Fast Learning of Relational Dependency
Networks

Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick
Xiaogian Yin, Yan Sun

School of Computing Science, Simon Fraser University, Canada
{oschulte,zqgian,ted xiaogian_yin,sunyans }@sfu.ca

Abstract. A Relational Dependency Network (RDN) is a directed graph-
ical model widely used for multi-relational data. These networks al-
low cyclic dependencies, necessary to represent relational autocorrela-
tions. We describe an approach for learning both the RDN’s structure
and its parameters, given an input relational database: First learn a
Bayesian network (BN), then transform the Bayesian network to an
RDN. Thus fast Bayesian network learning translates into fast RDN
learning. The BN-to-RDN transform comprises a simple, local adjust-
ment of the Bayesian network structure and a closed-form transform of
the Bayesian network parameters. This method can learn an RDN for
a dataset with a million tuples in minutes. We empirically compare our
approach to state-of-the-art RDN learning methods that use functional
gradient boosting, on six benchmark datasets. Learning RDNs via BNs
scales much better to large datasets than learning RDNs with boosting,
and provides competitive accuracy in predictions.

1 Introduction

Learning graphical models is one of the main approaches to extending machine
learning for relational data. Two of the major classes of graphical models are
dependency networks (DNs) [9] and Bayesian networks (BNs) [18]. We describe
a new approach to learning dependency networks: first learn a Bayesian network,
then convert that network to a dependency network. This hybrid approach com-
bines the advantages of learning Bayesian networks with the advantages of infer-
ence from dependency networks. Our experiments show that the hybrid learning
algorithm can produce dependency networks for large and complex databases, up
to one million records and 19 predicates. The predictive accuracy of the result-
ing networks is competitive with those from state-of-the-art function gradient
boosting methods but scales substantially better than the boosting methods. We
make three contributions:

1. A faster approach for learning relational dependency networks: first learn a
Bayesian network, then convert it to a dependency network.

2. A closed-form log-linear discriminative model for computing the relational
dependency network parameters from Bayesian network structure and pa-
rameters.

2 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

3. Necessary and sufficient conditions for the resulting network to be consis-
tent, defined as the existence of a single joint distribution that induces all
the conditional distributions defined by the dependency network [9].

2 Relational Dependency Networks and Bayesian
Networks

We review dependency networks and their advantages for modelling relational
data. We assume familiarity with the basic concepts of Bayesian networks [18].

2.1 Dependency networks and Bayesian networks

The structures of Bayesian networks and dependency networks are defined by
a directed graph whose nodes are random variables. Unlike Bayesian networks,
a dependency network graph may contain cycles, including the special case of
bi-directed edges. As with Bayesian networks, the parameters of dependency
networks are conditional distributions over the value of a child node given its
parents. However, the independence property of dependency networks is simpler:
each node is independent of all other nodes given an assignment of values to
only its parents. By contrast a node in a Bayesian network is only independent
given an assignment of values to its parents, its children, and the co-parents
of its children. In graphical model terms, the Markov blanket of a node in a
dependency network, the minimal set of nodes such that assigning them values
will make this node independent of the rest of the network, is its parents.

Consequently, a parameter in a dependency network effectively specifies the
probability of a node value given an assignment of values to all other nodes.
Because Gibbs sampling can derive a joint distribution from these parameters
(9, 17], we refer to them as Gibbs conditional probabilities, or simply Gibbs
probabilities.! This is the counterpart to the formula deriving a joint distribu-
tion from the product of a Bayesian network’s conditional probabilities.

2.2 Relational Dependency Networks

There are various notations for defining random variables in relational struc-
tures, of equivalent expressive power. We adopt a functor-based notation from
a logic for graphical-relational models [21,20]. A functor is a symbol denoting
a function or predicate. Each functor has a set of values (constants) called the
domain of the functor. We consider only functors with finite domains. An ex-
pression f(71,...,7%), where f is a functor and each 7; is a first-order variable or
a constant, is a Parametrized Random Variable (PRV). A directed acyclic
graph whose nodes are PRVs is a parametrized Bayesian network struc-
ture, while a general directed graph whose nodes are PRVs is a relational
dependency network structure (RDN). RDNs extend dependency networks

! The terminology of DNs [9] calls these “local probability distributions”.

Fast Learning of Relational Dependency Networks 3

Conditional probabilities
for the Template Bayes Net

P(g(B) = M) =.55
P(F(AB)=T)=.1

Template Bayesian Network
1
P(g(A) =W | g(B) =W, F(A,B) =T) = .55

P(g(A)=M | g(B)=M, F(A,B)=T)= 63 | CoffeeDr(A)
P(g(A)=M | g(B) =M, F(AB =.55

P(g(A)=W | g(B) =W, F(A,B) = F) = .45
P(cd(A) =T|g(A) = M) = .6 H Grounding: Instantiate

P(cd(A) =T|g(A) = W) = .8 first-order variables
with constants

Friend(bob,anna; Friend(anna,bob Instantiated
s iohd Inference

NG - H
\ Graph
1

v
Friend(bob,bob! Friend(anna,anna

Fig. 1. A Bayesian/dependency template network (top) and the instantiated inference
graphs (bottom). By convention, predicates (Boolean functors) are capitalized. Edges
from the BN template are solid blue, while edges added by the BN-to-DN transforma-
tion are dashed black. The edge set in the DN comprises both solid and dashed arrows.
Note that although the template BN is acyclic, its instantiation features a bi-directed
edge between gender(bob) and gender(anna).

for relational data via knowledge-based model construction [17]: The first-order
variables in a template RDN graph are instantiated for a specific domain of in-
dividuals to produce an instantiated or ground propositional DN graph, the in-
ference graph. Figure 1 gives a dependency network template and its inference
graph. Given an edge in the template RDN, instantiating both the parent and
the child of the edge with the same grounding produces an edge in the inference
graph. An example Gibbs probability for the graph in Figure 1 (abbreviating
functors) is

P(g(anna)|g(bob), CD(anna), F(anna, bob), F(bob, anna), F (anna, anna)).

