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Abstract

This paper presents a hybrid algorithm for
structure learning in linear Gaussian models
whose structure is a directed graph. The
algorithm performs a local search for a
model that meets the following criteria: (1)
The Markov blankets in the model should be
consistent with dependency information from
statistical tests. (2) Minimize the number
of edges subject to the first constraint. (3)
Maximize a given score function subject to
the first two constraints. Our local search is
based on Graph Equivalence Search (GES);
we also apply the recently developed SIN
statistical testing strategy to help avoid
terminating the search in a local minimum.
Simulation studies with GES search and
the BIC score provide evidence that for
nets with about 10 or more variables, the
hybrid method selects simpler graphs whose
structure is closer to the target graph.

1 Introduction

Bayes nets [18] are a widely used formalism for
representing and reasoning with uncertain knowledge.
A Bayes net (BN) model is a directed acyclic graph
(DAG) G = 〈V,E〉 whose nodes V represent random
variables and whose edges E represent statistical
dependencies, together with conditional probability
tables that specify the distribution of a child variable
given an instantiation of its parents. In this paper we
consider Gaussian Bayes networks with the following
properties: (1) all variables are continuous, (2) a child
variable is a linear function of its parent variables plus
a Gaussian error term, (3) all error terms are indepen-
dent. In econometrics, such models are called recursive
structural equation models (SEMs). SEM models are
widely employed in economics, psychology, sociology
and genetics [14],[17, Ch 4.1], [19, Ch.5].

There are two well established general approaches
to learning BN structure. Constraint-based (CB)
methods employ a statistical test to detect conditional
(in)dependencies given a sample d, and then compute a

BN G that fits the (in)dependencies [23]. Score-based
methods search for models that maximize a model se-
lection score [13]. Hybrid methods aim to combine the
strengths of both approaches [24, 8, 12]. Evaluations
have shown that for DAGs with discrete variables, the
best hybrid methods outperform both purely score-
based and purely constraint-based methods [24]. We
introduce a new hybrid model selection criterion and
develop a novel search strategy for the criterion that
integrates statistical tests and score functions. Our
new criterion combines constraints and score functions
as follows: (1) A DAG G should satisfy the Markov
boundary condition, meaning that for any two nodes X
and Y , no statistically significant correlation is found
between X and Y given the neighbors and spouses
of X. (2) The model G should have the minimum
number of edges among the graphs that satisfy the
boundary condition. (3) Among the minimum-edge
graphs satisfying the boundary condition, our criterion
selects the ones that maximize a given score.

Motivation

There is theoretical, statistical and computational
motivation for this composite selection criterion. A
BN model that represents the target or operating dis-
tribution generating the data must satisfy the Markov
boundary condition. It is widely considered than an
acceptable graphical modelG of the target distribution
should be edge-minimal, meaning that no subgraph of
G represents the target distribution [18, Ch.3.3], [17,
Ch.2.4]. Minimizing the number of edges implies edge-
minimality. [21] provides a learning-theoretic justifi-
cation for minimizing the number of edges as a small-
sample selection criterion. Statistical motivation is
provided by the observation that standard model selec-
tion criteria like the Bayes Information Criterion (BIC;
[17, Ch.8.3.2]) tend to favor overly complex models
when applied to linear models [20]. We give further
empirical evidence to support this finding.

One reason why standard model scores tend to
overfit in continuous domains, but not with discrete
variables, is that the penalty term for model complex-
ity in the score is generally a function of the number
of parameters in the model; in continuous-variable



Figure 1: The overfitting factor of the GES algorithm.
The figure shows the number of edges returned by
GES over the average number of edges in the target
DAG. a ratio of 1 is ideal indicating that GES
has the same number of edges as the target DAG.
Values below 1 suggest underfitting, and values over
1 indicate overfitting. The trent in the upper right
shows a clear tendency that as the DAG becomes
larges, so does the overfitting factor. The figures
also seems to suggest that for the larger graphs, the
overfitting factor grows with the sample size.

