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Abstract. Class-level models capture relational statistics over object
attributes and their connecting links, answering questions such as “what
is the percentage of friendship pairs where both friends are women?”
Class-level relationships are important in themselves, and they support
applications like policy making, strategic planning, and query optimiza-
tion. We represent class statistics using Parametrized Bayes Nets (PBNs),
a first-order logic extension of Bayes nets. Queries about classes require a
new semantics for PBNs, as the standard grounding semantics is only ap-
propriate for answering queries about specific ground facts. We propose
a novel random selection semantics for PBNs, which does not make refer-
ence to a ground model, and supports class-level queries. The parameters
for this semantics can be learned using the recent pseudo-likelihood mea-
sure [1] as the objective function. This objective function is maximized
by taking the empirical frequencies in the relational data as the param-
eter settings. We render the computation of these empirical frequencies
tractable in the presence of negated relations by the inverse Möbius trans-
form. Evaluation of our method on four benchmark datasets shows that
maximum pseudo-likelihood provides fast and accurate estimates at dif-
ferent sample sizes.

1 Introduction

Many applications store data in relational form. Relational data introduces the
machine learning problem of class-level frequency estimation: building a model
that can answer statistical queries about classes of individuals in the database
[2]. Examples of such queries include:

– What fraction of birds fly?—referring to the class of birds.
– What fraction of the grades awarded to highly intelligent students are As?—

referring to the class of (student, course-grade) pairs.
– In a social network, what is the percentage of friendship pairs where both

are women?—referring to the class of friendship links.

As the examples illustrate, class-level probabilities concern the frequency,
proportion, or rate of generic events and conditions, rather than the attributes
and links of individual entities. Estimates of class-level frequency have several
applications:



Statistical first-order patterns. AI research into combining first-order logic
and probability investigated in depth the representation of statistical pat-
terns in relational structures [3, 4]. Often such patterns can be expressed
as generic statements about the average member of a class, like “intelligent
students tend to take di�cult courses”.

Policy making and strategic planning. An administrator may explore the
program characteristics that attract high-ranking students in general, rather
than predict the rank of a specific student in a specific program. Maier et al.
[5] describe several applications of causal-relational knowledge for decision
making.

Query optimization. A statistical model predicts a probability for given ta-
ble join conditions that can be used to estimate the cardinality of a database
query result [2]. Cardinality estimation is used to minimize the size of inter-
mediate join tables [6].

In this paper, we apply Bayes nets to the problem of class-level frequency
estimation. We define the semantics, describe a learning algorithm, and evaluate
the method’s e↵ectiveness.

Semantics. We build a Bayes net model for relational statistics, using the
Parametrized Bayes nets (PBNs) of Poole [7]. The nodes in a PBN are con-
structed with functors and first-order variables (e.g., gender(X ) may be a node).
The original PBN semantics is a grounding or template semantics, where the
first-order Bayes net is instantiated with all possible groundings to obtain a di-
rected graph whose nodes are functors with constants (e.g., gender(sam)). The
ground graph can be used to answer instance-level queries about individuals,
such as “if user sam has 3 friends, female rozita, males ali and victor, what
is the probability that sam is a woman”? However, as Getoor pointed out [8],
the ground graph is not appropriate for answering class-level queries, which are
about generic rates and percentages, not about any particular individuals.

We support class-level queries via a class-level semantics for Parametrized
Bayes nets, based on Halpern’s classic random selection semantics for probabilis-
tic first-order logic [3, 4]. Halpern’s semantics views statements with first-order
variables as expressing statistical information about classes of individuals. For
instance, the claim “60% is the percentage of friendship pairs where both friends
are women” could be expressed by the formula

P (gender(X ) = female, gender(Y ) = female|Friend(X ,Y ) = T ) = 60%.

Learning. A standard Bayes net parameter learning method is maximum like-
lihood estimation, but this method is di�cult to apply for Bayes nets that repre-
sent relational data because the cyclic data dependencies in relations violate the
requirements of a traditional likelihood measure. We circumvent these limitations
by using a relational pseudo-likelihood measure for Bayes nets [1] that is well



defined even in the presence of cyclic dependencies. In addition to this robust-
ness, the relational pseudo-likelihood matches the random selection semantics
because it is also based on the concept of random instantiations. The estima-
tor that maximizes the parameters of this pseudo-likelihood function (MPLE)
has a closed-form solution: the parameters are the empirical frequencies, as with
classical i.i.d. maximum likelihood estimation. However, computing these em-
pirical frequencies is nontrivial for negated relationships because enumerating
the complement of a relationship table is computationally infeasible. We show
that the MPLE can be made tractable for negated relationship using the Möbius
transform [9].

Evaluation. We evaluate MPLE on four benchmark real-world datasets. On
complete-population samples MPLE achieves near perfect accuracy in parameter
estimates, and excellent performance on Bayes net queries. The accuracy of
MPLE parameter values is high even on medium-size samples.