Both the structure and the parameter space of RDN models offer special advan-
tages for relational data [17,15]:

1. Dependency network structures are well-adapted for relational data because
they allow cyclic dependencies, so grounding a dependency network template
is guaranteed to produce a valid dependency network (whereas grounding a
Bayesian net may introduce cycles, making the instantiation non-Bayesian).
2. Relational prediction requires aggregating information from different linked
individuals [16]. In a dependency network parameter, the aggregation en-
compasses the entire Markov blanket of a target node, whereas for Bayesian
network parameters, the aggregation encompasses only part of the blanket.

4 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

) Learning
B Dataset
- 3 Closed-Form Computation

BN Structure Compute empirical
Learning frequencies
‘ Learned Template

| Bayes Net Structure ‘ | Bayes Net Parameters
Bayesian network

1, Algorithm 1
Features = Feature Weights Components of Log-
Family Configurations = log-cps linear Model for
\ o Network

l Algorithm 2

Query Feature Function Log-linear Proportion Equation
=Target Node Value+ |=====3»| = Feature Instantiation = weighted sum of
Input Variable Values. Proportion Feature Function Values

Fig. 2. The program flow for computing Gibbs probabilities from a template Bayesian
network. Features and weights are computed from the Bayesian network. Feature func-
tion values are computed for each query.

3 Learning Relational Dependency Networks via
Bayesian Networks

Our algorithm for rapidly learning relational dependency networks (Figure 2)
begins with any relational learning algorithm for Bayesian networks. We then
apply a simple, fast transformation to the resulting Bayesian network, obtaining
a relational dependency template. Finally we apply a closed-form computation
to derive the dependency network parameters from the Bayesian structure and
parameters.

BN-to-DN structure conversion. Converting a Bayesian network structure to a
dependency network structure is simple: for each node, add an edge pointing to
the node from each member of its BN Markov blanket [9]. The result contains
bidirectional links between each node, its children, and its co-parents (nodes
that share a child with this one). This is equivalent to the standard moralization
method for converting a BN to an undirected model [3], except that the depen-
dency network contains bi-directed edges instead of undirected edges. Bidirected
edges have the advantage that they permit assignment of different parameters
to each direction, whereas undirected edges have only one parameter.

BN-to-DN parameter conversion. Converting Bayesian network parameters to
dependency network parameters is simple for propositional i.i.d. data: solve for
the Gibbs conditional probabilities given Bayesian network parameters. The
propositional result is as follows. A family comprises a node and its parents. A
family configuration specifies a value for a child node and each of its parents.

Fast Learning of Relational Dependency Networks 5

For example in the Bayesian network of Figure 1, a family configuration is
gender(A) =M, Friend(A,B) = T, gender(B) = M.

For propositional data, an assignment of values to the Markov blanket of a target
node assigns a unique configuration for each family whose child is the target node
or one of its children. Hence the Markov blanket induces a unique log-conditional
probability for each such family configuration. The probability of a target node
value given an assignment of values to the Markov blanket is then proportional
to the exponentiated sum of these log-conditional probabilites 21, Ch.14.5.2].
With relational data, different family configurations such as the one above can
be simultaneously instantiated, multiple times. We adapt the propositional log-
linear equation for relational data by replacing the unique log-conditional prob-
ability with the expected log-conditional probability that results from selecting
an instantiation of the family configuration uniformly at random. The probabil-
ity of a target node value given an assignment of values to the Markov blanket
is then proportional to the exponentiated sum of the expected log-conditional
probabilites. We describe the resulting closed-form equation in the next section.

Algorithm 1: Computing Features and Weights for Template Dependency
Network.
Input: Template Bayesian Network B (Structure and Parameters)
Output: A List of Relevant Features; a Weight for each Feature
1: for each target node T' do
2: initialize Feature_Weight_List(T) as the empty list

3: for each U in {T' U Ch(T)} do

4: for each value u of the child node U do

5: for each vector of parent values u,, do

6: Feature F := (U = u,Pa(U) = upa)

T Feature Weight w := In0(U = u|Pa(U) = upa)

8: if the Feature F' does not contain a false relationship other than 7'
then

9: add (F,w) to Feature_Weight_List(T)

10: end if

11: end for

12: end for

13: end for

14: end for

15: return Feature_Weight_List(T)

4 The Log-linear Proportion Equation

We propose a log-linear equation, the log-linear proportion equation, for
computing a Gibbs conditional probability for a ground target node, T*, given

6 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

Algorithm 2: Computing Gibbs conditional probabilities, the parameters
of the Inference Dependency Network.

Input: Feature-Weight List of Dependency Network, Query P(T™ = ¢|A*) =?.

T is a template node, T = Ty is the target grounding.

Output: Normalized log-linear score

1: initialize score(T™ =1t):=0

2: for each Feature F' = (U = u, Pa(U) = upa) in Feature_Weight_List(T) do

3: Let w be the weight listed for feature F'
{Next compute feature function.}
RelFamCnt(F) :=n' [v;U = u, Pa(U) = upa; T =t, A7)
TotalRelFamCnt(U) = Zu’,u’,,, n' [v;U =/, Pa(U) = upe; T* = t, A
FamilyProportion p'(F) := RelFamCnt(F)/ TotalRelFamCnt(U)
8: score(T* =t)+=p" -w
9: end for
10: return Normalized scores for target node.