models with linear dependencies of a child variable on
its parents, the number of parameters is linear in the
number of nodes, whereas in discrete-variable models
it is typically exponential. Our composite criterion
addresses overfitting by assigning higher priority
to minimizing the number of edges than to maxi-
mizing the score. Thus the criterion favors adding
an edge only if this is necessary for representing a
statistically significant correlation found in the data,
even if adding the edge improves the model selection
score. A computational motivation for adding the
model selection score is that the problem of finding
minimum-edge graphs consistent with a set of given
dependencies is NP-hard [2, Lm. 4.5]; the score serves
as a heuristic for exploring the search space.

Overview of Hybrid Search Method.

The goal of our search method is to combine the
strengths of both score-based and constrained-based
learning so as to ameliorate the weaknesses of each.
Our general approach is to treat the information from
statistical tests as a constraint on the model selection
search that effectively reduces the search space. The
main issue with constraint-based methods is their
sensitivity to type II error, that is, false acceptances
of the independence null hypothesis, which leads them
to falsely remove links [11, 12, 26]. We address this
problem with the approach of [?], which is to rely on
rejection of the null hypothesis as indicating dependen-
cies, but draw no conclusion from failure to reject. The
key idea in our hybrid search system is to constrain
the addition of edges: given a current candidate graph
G, a local search method may add an edge only if this
leads to a graph G′ that entails a statistically signif-
icant dependency d that is not entailed in G. Thus
the local search is prevented from fitting statistically
insignificant correlations even if this would lead to a
higher score. We provide a general schema for adapt-

ing any hill-climbing search algorithm with a given
score function for constrained search. The adapted
algorithm can be seen as a forward-backward selection
strategy for discovering a minimal Markov boundary.
Our method also integrates one of the most recent CB
algorithms, the “condition on nothing and everything
else” strategy of SIN graphical model selection [9]:
For any two variables X and Y , test the unconditional
correlation betwen X and Y and the correlation condi-
tional on all other variables (i.e., V− {X,Y }).

Empirical Evaluation For experimental evalua-
tion, we adapted the state-of-the-art Graph Equiv-
alence Search (GES) procedure [16, 4]. We report a
number of measurements comparing GES and our con-
strained GES, based on the well-established BIC score
function. Simulation results for both randomly gen-
erated and real-world target BN structures compare
the graphs learned with and without (in)dependency
constraints to the target graph. For node sizes of 10
and greater, we observe that BIC significantly overfits
the data in the sense that it produces graphs with too
many adjacencies. Our experiments illustrate how
adding (in)dependency constraints corrects some of
this overfitting tendency of the BIC score function.
The constrained search produces simpler models (i.e.,
with fewer adjacencies) whose graphs whose structure
is closer to the target graph, as measured by the
standard Hamming distance.

The paper is organized as follows. The next section
reviews basic notions from Bayes net theory. Section 3
discusses the major design choices in our system,
including our adaptation of GES search. Section 4
presents simulation studies that compare constrained
GES search with the BIC score to regular GES search
with the same score.

Contributions

Key novel features of our algorithm include the follow-
ing. (1) To our knowledge, the first development and
evaluation of a hybrid structure learning algorithm
for continuous-variable Bayes nets. (2) Making use
of dependency constraints primarily rather than
independency constraints. (3) A new approach for
selecting informative statistical hypotheses to test
based on the Markov boundary.

Related Work Score-based Methods. A number of
score functions are widely used in structural equation
modelling, such as AIC and model chi-square [14]. We
focused our study on the BIC information criterion,
for several reasons. (1) BIC is one of the best estab-
lished in the SEM literature. (2) BIC is widely used
for evaluating Bayes nets in computer science studies
[8, 25]; it is the default score for Gaussian models in
the Tetrad system. (3) Other standard criteria like
AIC penalize complex structures less than BIC so the
overfitting tendency of BIC corrected by our algorithm
is even stronger with these criteria.