Paper Organization. We begin with relational Bayes net models and the ran-
dom selection semantics for Bayes nets (Sections 2 and 3). Section 4 describes
parameter learning and Section 5 presents the inverse Möbius transform for
computing relational statistics. Simulation results are presented in Section 6,
showing the run time cost of estimating parameters, together with evaluations
of their accuracy. We provide deeper background on the connections between
random selection semantics and probability logic in Section 7 and summarize
related work in Section 8.

2 Bayes Nets for Relational Data

Poole introduced the Parametrized Bayes net (PBN) formalism that combines
Bayes nets with logical syntax for expressing relational concepts [7]. We adopt
the PBN formalism, following Poole’s presentation.

2.1 Relational Concepts

We introduce here a minimum of logical terminology. In Section 7 we present a
more complete probabilistic logic. A population is a set of individuals. Individ-
uals are denoted by lower case expressions (e.g., bob). A population variable
is capitalized. An instantiation of a population variable X selects a member x of
the associated population. An instantiation corresponds to the logical concept of
grounding. A functor represents a mapping f : P1, . . . ,Pa

! V
f

where f is the
name of the functor, and V

f

is the output type or range of the functor. In this
paper we consider only functors with a finite range, disjoint from all populations.
If V

f

= {T ,F}, the functor f is a (Boolean) predicate; other functors are called
attributes. A predicate with more than one argument is called a relationship.
We use lowercase for attribute functors and uppercase for predicates.
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Fig. 1. (a) A relational structure represented as tables. By convention, a pair not listed
in the Friend table are not friends. The Friend relation is symmetric: Friend(X ,Y ) =
Friend(Y ,X ). Only part of the rows are shown. (b) A Bayes net structure for this
database. Friend(X ,Y ) is a relationship node, while the other three are attribute
nodes. (c) The conditional probabilities for the Bayes net structure based upon the
entries in the entire database.

A relational structure specifies the value of a functor for any tuple of ap-
propriate individuals [11]. A relational structure can be visualized as a complex
heterogeneous network [12, Ch.8.2.1]: individuals are nodes, attributes of indi-
viduals are node labels, relationships correspond to (hyper)edges, and attributes
of relationships are edge labels. In relational databases, a relational structure is
represented as a set of tables that list individuals and their attributes; see Fig-
ure 1(a). The set of individual pairs or tuples that are linked by a relationship
is usually much smaller than the set that are not so linked, so database tables
list only the existing relationships.

2.2 Bayes Nets

A Bayes Net (BN) is a directed acyclic graph (DAG) whose nodes comprise
a set of random variables and conditional probability parameters. For each as-
signment of values to the nodes, the joint probability is specified by the product
of the conditional probabilities, P (child |parent values).

A Parametrized random variable is of the form f(X1, . . . , Xa

), where
the populations associated with the variables are of the appropriate type for
the functor. A Parametrized Bayes Net (PBN) is a Bayes net whose nodes
are Parametrized random variables [7]. In the remainder of this paper we follow
[13] and use the terms functor random variable and functor Bayes Net in-
stead (FBN), for the following reasons. (1) The name “Parametrized” denotes
a semantics that views the Bayes net as a template for a ground graph struc-
ture. Our random selection semantics does not refer to a ground model. (2) The
usual statistical meaning of “parametrized” is that values have been assigned to
the model parameters. We do not assume that such values have been assigned;
learning them is a key topic of this paper.
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Fig. 2. Viewing population variables as random selections from the associated popula-
tion, the nodes represent functions of random variables, hence are themselves random
variables. Probabilities are computed assuming the relations in Fig. 1 (a) are complete
(the database only describes Bob and Anna).

In our view, a Functor Bayes net is a type of Bayes net whose nodes are
complex objects with an internal syntax derived from the relational structure.
Where the distinction between BNs in general and FBNs is not important, we
simply refer to FBNs as Bayes nets and to functor random variables as functor
nodes or nodes. Figure 1(b) shows an illustrative FBN. The next section presents
a novel semantics of Functor Bayes nets as representing relational statistics.

3 Random Selection Semantics for Bayes Nets.

We provide a semantics that views a functor Bayes net as a representation of a
joint probability distribution over its nodes [12, Sec.14.2]. The semantics is for
nodes that refer to population variables, rather than for ground nodes that refer
to individuals as in Poole’s original paper [7]. Such a nonground node can be
given a probabilistic interpretation in terms of random selections.

Consider first a node with a single population variable, e.g., gender(X ). We
view X as a random variable that selects a member x from its population ac-
cording to a uniform population distribution P (X = x). The functor gender
then represents a function of a random variable, and hence is itself a random
variable. Figure 2 illustrates this interpretation.

In the case of a functor with several population variables f(X1, . . . , Xa

), we
view each population variable as representing an independent selection from its
associated population (thus variables for the same population represent i.i.d.
selections). This defines a distribution over a-tuples of individuals from the ap-
propriate population. Again, any functor f(X1, . . . , Xa

) then defines a function
of a random variable, and hence is itself a random variable. Figure 2 illustrates



the random selection interpretation for the functor Friend(X ,Y ). As the random
selection semantics is a key concept in this paper, we discuss two interpretations.