(i) a target value ¢ for the target node, (ii) a complete set of values A* for all
ground terms other than the target node, and (iii) a template Bayesian network.
The template structure is represented by functions that return the set of parent
nodes of U, Pa(U), and the set of child nodes of U, Ch(U). The parameters
of the template are represented by the conditional probabilities of a node U
having a value u conditional on the values of its parents, 0(U = u|Pa(U) = tpq)-
A grounding v substitutes a constant for each member of a list of first-order
variables. A grounding is therefore equivalent to an equality constraint {A; =
ai,...,Ar = ar}. Applying a grounding to a template node defines a fully ground
target node. For instance, we may have gender(A){A = sam} = gender(sam).
These are combined in the following log-linear equation:

Definition 1 (The Log-Linear Proportion Equation).

P(T* =t]A") x
Z Z o(U = u|Pa(U) = upa)] - P [1;U =0, Pa(U) = upe; T =t, A"
U u,Upq
where

U varies over {T'} U Ch(T),
the singleton value u varies over the range of U;
the vector of values u,, varies over the product of the ranges of U's parents;
T =T~ is is the target grounding of template node T
and p* is the proportion feature function.
The feature function p' specifies the proportion of instantiations that satisfy

a given family configuration, relative to all family configurations with positive
links only.

Fast Learning of Relational Dependency Networks 7

Example. Table 1 illustrates the computation of our log-linear model for pre-
dicting the gender of a new test instance (sam).

Table 1. Applying the log-linear proportion equation with the Bayesian network of
Figure 1 to compute P(gender(sam) = W|A*) and P(gender(sam) = M|A*). Each row
represents a feature/family configuration. For the sake of the example we suppose that
the conjunction A* specifies that Sam is a coffee drinker, has 60 male friends, and 40
female friends. C'P refers to the conditional probability BN parameter of Figure 1. For
the feature weights w = In(CP).

Child N N
Value Parent State up, CP w p wXp
_ 9(B) =W, _ ,
g(sam) =W Fsam, B) = T 0.55 —0.60 0.4 0.24
g(sam) =W F(sam, B) = T 0.37 —0.99 0.6 0.60
CD(sam) =T g(sam) =W 0.80 —0.22 1.0 —-0.22
CD(sam)=F g(sam) =W 0.20 —1.61 0.0 0.00
Sum (exp(Sum) x P(gender(sam) = W|A™)) —1.06
_ g(B) =W, B B
g(sam) =M F(sam, B) = T 0.45 —0.80 04 0.32
g(sam) =M F(sam, B) = T 0.63 —0.46 0.6 0.28
CD(sam) =T g(sam) =M 060 —051 1.0 —0.51
CD(sam) =F g(sam) =M 0.40 —0.92 0.0 0.00
Sum (exp(Sum) x P(gender(sam) = M|A")) —1.11

It is common in statistical-relational models to restrict predictors to existing
relationships only [6,21]. The inner sum of Formula 1 computes the expected
log-conditional probability for a family with child node U, when we randomly
select a relevant grounding of the first-order variables in the family.

Definition 1 has the form of a log-linear model [26]: The features of the
model are the family configurations (U = u,Pa(U) = wu,,) where the child
node is either the target node or one of its chldren. The feature weights are the
log-conditional BN probabilities defined for the family configuration. The input
variables are the values of the ground nodes other than the target nodes, specified
by the conjunction A*. The family count specifies how many times the feature
is instantiated in the input variables (plus the target node value). The family
proportion is the feature function, which maps a feature to a real value given
the input variables. Proportions have the desirable consequence that all feature
functions are normalized to the [0,1] range. Feature instantiation proportions are
computed as follows.

1. For a given family configuration (U = u,Pa(U) = up,), let the family
count
n[y;U =u,Pa(U) = tpe; T* =t, A7)

8 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

be the number of instantiations that (a) satisfy the family configuration and
the ground node values specified by T* = ¢, A*, and (b) are consistent with
the equality constraint defined by . This notation is consistent with the
parfactor notation of [20].

2. The relevant family count n” is 0 if the family configuration contains a
false relationship (other than the target node), else equals the feature count.

3. The family proportion is the relevant family count, divided by the total
sum of all relevant family counts for the given family. In symbols:

n' [v;U = u,Pa(U) = upa; T" =t, A"

p' [:U =u,Pa(U) = upe; T" =t,4"] =
Zu’,u;a n* [’y; U=, ,Pa(U) = up, ;T =t, A*]

Table 1 illustrates the computation of these quantities. Algorithm 1 shows
pseudocode for the closed-form transformation of Bayesian network structure
and parameters into features and weights for the dependency network. Algo-
rithm 2 shows pseudocode for computing the scores defined by the log-linear
Equation 1, given a list of weighted features and a target query.

5 Theoretical Analysis

We analyze the computational complexity of the BN-to-DN conversion and of
computing a classification score using the log-linear equation 1. A key theoretical
question for a DN is whether the network is consistent. In the theory of depen-
dency networks, consistency refers to the existence of a single joint probability
distribution that induces the various local conditional probability distributions
for each node [9]. We prove that under mild assumptions, a relational depen-
dency network constructed from a Bayesian network is consistent if and only if
the relevant family counts are the same for each ground node.

5.1 Complexity Analysis

The loops of Algorithm 1 enumerate every family configuration in the template
Bayesian network exactly once. Therefore computing features and weights takes
time linear in the number of parameters of the Bayesian network.

Evaluating the log-linear equation as shown in Algorithm 2, requires finding
the number of instantiations that satisfy a conjunctive family formula, given a
grounding. This is an instance of the general problem of computing the number
of instantiations of a formula in a relational structure. Computing this number is
a well-studied problem with highly efficient solutions [27,24]. The complexity of
this problem is discussed in [24]. A key parameter is the number m of first-order
variables that appear in the formula. A loose upper bound on the complexity of
counting instantiations is d™, where d is the maximum size of the domain of the
first-order variables. Thus counting instantiations has parametrized polynomial
complexity [5], meaning that if m can be treated as a constant, then counting
instantiations requires only polynomially many operations in the size of the
relational structure (i.e., the size of T* = ¢, A* in Equation 1). For general m,
the problem of computing the number of formula instantiations is #P-complete
[4, Prop.12.4].