Hybrid Methods. A recent hybrid method (max-min
hill climbing) that treats the tests of statistical out-
comes as constraints is presented in [24]. While this
work indicates that independence constraints from a
statistical test can improve a score-based search, the
analysis of [12] shows that because it accepts indepen-
dence null hypotheses, max-min hill climbing is sen-
sitive to type II errors. The method of [?] is similar
to ours in that it treats only dependencies (rejections
of the null hypothesis) as “hard” constraints. How-
ever, [?] addressed the problem of underfitting in score-
based BN learning with discrete variables, whereas the
problem in BN learning in Gaussian models is overfit-
ting. Specifically, [?] requires a local search method
to add more adjacencies until all statistically signif-
icant correlations are entailed by the graph, whereas
the method of this paper constrains the search method
to add fewer adjacencies. Other previous hybrid BN
learning algorithms (e.g., [8, 11]) consider statistical
measures (e.g., mutual information), but do not incor-
porate the outcome of a statistical test as a constraint
that the learned model must satisfy. To our knowledge,
the hybrid methods whose description and evaluation
have been published to date deal with discrete vari-
ables rather than continuous ones. Our algorithm can
be seen as a hybrid version of the Grow-Shrink pro-
cedure [15]. The main difference is that Grow-Shrink
relies on a fixed ordering of variables to select the next
candidate structure and the next statistical hypothe-
sis to test. Our method employes the score function
to select the next candidate structure.

2 Basic Definitions

The definition and theorems cited in this section
are standard; for further details see [17, 18, 23]. We
consider Bayes nets for a set of random variables V =
{X1, . . . , Xn} where each Xi is real-valued. A Bayes
net structure G = 〈V,E〉 for a set of variables V
is a directed acyclic graph (DAG) over node set V. A
Bayes net (BN) is a pair 〈G, θG〉 where θG is a set of
parameter values that specify the probability distribu-
tions of each variable conditioned on instantiations of
its parents. A BN 〈G, θG〉 defines a p.d.f over V. In a
linear Gaussian BN, each child Y is a linear function
of its parents X1, ..., Xk so Y =

∑k
i=1 aiXi+εY , where

the error term εY has a normal distribution with mean
0. The variance of εY and the coefficients ai are pa-
rameters of the model. For a source node X, its mean
and variance are further parameters of the model. We
make the standard assumption that the error terms
for different variables are uncorrelated. The BIC score
is defined as BIC (G, d) = L(Ĝ, d)− par(G)/2× ln(m)
where Ĝ is the BN G with its parameters instantiated
to be the maximum likelihood estimates given the
sample d, the quantity L(Ĝ, d) is the log-likelihood of
Ĝ on the sample d, the sample size is denoted by m,
and par(G) is the number of free parameters in the
structure G.

Two nodes X,Y are adjacent in a BN if G contains

an edge X → Y or Y → X; an adjacency is a pair of
adjacent nodes. An unshielded collider in G is a
triple of nodes connected as X → Y ← Z, where X
and Z are not adjacent. The pattern π(G) of DAG
G is the partially directed graph over V that has the
same adjacencies as G, and contains an arrowhead
X → Y if and only if G contains an unshielded
collider X → Y ← Z.Every BN structure defines a
separability relation between nodes X,Y relative to a
set of nodes S, called d-separation [18, Ch.3.3]. We
assume familiarity with d-separation.

We write (X⊥⊥ Y |S)G if X and Y are d-separated
by S in graph G. If two nodes X and Y are not
d-separated by S in graph G, then X and Y are d-
connected by S in G, written (X⊥6⊥ Y |S)G. We write
D(G) for the set of all d-connections (X⊥6⊥ Y |S)G
that hold in a graph G. Two DAGs G and G′ satisfy
exactly the same dependencies iff they have the same
patterns (i.e., D(G) = D(G′) iff π(G) = π(G′) [17,
Th.2.4]). We take the set of dependencies associated
with a pattern π to be the set of dependencies in any
DAG G whose pattern is π.

