes to H along ε (immediately).
Thus in all cases, δ converges to the truth. To see that δ is data-minimal, note that by

inductive hypothesis δ projects its conjecture at any evidence sequence e on which Clause
2 obtains. So the only case to consider is when evidence e deviates from τ but Clause 2
does not obtain anywhere along e. This implies that

1. δ(e) entails H, and

2. K ∩ [e] is consistent with H.
The first observation holds by Clause 3 of the definition of δ. The second follows from

the second clause of the definition of a DM-n + 1-feather (Definition 16) and the fact
that K ∩ [e] is not a DM-n-feather for some H 0 ∈ H (because otherwise Clause 2 obtains,
contrary to supposition). If Clause 2 never obtains along some data stream ε ∈ K ∩ [e],
then δ projects H at e by Clause 3 of the definition of δ. Otherwise Clause 2 obtains
eventually on all data streams extending e. In particular, Clause 2 must obtain (for the
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first time) on some data sequence e0 ⊇ e such that K ∩ [e0] is consistent with H. But then
δe0 and hence δ projects H at e0. Since δ maintains H between e and e0 (by Clause 3), δ
projects H at e. So δ always takes its conjectures seriously, and thus Theorem 8 implies
that δ is data-minimal.
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