Fast Learning of Relational Dependency Networks 9

5.2 Consistency

A basic question in the theory of dependency networks is the consistency of
the local conditional Gibbs probabilities. This means that there is a single joint
distribution P over all nodes that agrees with the local probabilities. In symbols,
this entails that

P(T* =t|A*) = P(T* =t,A%)

for all target nodes T* and query conjunctions A*. Dependency networks learned
from data are almost always inconsistent but nonetheless provide accurate pre-
dictions [9, 17]. Heckermann et al. show that a dependency network is consistent
if and only if there is a Markov network with the same graphical structure that
agrees with the local conditional distributions [9]. A sufficient condition for the
consistency of an RDN derived from a BN is therefore that all relevant family
counts are the same for all members of all ground families.

On the other hand, without an equality constraint on relevant family counts,
an RDN derived from a BN is generally not consistent. A sufficient and necessary
condition for when different relevant counts may occur with different ground
nodes is that a parent and a child contain different population variables.

Theorem 1. Assume that a template BN contains at least one edge such that
the parent and child do not contain the same set of population variables. Then
there exist a query conjunction A* and two ground nodes Ty and T5 such that
the conditional distributions 0(TT|A*) and 0(Ty|A*) defined by Equation 1 are
mutually inconsistent.

The proof of this result is complex, therefore we present it in an appendix.
Intuitively, in a joint distribution, the correlation or potential of an edge is
a single fixed quantity, whereas in Equation 1, the correlation is adjusted by
the size of the relational neighbourhood of the parent resp. child node. If the
relational neighborhoods are of different sizes, so are the relevant family counts.

6 Empirical Evaluation

We compare learning RDNs via Bayesian networks with learning via boosted
functional gradient methods. Boosting methods follow the traditional approach
to learning dependency networks, which is to learn a collection of separate dis-
criminative models, one for each node in the network [9]. Boosted functional
gradient methods have been shown to perform well on small datasets [12,15];
our experiments extend these results to medium-large datasets.

6.1 Experimental Conditions and Metrics

All experiments were done on a machine with 8 GB of RAM and a single Intel
Core 2 QUAD Processor Q6700 with a clock speed of 2.66 GHz (there is no
hyper-threading on this chip), running Linux Centos 2.6.32. Code was written
in Java, JRE 1.7.0. All code and datasets are available [11].

10 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

Datasets We used six benchmark real-world databases. For more details please
see the references in [23]. Summary statistics are given in Table 2.

MovieLens MovieLens is a commonly-used rating dataset.? It contains two
entity sets, Users and Movies. For each user and movie that appears in the
database, all available ratings are included. MovieLens(1M) contains 1 M
ratings, 3,883 Movies, and 6,039 Users. MovieLens(0.1M) contains about
0.1 M ratings, 1,682 Movies, and 941 Users. We did not use the binary genre
predicates because they are easily learned with exclusion rules.

Mutagenesis This dataset is widely used in inductive logic programming re-
search. It contains information on Atoms, Molecules, and Bonds between
them. We use the discretization of Schulte and Khosravi [23].

Hepatitis This data is a modified version of the PKDDO02 Discovery Challenge
database. The database contains information on the laboratory examinations
of hepatitis B and C infected patients.

Mondial Data from multiple geographical Web data sources.

UW-CSE This dataset lists facts about the Department of Computer Science
and Engineering at the University of Washington, such as entities (e.g.,
Person, Course) and their relationships (e.g., AdvisedBy).

IMDb The largest dataset in terms of number of total tuples (more than 1.3M)
and schema complexity. It combines MovieLens with data from the Internet
Movie Database (IMDb)? [19].

Methods Compared Functional gradient boosting is a state-of-the-art method
for applying discriminative learning to build a generative graphical model. The
local discriminative models are ensembles of relational regression trees [12]. Func-
tional gradient boosting for relational data is implemented in the Boostr sys-
tem [13]. For functors with more than two possible values, we followed [12] and
converted each such functor to a set of binary predicates by introducing a pred-
icate for each possible value. We compared the following methods:

RDN_Bayes Our method: Learn a Bayesian network, then convert it to a re-
lational dependency network.

RDN_Boost The RDN learning mode of the Boostr system. Information from
ground nodes linked to the target is aggregated with functions count, maz, average
and existential quantification [15].

MLN_Boost The MLN learning mode of the Boostr system. It takes a list of
target predicates for analysis. We provide each binary predicate in turn as a
single target predicate, which amounts to using MLN learning to construct an
RDN. This RDN uses a log-linear model for Gibbs conditional probabilities
that is derived from Markov Logic Networks.

We used the default Boostr settings. We experimented with alternative settings
but they did not improve the performance of the boosting methods.

2 www.grouplens.org
3 www.imdb.com, July 2013

Fast Learning of Relational Dependency Networks 11

To obtain the BN structure for RDN_Bayes, the learn-and-join algorithm [23]
was applied to each benchmark database. The BN parameters can be estimated
by applying the maximum likelihood principle, using the conditional frequencies
observed in a relational database [22, 24]. These were computed using previously-
published algorithms for multi-relational data [24].

Prediction Metrics We follow [12] and evaluate the algorithms using condi-
tional log likelihood (CLL) and area under the precision-recall curve (AUC-PR).
AUC-PR is appropriate when the target predicates features a skewed distribu-
tion as is typically the case with relationship predicates. For each fact T* =t
in the test dataset, we evaluate the accuracy of the predicted Gibbs probability
P(T* = t|A*), where A* is a complete conjunction for all ground terms other
than 7. Thus A* represents the values of the input variables as specified by the
test dataset. CLL is the average of the logarithm of the Gibbs probability for
each ground truth fact in the test dataset. For the gradient boosting method,
we used the AUC-PR and likelihood scoring routines included in Boostr.