Let ρ be a joint probability density function (p.d.f)
for variables V. If X,Y and Z are three disjoint
sets of variables, then X and Y are stochastically
independent given S, denoted by (X⊥⊥ Y|S)ρ, if
ρ(X,Y|S) = ρ(X|S) ρ(Y|S) whenever ρ(S) > 0. A
BN structure G is an I-map of p.d.f. ρ if for any
three disjoint sets of variables X,Y and Z we have
(X⊥⊥ Y|S)G implies (X⊥⊥ Y|S)ρ. For a given BN
structure G and joint density function ρ, there is a
parametrization θG such that ρ is the joint density for
V defined by 〈G, θ〉 only if G is an I-map of P .

For a node X, we refer to the set of its parents, chil-
dren and co-parents (i.e., other parents of its children)
as the Markov blanket of X in G, written MBG(X).
If the graph G is fixed by context or irrelevant, we
also simply write MB(X). Given its Markov blanket
MB(X), each node X is d-separated from all other
nodes outside of the Markov blanket. We refer to the
set of independencies {X⊥⊥ Y |MB(X) : Y 6∈ MB(X)}
as the set of Markov blanket independencies for
a graph. If a graph G is an I-map of a joint density ρ,
then all the Markov blanket independencies in G hold
in ρ. As the characteristic feature of our approach
is searching for a graph that satisfies this condition,
we refer to it as “I-map learning”. The next section
describes an implementation of I-map learning.

3 Algorithm Design for I-map Learning

This section describes the major design choices in
our system. We first discuss employing statistical
tests for detecting conditional (in)dependencies, then
integrating statistical testing with a score-based local
search.



3.1 Use of Statistical Tests

I-map learning requires a statistical significance test
for conditional independence hypotheses of the form
X⊥⊥ Y |S. Our system architecture is modular, so the
test can be chosen to suit the type of available data
and application domain. We followed other CB meth-
ods and used Fisher’s z-statistic for testing whether a
given partial correlation is 0 [23, Ch.5.5].

For a given graph G, say that node Y is a proper
spouse of node X if X and Y have a common child
but are not adjacent. The set of nonchildren of X and
Y are the nodes that are adjacent to X or Y but not
children of either ; denote this set by NCG(X,Y ). Our
basic test selection strategy applies the chosen signif-
icance test to the following independence hypotheses,
for each ordered pair of nodes (X,Y ).

1. The Markov blanket independencies
{X⊥⊥ Y |MBG(X) : Y 6∈ MB(X)}.

2. The spousal independencies {X⊥⊥ Y |NCG(X) :
Y ∈ MB(X)}.

These independence tests are well-suited for
pattern-based search since the Markov blanket and
common children are determined by the pattern alone.
The spousal independencies help to distinguish nodes
on the Markov blanket that are both neighbors and
spouses from nodes that are spouses only.

If a suitable test rejects a Markov blanket or a
spousal independency hypothesis, this is evidence
that the graph G is not correct. I-map learning imple-
ments the Markov blanket testing strategy through a
procedure find-new-dependencies(G) that takes as
input a new graph G adopted during the local search,
tests the new Markov blanket and spousal hypotheses
for the graph G, and returns the set of rejected
independence hypotheses. Every time the local search
moves to a new graph structure G, the procedure
find-new-dependencies is applied to G to augment
the cache of observed dependency constraints; see
Figure 1. The procedure find-new-dependencies
tests a set of independence hypotheses, so issues
of multiple hypothesis testing arise. Our system
architecture is modular, so any multiple hypothesis
testing method can be employed to implement the
functionality of find-new-dependencies, such as the
methods described in [1, 9]. Many constraint-based
and hybrid systems simply carry out multiple hy-
potheses at the same fixed significance level [23, 8, 15].
Our experiments follow this approach to facilitate
comparisons with the competitor systems.

3.2 Heuristic Search Algorithm for I-map
learning

For our experiments we adapt the GES (Greedy Equiv-
alence Search) local search algorithm. GES is a state-
of-the-art BN search strategy that satisfies optimality
guarantees in the large sample limit and has been ex-
tensively evaluated [4]. Since our goal is to investigate

Figure 2: Integrating a local search for a score-
maximizing graph structure with testing for statis-
tically significant dependencies. Once a candidate
structure Gk is chosen that maximizes the score
function given the dependencies observed at stage k,
the procedure find-new-dependencies applies the
Markov blanket concept to test new independence
hypotheses entailed by Gk, and adds rejected indepen-
dence hypotheses to the global cache for stage k + 1.

whether adding dependency constraints improves the
quality of learned models, we want to employ a high-
quality score-based method such as GES. We describe
GES only in sufficient detail to indicate how we adapt
it. During its growth phase, GES moves from a current
candidate pattern π to the highest-scoring pattern π′

in the upper neighborhood nbdh+(π). A pattern π′ in
nbdh+(π) contains exactly one more adjacency than
π, and may have arrows reversed, subject to several
conditions that ensure that D(π) ⊂ D(π′), i.e., π′
entails a strict superset of the dependencies entailed
by π. The growth phase terminates with a pattern π
when no graph in nbdh+(π) has higher score than π.
During the subsequent shrink phase, GES moves from
a current candidate pattern π to the highest-scoring
pattern π′ in the lower neighborhood nbdh−(π). A
pattern π′ in nbdh−(π) contains exactly one less adja-
cency than π, and may have arrows reversed, subject
to several conditions that ensure that D(π′) ⊂ D(π),
i.e., π′ entails is a strict subset of the dependencies
entailed by π. GES terminates with a pattern π when
no graph in nbdh−(π) has higher score than π.

The constrained version IGES (for I-map + GES)
constrains the GES neighborhoods so they satisfy a
given set of observed dependencies. Formally, the
growth neighborhood constrained by dependencies D is
defined as follows:
π′ ∈ nbdh+

D(π) iff π′ ∈ nbdh+(π) and
(D(π′) ∩ D) ⊃ (D(π) ∩ D).

So the growth phase keeps expanding a candidate
structure to entail more of the observed dependencies
D, and terminates when all observed dependencies
are covered. Note that the search may terminate even
when a local operation (e.g., adding an edge) increases
the score, if the local operation does not contribute to
covering more statistically significant dependencies.
This termination condition is appropriate when the
score tends to overfit the data with overly complex



structures. To check if a graph expansion covers
strictly more dependencies, we keep a cache of
dependencies that have not yet been covered during
the growth phase, and go through these dependencies
in order to see if any of them are covered by a
candidate graph. The shrink neighborhood constrained
by dependencies D is defined as follows:
π′ ∈ nbdh−D(π) if and only if π′ ∈ nbdh−(π) and
(D(π′) ∩ D) ⊇ (D(π) ∩ D).

So the shrink phase moves to higher-scoring pat-
terns in the GES lower neighborhood, subject to
the constraint of fitting the observed dependencies,
until a local score maximum is reached. Algorithm
1 gives pseudocode for IGES search. Our approach
to constraining a local search with a given set of
dependencies D applies to any hill-climbing search
S that moves to the highest scoring graph in am
S-neighborhood nbdh(G): First, modify the definition
of nbdh to define a constrained growth neighborhood
nbdh+(G) and a constrained shrink-neighborhood
nbdh−D. Then apply Algorithm 1 with the constrained
S-neighborhoods; the result is a two-stage grow-shrink
Markov blanket search based on the hill-climbing
strategy S. This schema can be extended to beam
search and other local search strategies more complex
than hill climbing.

3.3 Analysis of Search Procedure

A score function is consistent if as the sample size
increases indefinitely, with probability 1 all graphs
that maximize the score are I-maps of the target
distribution. The score function is decomposable if
the score of a graph can be computed from scores for
each node given its parents (for definitions of consis-
tency and decomposability, see [17].) The standard
analysis of CB methods assumes the correctness of
the statistical tests, which holds in the sample size
limit [6, 23]. Under these assumptions, our local
search method is consistent.