Both metrics are reported as means and standard deviations over all binary
predicates. The learning methods were evaluated using 5-fold cross-validation.
Each database was split into 5 folds by randomly selecting entities from each
entity table, and restricting the relationship tuples in each fold to those involving
only the selected entities (i.e., subgraph sampling [23]). The models were trained
on 4 of the 5 folds, then tested on the remaining one.

6.2 Results

Learning Times. Table 2 shows learning times for the methods. The Bayesian
network learning simultaneously learns a joint model for all predicates. For the
boosting method, we added together the learning times for each target predicate.
On MovieLens(1M), the boosting methods take over 2 days to learn a classifier
for the relationship B_-U2Base, so we do not include learning time for this pred-
icate for any boosting method. On the largest database, IMDDb, the boosting
methods cannot learn a classifier for the three relationship predicates with our
system resources, so we only report learning time for descriptive attributes by
the boosting methods. Likewise, our accuracy results in Tables 3 and 4 include
only measurements for descriptive attributes on the datasets IMDb and Movie-
Lens(1M).

Table 2 shows that RDN_Bayes scales very well with the number of data
tuples: even the MovieLens dataset with 1 M records can be analyzed in seconds.
This is because it provides closed-form parameter estimation and hence closed-
form model scoring. RDN_Bayes is less scalable with the number of predicate,
since it learns a joint model over all predicates simultaneously, although the time
remains feasible (1-3 hours for 17-19 predicates; see also [23]). By contrast, the
boosting methods that learn separate discriminative models scale well with the
number of predicates, consistent with findings from propositional learning [9].
However, model evaluation itself is quite expensive for the boosting methods.

12 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

Table 2. Learning Time. The total learning time for constructing a relational depen-
dency network from an input database. Only partial boosting learning times are re-
ported for the larger databases MovieLens(1M) and IMDb-—see text for details. Spread
is reported as coefficient of variation (standard deviation / mean).

RDN_Bayes RDN_Boost MLN_Boost

Dataset kTuple Preds. (s) CV (s) CV (s) CV
uw 0.6 14 14 0.00 237 0.06 329 0.16
Mondial 0.9 18 1836 0.07 369 0.06 717 0.05
Hepatitis 11.3 19 5434 0.01 6648 0.02 3197 0.04
Mutagenesis 24.3 11 11 0.00 1342 0.04 1040 0.02
MovieLens(0.1M) 83.4 7 8 0.07 3019 0.04 3292 0.01
MovieLens(1M) 1010.1 7/6 8 0.09 32230 0.04 25528 0.04
IMDb 15538.4 17/13 9346 0.22 78129 0.04 29704 0.03

Table 3. Conditional Log-Likelihood: Mean (top), Std. Dev. (bottom)

MovieLens
Method UW Mond. Hepa. Muta. (0.1IM) (1M) IMDb
RDN_Boost -0.30 -0.48 -0.48 -0.36 -0.50 -0.22 -0.49
MLN_Boost -0.14 -0.40 -0.49 -0.23 -0.50 -0.23 -0.49
RDN_Bayes -0.01 -0.25 -0.39 -0.22 -0.30 -0.28 -0.51
RDN_Boost 0.02 0.03 0.01 0.02 0.01 0.00 0.00
MLN_Boost 0.01 0.05 0.01 0.02 0.01 0.00 0.00
RDN_Bayes 0.00 0.06 0.10 0.07 0.00 0.00 0.00

Unlike propositional i.i.d. data, relational data are represented in multiple tables,
so evaluation requires expensive combining of information from different tables
[17]. Consequently, learning Bayesian networks explores a more complex model
space than the boosting approaches to learning RDNs, but is typically much
faster due to its more efficient model evaluation.

Accuracy. Whereas learning times are evaluated on all predicates, we evalu-
ate accuracy on binary predicates (e.g., gender, Borders) because the boosting
methods are based on binary classification. By the likelihood metric (Table 3),
the Bayesian network method performs best on four datasets, comparably to

Table 4. Area Under Precision-Recall Curve: Mean (top), Std. Dev. (bottom).

MovieLens

Method UW Mond. Hepa. Muta. (0.1M) (1M) IMDb
RDN_Boost 0.42 0.27 0.55 0.71 0.50 0.88 0.63
MLN_Boost 0.68 0.44 0.55 0.86 0.50 0.88 0.63
RDN_Bayes 0.89 0.79 055 0.50 0.65 1.00 0.85
RDN_Boost 0.00 0.00 0.01 0.02 0.01 0.00 0.01
MLN_Boost 0.01 0.04 0.01 0.04 0.01 0.00 0.01
RDN_Bayes 0.00 0.07 0.11 0.10 0.02 0.00 0.00

Fast Learning of Relational Dependency Networks 13

MLN_Boost on Mutagenesis, and slightly worse than both boosting methods on
the two largest datasets. By the precision-recall metric (Table 4), the Bayesian
network method performs substantially better on four datasets, identically on
Hepatitis, and substantially worse on Mutagenesis.

Combining these results, for most of our datasets the Bayesian network
method has comparable accuracy and much faster learning. This is satisfac-
tory because boosting is a powerful method that achieves accurate predictions
by producing a tailored discriminative model for each target predicate—a com-
putationally expensive process. By contrast, Bayesian network learning uses the
simpler process of simultaneously constructing a joint model for all predicates,
and uses simple maximum likelihood estimation for parameter values. We con-
clude that Bayesian network learning scales much better to large datasets, and
provides competitive accuracy in predictions.

In addition to scalability, Bayesian networks offer two more advantages. First,
learning easily extends to attributes with more than two possible values. Sec-
ond, the parameters and the predictions derived from them are much easier to
interpret than an ensemble of regression trees [15].