Proposition 1 Suppose that the statistical test re-
turns only valid dependencies in target graph G dur-
ing an execution of Algorithm 1 (with or without SIN
testing), and that the score function is consistent and
decomposable. Then as the sample size increases in-
definitely, with probability 1, the algorithm terminates
with an I-map π of the target distribution defined by G.

Proof Outline. Let π be the final pattern in the growth
phase of IGES. The correctness proof for the grow-
shrink algorithm [15] can be adapted to show that the
Markov blanket of each node X is identified correctly,
in the sense that if Y is in MBG(X), then Y is in
MBπ(X). Then the only way π can fail to be an I-
map is if it contains an undirected triple X − Z − Y
that is oriented as X → Z← Y in the target graph G.
Since the score is decomposable, adding an adjacency
X − Y increases it. (Otherwise GES search would fail
to correctly identify the graph X → Z ← Y in the
sample size limit.) Since Z is a common child in the
true graph G, and Y is a proper spouse of X in π,

Algorithm 1 The IGES procedure adapts GES
based on the neighborhood structures nbdh+ and
nbdh−.

Input: data sample d for random variables V.
Calls: score evaluation function
score(π, d), statistical testing procedure
find-new-dependencies(π, d).
Output: BN pattern constrained by
(in)dependencies detected in the data.

1: initialize with the disconnected pattern π over V.
2: for all Variables X,Y do
3: test the hypothesis X⊥⊥ Y
4: if X⊥⊥ Y is rejected by statistical test, add to

detected dependencies stored in D
5: end for
6: {begin growth phase}
7: while there is a pattern π′ in nbdh+

D(π,D) do
8: choose π′ in nbdh+

D(π,D) with maximum score
9: D := D ∪ find-new-dependencies(π′, d)

10: end while
11: {begin shrink phase}
12: while there is a pattern π′ in nbdh−D(π,D) with

greater score than current pattern π do
13: choose π′ in nbdh−D(π,D) with maximum score
14: end while
15: {prune pattern π further with “nothing and

everything else” tests}
16: for any two variables X and Y that are adjacent

in π, if X⊥⊥ Y or X⊥⊥ Y |V − {X,Y } are not
rejected by the statistical test, remove the link
between X and Y .

17: repeat growth phase and shrink phase (lines 6-10).
18: Return the current pattern π.

the spousal test shows a dependence between X and
Y that is not covered in π. So IGES search adds an
adjacency X − Y , contrary to the hypothesis that it
terminates with π. [4] shows that if the growth phase
of GES search with a consistent score terminates with
an I-map of the target distribution, then so does the
shrink phase. So GES search never selects a smaller
graph that fails to cover a true dependency. Thus any
moves from pattern π to pattern π′ selected by GES
during its shrink phase covers the dependencies D(π)
found by the statistical test. Therefore in the sample
size limit the shrink phase of GES returns an I-map of
the target distribution.

The computational overhead compared to regular lo-
cal score optimization is the number of statistical calls.
For a graph G with n nodes, the number of Markov
blanket independence hypotheses is on the order of
O(
(
n
2

)
)—two tests for each pair of nodes X,Y that are

not in each other’s Markov blanket. By taking advan-
tage of the structure of the local search procedure, we
can often reduce the set of hypotheses to be tested to
an equivalent but smaller set. For example, if the local
search adds a single edge X → Y to a graph G, the
only nodes whose Markov blanket has been affected
are X,Y and the parents of Y . Assuming that the tar-



get graph has constant degree (as in the analysis of the
PC algorithm [23, Ch.5.4.2.1]), only a linear number
of new independence tests is required at each stage of
the search. Thus we expect that in practice, the order
of independence tests required will be O(n×ca) where
ca is the total number of candidate structures exam-
ined during the local search. Our simulations provide
evidence for this hypothesis (Section 4).

4 Empirical Evaluation of Hybrid Cri-
terion With Standard Search+Score
Method

We performed a large number of experiments, but
restrict ourselves to a few key findings due to space
constraints. Our code is written in Java and uses
many of the tools in the Tetrad package [5].

4.1 Experiments with Synthetic Data

The target models considered were randomly gener-
ated networks with 5-20 variables. We used Tetrad’s
random DAG generating functions to build the net-
works: A parent and a child are chosen at random, and
the corresponding edge is added to the random graph
unless it violates graph constraints. The number of
edges is also determined randomly, with the constraint
there are at most twice as many edges as nodes. For
each graph, we drew samples of various sizes (ranging
from 100 to 20000). We repeated the experiment 30
times, resulting in 30 random graphs for each com-
bination of sample size and node count. Our graphs
and tables display the average of the 30 networks for
all measurements. The following learning methods
were applied with the BIC score function.

1. Score-based search: GES starting with the empty
graph.

2. Constraint-based search: PC algorithm [23] with z
test and significance level α = 5%.

3. Backward Selection [10]: start with the complete
DAG with all edges, apply the shrink phase of
GES search.

4. Hybrid search method. IGES + SIN search with z
test and significance level α = 5%.

Model Complexity and BIC score Our key find-
ings are graphed in Figure 3. Our simulations show
that the hybrid criterion effectively reduces the over-
fitting tendency of the regular score-based criterion, as
measured by the number of edges in the learned model
versus the number in the true graph. We found that
IGES without the SIN tests leads to a small improve-
ment in average number of edges; because our random
networks are relatively small, the overfitting tendency
of the score is not as strong as with the real-world
structures. In the smaller networks the SIN tests aid
substantially in reducing the model complexity. Our
simulations show that hybrid search achieves a BIC
score about as high as regular GES search on average.
The high BIC score indicates that IGES + SIN fits the
data as well as regular GES with fewer edges.

Figure 3: The figure shows the distribution of the edge
ratio for the comparison methods, defined as #edges in
target graph/#edges in learned graph. A ratio of 1 is
ideal. The x-axis indicates the sample size, the y-axis
the average edge ratio over 30 networks drawn at the
given sample size. OUR method in this experiment is
IGES + SIN. The average edge ratio for IGES + SIN
is closer to 1 than for GES, which has a clear tendency
towards more complex models. The improvement in-
creases with sample size and network size.

Figure 4: The improvement of the edge ratio attained
by IGES.

Figure 5: Average improvement in edge F-measure
of Imap-pruned over the GES algorithm (both using
BIC score) plotted against number of nodes.



Figure 6: Left: False Discovery Rate for IGES, defined by # rejected true independence hypotheses/#tested
independence hypotheses. The FDR is smaller than the significance level α = 5%. Right: False Acceptance
Rate for IGES, defined by # accepted false independence hypotheses/# independence hypotheses.

Performance of Statistical Testing Strategy
A number of measurements concerns the behavior
of the testing strategy. A standard measure for the
performance of a multiple hypothesis testing method
is the false discovery rate (FDR) [1], which is defined
as #rejected true independence hypotheses/#tested
independence hypotheses. For the SIN independence
hypotheses we also measured the false acceptance
rate (FAR), defined as #false accepted independence
hypotheses/#tested independence hypotheses. Figure
4.1 shows that in our simulations, with the significance
level fixed at α = 5%, the FDR in random graphs was
on average no greater than α, which is a good result
in light of the Bonferroni inequality. In fact, for most
experimental constellations the FDR was below 1.5%;
it peaks at 3.5% with sample size = 100, number of
nodes = 4. For sample size 1,000 the average FAR
is about 20%, and decreases linearly to about 5% for
sample size 10,000. The results support our strategy
of treating rejections of the null hypothesis as much
more reliable than acceptances.

We also examined the computational overhead in-
curred by carrying out statistical testing in addition to
score-based search. The theoretical analysis of Section
3.1 suggests that the number of independence tests
should be linear in the length of the search. Our re-
sults confirm this expectation. The exact slope of the
line depends on the sample and graph sizes; averaging
over these and plotting the number of independence
tests as a function of number of candidate graphs ex-
amined during the search, we find that the number of
tests performed is about 6 times the number of graphs
generated. For off-line analysis of a dataset, the
testing overhead seems acceptable given the improve-
ment in the quality of the learned model. As a side
benefit, the observed correlations are often of interest
in themselves to the user, and they help to explain
the construction of the learned structure.