6.3 Comparison of Model Structures

Boosting is known to lead to very accurate classification models [2]. For propo-
sitional data, a Bayesian network classifier with maximum likelihood estimation
for parameter values is a reasonable baseline method [8], but we would expect
less accuracy than from a boosted ensemble of regression trees. Therefore the
predictive performance of our RDN models is not due to the Bayesian network
equation, but due to the more powerful features that Bayesian network learning
finds in relational datasets. Table 5 reports results that quantitatively confirm
this analysis.

For each database, we selected the target predicate where RDN-Bayes shows
the greatest predictive advantage over RDN-Boost (shown as A CLL and A
AUC-PR). We then compute how many more predicates the RDN-Bayes model
uses to predict the target predicate than the RDN-Boost model, shown as A
Predicates. This number can be as high as 11 more predicates (for Mondial). We
also compare how many more population variables are contained in the Markov
blanket of the RDN-Bayes model, shown as A Variables. In terms of database
tables, the number of population variables measures how many related tables are
used for prediction in addition to the target table. This number can be as high
as 2 (for IMDD and Hepatitis). To illustrate Figure 3 shows the parents (Markov
blanket) of target node gender(U) from IMDb in the RDN-Boost and RDN-
Bayes models. The RDN-Bayes model introduces 4 more parents and 2 more
variables, Movie and Actor. These two variables correspond to a relationship
chain of length 2. Thus BN learning discovers that the gender of a user can be
predicted by the gender of actors that appear in movies that the user has rated.

14 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

Table 5. Difference in Markov blankets between RDN_Bayes and RDN_Boost. Az =
(z for RDN_Bayes - « for RDN_Boost). RDN_Bayes predicts a target more successfully
because it uses more predicates and those predicates contain more first-order variables.

Database Target A Preds. A Vars. ACLL A AUC-PR

Mondial religion 11 1 0.58 0.30
IMDb gender 4 2 0.30 0.68
UW-CSE student 4 1 0.50 0.55
Hepatitis sex 4 2 0.20 0.25
Mutagenesis indl 5 1 0.56 0.22
MovieLens gender 1 1 0.26 0.26
RDN-Boost RDN-Bayes ‘ occupation(U) ‘ ‘ age(U) ‘
‘ occupation(U) ‘ ‘ age(V) ‘ ‘ running_time(Movie) gender(U) rating(U,Movie)
gender(U) ‘ gender(Actor) ‘ ‘ CastMember(Movie,Actor) ‘

Fig. 3. The parents of target gender(U) in the models discovered by RDN_Boost (left)
and RDN _Bayes (right).

7 Related Work

Dependency networks were introduced by Heckerman et al. [9] and extended to
relational data by Neville and Jensen [17]. Heckerman et al. compare Bayesian,
Markov and dependency networks for nonrelational data [9].

Bayesian networks. There are several proposals for defining directed rela-
tional template models, based on graphs with directed edges or rules in clausal
format [10, 6]. Defining the probability of a child node conditional on multi-
ple instantiations of a parent set requires the addition of combining rules [10]
or aggregation functions [6]. Combining rules such as the arithmetic mean [16]
combine global parameters with a local scaling factor, as does our log-linear
model. In terms of combining rules, our model uses the geometric mean rather
than the arithmetic mean.* To our knowledge, the geometric mean has not been
used before as a combining rule for relational data.

Markov Networks. Markov Logic Networks (MLNs) provide a logical template
language for undirected graphical models. Richardson and Domingos propose
transforming a Bayesian network to a Markov Logic network using moralization,
with log-conditional probabilities as weights [3]. This is also the standard BN-to-
MLN transformation recommended by the Alchemy system [1]. A discriminative

* The geometric mean of a list of numbers z1,...,z, is ([], x;)/™. Thus geometric
mean = exp(average (logs)).

Fast Learning of Relational Dependency Networks 15

model can be derived from any MLN [3]. The structure transformation was used
in previous work [23], where MLN parameters were learned, not computed in
closed-form from BN parameters. The Gibbs conditional probabilities derived
from an MLN obtained from converting a Bayesian network are the same as
those defined by our log-linear Formula 1, if counts replace proportions as feature
functions [22]. There is no MLN whose discriminative model is equivalent to our
log-linear equation with proportions as feature functions.®

8 Conclusion and Future Work

Relational dependency networks offer important advantages for modelling rela-
tional data. We proposed a novel approach to learning dependency networks:
first learn a Bayesian network, then perform a closed-form transformation of
the Bayesian network to a dependency network. The key question is how to
transform BN parameters to DN parameters. We introduced a new relational
adaptation of the standard BN log-linear equation for the probability of a target
node conditional on an assignment of values to its Markov blanket. The new
log-linear equation uses a sum of expected values of BN log-conditional prob-
abilities, with respect to a random instantiation of first-order variables. This
is equivalent to using feature instantiation proportions as feature functions. We
compared our approach to state-of-the-art functional gradient boosting methods
on six benchmark datasets. Learning RDNs via BNs scales much better to large
datasets than with boosting, and provides competitive accuracy in predictions.

The boosting approach to constructing a dependency network by learning a
collection of discriminative models is very different from learning a Bayesian net-
work. There are various options for hybrid approaches that combine the strengths
of both. (1) Fast Bayesian network learning can be used to select features. Dis-
criminative learning methods should work faster restricted to the BN Markov
blanket of a target node. (2) The Bayesian network can provide an initial de-
pendency network structure. Gradient boosting can then be used to fine-tune a
discriminative model of a child node given parent nodes, replacing a flat condi-
tional probability table.

Appendix: Proof of Consistency Characterization

We show that for a given template BN, there are two ground target nodes and
query conjunction A* such that the conditional distributions of the ground target
nodes given A* do not agree with any joint distribution over the ground target
nodes given A*. We begin by establishing some properties of the template BN and
the query conjunction that are needed in the second part of the proof. The second
part proves the inconsistency by showing that consistency entails a constraint
that is violated by the template BN for the constructed query conjunction A*.