Figure 7: The number of independence tests as a func-
tion of the number steps in the growth phase. There is
a linear relationship between the number of tests and
the number of steps performed in the growth phase.

4.2 Simulations with Real World Net-
works

We examined a famous real-world network used used
in the SEM Literature to model social alienation [22].
The network consists of 9 variables, and 9 edges con-
necting them. For one sample of 1000 data points our
method recovers 8 of these edges without adding any
additional adjacencies; in contrast, GES overfits the
model by outputting 11 edges (9 true edges and 2 false
ones). The two graphs are given in the supplementary
material; they illustrate the typical difference between
GES and IGES. Simulations with more samples
(about 5) and different sample sizes (200; 4000)
yield similar results. We note that our experiments
indicate that with larger graphs, the difference in
model quality would be still greater.

Our experiments with real-word BNs with more
nodes—Alarm [?] (37 nodes) and Insurance [?] (25
nodes)—indicate that for larger graphs, the signifi-
cance level should be adjusted downward to maintain
a suitable false discovery rate for the testing strategy.
A static approach is to use a fixed conservative α such
as 1% or 0.1% (cf. [8]). With both α = 1% or 0.1%,
we observed a uniform improvement in KL-divergence



Figure 8: An experiment on reconstructing the social alienation model from the SEM literature. Left: The IMAP
algorithm returns a model that differs from the true model by only one edge (between SES and Alienation71).
Right: In contrast, GES overfits the model by adding 2 additional (false) edges to the true model.

for BDeu/IGES over BDeu/GES that is statistically
significant, but whose magnitude is less than with the
smaller random graphs. The adjacency f-measures
are virtually the same (Graphs are available at [?].)
It appears that the statistical testing leads to the
introduction of correct adjacencies that lower the
KL-divergence, but also false adjacencies that balance
out the overall adjacency f-measure. We expect
further improvement from a dynamic strategy for
controlling the FDR of multiple hypothesis testing,
such as the BH procedure [1].

5 Conclusion and Future Work

This paper presented a hybrid method for learning
linear Gaussian BN structures or structural equation
models. Our hybrid method combines strengths from
both score-based and constraint-based BN learning
approaches. Compared to traditional score-based
approaches, the statistical testing performed by a
hybrid method detects regularities in the data that
constrain the search and can guide it towards a better
model. Compared to traditional constraint-based
methods, the model selection score serves as a
heuristic to search for a structure that satisfies the
observed (in)dependency constraints. Also, a hybrid
method can adopt a strategy for selecting statistical
hypotheses that focuses on a relatively small set of
tests that can be performed reliably. In this paper our
testing strategy was based on the Markov blanket, and
we treated only rejections of independence hypotheses
as hard constraints on the score-based search. Thus
our hybrid method is less sensitive to the failures
of independence tests that are the main problem
for constraint-based methods. For small graphs, we
attained further improvement by applying the recent
SIN testing strategy, treating SIN independencies as

soft constraints for the score-based search.

We showed how to adapt a generic local
search+score procedure for the constrained opti-
mization required by the hybrid criterion. Evidence
from simulation studies with the well-established
BIC criterion indicates that, when the number of
variables exceeds about 10, the additional constraints
from statistical tests help select a model that is
less complex yet fits the data as well as the model
selected by unconstrained learning. A recent direc-
tion in learning directed models has been to apply
L1-regularization to the BIC score [20] for Markov
blanket selection. An avenue for future research
is to apply an L1-penalized score with our hybrid
search method instead of the original BIC score. In
sum, our hybrid method appears to be a principled
and effective way to address overfitting in learning
Gaussian Bayes networks that combines ideas from
both score-based and constraint-based learning to
addresses the weakness of each.
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