5 A preliminary version of this paper was presented at the StarAl 2012 workshop. A
second version of this paper was presented at ILP 2014 but not published in the
conference proceedings.

16 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

8.1 Properties of the template BN and the input query A*

The inconsistency of the BN networks arises when a parent and a child ground
node have different relevant family counts. The next lemma shows that this is
possible exactly when the template BN is properly relational, meaning it relates
parents and children from different populations.

Lemma 1. The following conditions are equivalent for a template edge Ty — Ts.

1. The parent and child do not contain the same population variables.

2. It is possible to find a grounding ~y for both parent and child, and an assign-
ment A* to all other nodes, such that the relevant family count for the Ty
family differs for TY = Ty and Ty = ~T5.

Proof. If the parent and child contain the same population variables, then there
is a 1-1 correspondence between groundings of the child and groundings of the
parents. Hence the count of relevant family groundings is the same for each, no
matter how parents and child are instantiated. If the parent and child do not
contain the same population variables, suppose without loss of generality that
the child contains a population variable A not contained in the parent. Choose a
common grounding for the parents and child node. For the ground child node,
~vT5, let v be the only family grounding that is relevant, so the relevant count is
1. For the ground parent node, there is at least one other grounding of the child
node T different from 75 since T3 contains another population variables. Thus
it is possible to add another relevant family grounding for 473, which means
that the relevant count is at least 2.

The proof proceeds in the most simple manner if we focus on template edges
that different populations and have no common children.

Definition 2. An template edge Ty — T5 is suitable if

1. The parent and child do not contain the same population variables.
2. The parent and child have no common edge.

The next lemma shows that focusing on suitable edges incurs no loss of generality.

Lemma 2. Suppose that a template BN contains an edge such that the parent
and child do not contain the same population variables. Then the template BN
contains a suitable edge.

Proof. Suppose that there is an edge satisfying the population variable condition.
Suppose that the parent and child share a common child. Since the edge satisfies
the condition, the set of population variables in the common child differs from
at least one of T7,T5. Therefore there is another edge from one of T} — T3 as
parent to a new child that satisfies the population variable condition. If this edge
is not suitable, there must be another shared child. Repeating this argument, we
eventually arrive at an edge satisfying the population variable condition where
the child node is a sink node without children. This edge is suitable.

Fast Learning of Relational Dependency Networks 17

Consider a suitable template edge 77 — T5 that produces a bidirected ground
edge TT «» T5. For simplicity we assume that 7} and 75 are binary variables with
domain {T,F}. (This incurs no loss of generality as we can choose a database
A* in which only two values occur.) Let Pa(T%) be the parents of T» other than
T;. Since the template edge is not redundant [18], there is a parent value setting
Pa(T%) = pasuch that T} and T» are conditionally dependent given Pa(T3) = pa.
This implies that the conditional distribution of T is different for each of the
two possible values of Th:

0(T =F|Ty =F,pa) , (12 =F|Ty =T, pa)
(T, = T|T1 = F,pa) * (T = T|T1 = T,pa)’

(1)

Let A* denote an assignment of values to all ground nodes other than the target
nodes 77 and T%5. We assume that the input query A* assigns different relevant
family counts N7 to T3 and Nz to Ty . This is possible according to Lemma 1.

8.2 Lowd’s Equation and Relevant Family Counts

The log-linear equation 1, specifies the conditional distribution of each target
node given A* and a value for the other target node. We keep the assignment A*
fixed throughout, so for more compact notation, we abbreviate the conditional
distributions as

p(Tl* = t1|T2* = tg) = P(Tl* = tl‘Tg* = t27/1*)

and similarly for P(T1* = t1|Tx" = to, A%).

On the assumption that the dependency network is consistent, there is a joint
distribution over the target nodes conditional on the assignment that agrees with
the conditional distribution:

p(T1" =t1, 15" =t3)
p(Ty" =t3)

and also with the conditional p(T2* = to|T1* = #1).
Lowd [14] pointed out that this joint distribution satisfies the equations

=p(T1" = t1|T2)"

p(F,F) p(T,F) pFE,F) pFEF) pFT)

p(T.F) p(T,T) ~ p(T.T) ~ p(F.T) p(T,T) @

Since the ratio of joint probabilities is the same as the ratio of conditional
probabilities for the same conditioning event, consistency entails the following
constraint on conditional probabilities via Equation (2):

p(Ty" = FITy =F) p(hi" = F|T5 =T) _ p(Ty" = F|Ty" = F) p(Ty" = F[Ii" =T)
p(TQ* = TlTl* = F) p(Tl* = TITQ* = T) p(Tl* = TlTQ* = F) p(TQ* = TITl* = T)

®3)
We refer to Equation 3 as Lowd’s equation. The idea of our proof is to show
that Lowd’s equations are satisfied only if the relevant family counts for the

18 Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

target nodes are the same. According to the log-linear equation, each conditional
probability is proportional to a product of BN parameters. The first step is to
show that in Lowd’s equation, all BN parameter terms cancel out except for
those that are derived from the family that comprises 7} and their T3 and their
common grounding.

Lemma 3. The conditional probabilities for the target nodes can be written as
follows:

P(Ty" = to| T} = t1, A7) o« O(Ty = to|Ty = ty, pa) N/ NetMra=ea/No) e - (4)
where Mr,—, and mr,—, depend only on ty and not on t; and

P(T1" = t1|T5 = ta, A*) oc (T = to| Ty = ty, pa) NN HMm=a /N 7 - (5)
where Mr,—¢, and 71—, depend only on t, and not on ts.

Proof Outline. This is based on analysing the different types of families that
appear in the log-linear equation and their groundings. We omit the full proof
due to space reasons; it is available from [25].

Lemma 4. Suppose that conditions (4) and (5) of Lemma 3 hold. Then Lowd’s
Equation (3) holds if and only if Ny = Ns.

Proof. Observe that in Equation (3), each term on the left has a corresponding
term with the same value for the target node assignment and the opposing
conditioning assignment. For instance, the term p(T2* = F|T1* = F) on the left
is matched with the term p(T5* = F|T1* = T) on the right. This means that the
products in the log-linear expression are the same on both sides of the equation
except for those factors that depend on both t; and t5. Continuing the example,
the factors
0(Ty = F|Ty = F,pa)Me/N2) .y

on the left equal the factors
O(Tp = F|Ty = T, pa)Mri=/N2) .)

on the right side of the equation. They therefore cancel out, leaving only the

term
0(T» = F|T; = F,pa)/"2

on the left and the term
0(Ty = F|Ty = F,pa)V/Nz

on the right. Lowd’s equation can therefore be reduced to an equivalent con-
straint with only such BN parameter terms. For further compactness we abbre-
viate such terms as follows

O(talt1) = 0(To = t2| Ty = t1,pa).

Fast Learning of Relational Dependency Networks 19

With this abbreviation, the conditions of Lemma 3 entail that Lowd’s equation 3
reduces to the equivalent expressions.

O(EE)Y/N2 Q(TR)Y/N G(EE)Y/N p(F|T)N/N:

O(TIE) Y/ (TN O(E[T) N O(T[T) N/ ©
(zgﬁ;;)(N/NrN/Nl) — (ZE?'R)(N/NrN/Nl) (7)

By the nonredundancy assumption (1) on the BN parameters, we have

”

so Equation 7 implies that
N1 = N,

which establishes the lemma.

The main theorem now follows as follows: Lemma 1 entails that if the de-
pendency network is consistent, the log-linear equations satisfy Lowd’s equation
with the bidirected ground edge T} <+ 75 and the query conjunction A* that
satisfies the BN non-redundancy condition. Lemmas 3 and 2 show that if the
template BN is relational, it must contain a suitable edge 77 — T5. Lemma 4
together with Lowd’s equation entails that the relevant counts for T} and T5
must then be the same. But the query conjunction A* was chosen so that the
relevant counts are different. This contradiction shows that Lowd’s equation is
unsatisfiable, and therefore no joint distribution exists that is consistent with
the BN conditional distributions specified by the log-linear Equation 1.

References

1. Alchemy Group. Frequently asked questions. URL = http://alchemy.cs.
washington.edu/.

2. Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

3. Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial
Intelligence. Morgan and Claypool Publishers, 2009.

4. Pedro Domingos and Matthew Richardson. Markov logic: A unifying framework
for statistical relational learning. In Introduction to Statistical Relational Learning
[7].

5. Jorg Flum and Martin Grohe. Parameterized complexity theory, volume 3. Springer,
2006.

6. Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Benjamin Taskar.
Probabilistic relational models. In Introduction to Statistical Relational Learning
[7], chapter 5, pages 129-173.

7. Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. MIT
Press, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick et al.

. Daniel Grossman and Pedro Domingos. Learning Bayesian network classifiers by

maximizing conditional likelihood. In ICML, page 46, New York, NY, USA, 2004.
ACM.

. David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-

thwaite, Carl Kadie, and Pack Kaelbling. Dependency networks for inference,
collaborative filtering, and data visualization. JMLR, 1:49-75, 2000.

Kristian Kersting and Luc de Raedt. Bayesian logic programming: Theory and tool.
In Introduction to Statistical Relational Learning [7], chapter 10, pages 291-318.
H. Khosravi, T. Man, J. Hu, E. Gao, and O. Schulte. Learn and join algorithm
code. URL = http://www.cs.sfu.ca/~oschulte/jbn/.

Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik. Learn-
ing Markov logic networks via functional gradient boosting. In ICDM, pages 320—
329, 2011.

Tushar Khot, Jude Shavlik, and Sriraam Natarajan. Boostr, 2013. URL = http:
//pages.cs.wisc.edu/~tushar/Boostr/.

D. Lowd. Closed-form learning of Markov networks from dependency networks. In
UAI 2012.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude W.
Shavlik. Gradient-based boosting for statistical relational learning: The relational
dependency network case. Machine Learning, 86(1):25-56, 2012.

Sriraam Natarajan, Prasad Tadepalli, Thomas G. Dietterich, and Alan Fern.
Learning first-order probabilistic models with combining rules. Annals of Mathe-
matics and Artifical Intelligence, 54(1-3):223-256, 2008.

Jennifer Neville and David Jensen. Relational dependency networks. JMLR, 8:653—
692, 2007.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
Veronika Peralta. Extraction and integration of MovieLens and IMDB data. Tech-
nical report, Laboratoire PRiSM, Universite de Versailles, 2007.

David Poole. First-order probabilistic inference. In IJCAI pages 985-991, 2003.
Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2010.

Oliver Schulte. A tractable pseudo-likelihood function for Bayes nets applied to
relational data. In STAM SDM, pages 462-473, 2011.

Oliver Schulte and Hassan Khosravi. Learning graphical models for relational data
via lattice search. Machine Learning, 88(3):331-368, 2012.

Oliver Schulte, Hassan Khosravi, Arthur Kirkpatrick, Tianxiang Gao, and Yuke
Zhu. Modelling relational statistics with bayes nets. Machine Learning, 94:105—
125, 2014.

Oliver Schulte, Zhensong Qian, Arthur E. Kirkpatrick, Xiaogian Yin, and Yan Sun.
Fast learning of relational dependency networks. CoRR, abs/1410.7835, 2014.
Charles Sutton and Andrew McCallum. An introduction to conditional random
fields for relational learning. In Introduction to Statistical Relational Learning [7),
chapter 4, pages 93-127.

Moshe Y. Vardi. On the complexity of bounded-variable queries. In PODS, pages
266276, 1995.