Random Individuals. Under random selection semantics, probability formu-
las can be interpreted as describing the properties of random individuals. For
example, the formula P (gender(X ) = M ) = 50% can be interpreted as “the
probability is 50% that a randomly selected person is a man”. A related inter-
pretation that is often helpful is in terms of typical individuals [3]; for instance,
we may read the formula P (Flies(B) = T ) = 90% as “the probability that a
typical bird flies is 90%”.

Class-level Probabilities. Random selection formulas can also be read as de-
scribing the distribution of properties in classes of individuals. Thus we can read
P (gender(X ) = M ) = 50% as “the percentage of persons that are men is 50%”.
Similarly, we may read the formula P (Flies(B) = T ) = 90% as “the percentage
of birds that fly is 90%”. We therefore refer to probabilities defined by random
selection as class-level probabilities.

Random Selection Semantics for Bayes Nets. Random selection semantics can
be applied to view Bayes nets as representing class-level probabilities, without
reference to a ground model. Via the standard product formula, a Bayes net B
entails a probability value P

B

for each joint assignment of values to its node.
These are probability assignments that refer to population variables rather than
individuals. For example, the Bayes net structure of Figure 1 (b) entails joint
probabilities of the form

P
B

(g(Y ) = v1, F (X,Y ) = v2, g(X) = v3, CDr(X) = v4),

where we have used the obvious abbreviations for functors, and each v
i

is a
constant from the appropriate range. For example, the conditional probabilities
given in Figure 1(c) entail the joint probability

P
B

(g(X) = W, g(Y ) = M,F (X,Y ) = T,CDr(X) = T ) = .028. (1)

The random selection semantics for the nodes provides an interpretation of
these joint probabilities. For example, the joint probability (1) can be read as
“if we randomly select two persons X and Y , the chance is 6% that one is a
woman, the other is a man, they are friends, and the woman drinks co↵ee”.

Since the random selection semantics is not defined in terms of a ground
model, it can be applied even in the presence of cyclic dependencies in the data.
For instance, grounding the Bayes net of Figure 1 shows a cyclic dependency
between the genders of di↵erent users. The random selection semantics still ap-
plies, as shown in our examples, since it concerns class-level dependencies. The
BN of Figure 1 illustrates that the dependency structure among class-level ran-
dom variables can be acyclic even when the dependency structure among ground
instances is not.

In logic, the term “semantics” is used in a di↵erent sense than in the con-
text of statistical models, to refer to truth conditions for logical sentences [12,
Ch.7.4.2]. In section 7, we show that the random selection semantics for Bayes



Table 1. An example computation of the pseudo-likelihood for the database and the
Bayes net of Figure 1 (b). Columns for functors include the grounded value and its
conditional probability. The dotted row indicates entries for combinations including the
other instances of Person. The pseudo log-likelihood is the mean of the ln p column.

X Y g(Y) F(X,Y) g(X) cd(X) Joint p ln p
anna anna W (0.5) F (0.9) W (0.5) T (0.8) 0.180 -1.71
anna bob M (0.5) T (0.1) W (0.3) T (0.8) 0.012 -4.42
bob anna W (0.5) T (0.1) M (0.3) F (0.4) 0.006 -5.12
bob bob M (0.5) F (0.9) M (0.5) F (0.4) 0.090 -2.41
. . . . . . . . . . . . . . . . . . . . . . . .

nets that we have presented is in agreement with Halpern’s truth-conditional
type 1 semantics for probabilistic logic. We next turn to learning and describe a
method for learning Bayes net parameters that represent class-level probabilities.

4 Parameter Learning For Class-Level Probabilities

In a nonrelational learning setting, it is common to view a data table as rep-
resenting information about individuals in a finite subset drawn from a large,
possibly infinite population. In relational learning, we view a database D as rep-
resenting a finite substructure of a large, possibly infinite relational structure.
We make the standard assumption that the database is complete [14, 15]: For
each individual (node) observed, the database lists its attributes, and for each
pair of observed individuals (nodes), the database specifies which links hold be-
tween them. Note that completeness is a statement about the information about
individuals in the database. A complete database may contain only a subset of
the individuals in the population about which we wish to make inferences.

A fundamental question for statistical model selection is how to measure
the fit of the model. That is, we must specify a likelihood function P

B

(D) for a
given database. The random selection semantics can be used to define a tractable
pseudo-likelihood [1]: The pseudo log-likelihood is the expected log-probability
assigned by the Bayes net to the links and attributes for a random instantiation
of the population variables. This is defined by the following procedure.

1. Randomly select a grounding for all population variables that occur in the
Bayes net. The result is a ground graph with as many nodes as the original.

2. Look up the value assigned to each ground node in the database. Compute
the log-likelihood of this joint assignment using the usual product formula;
this defines a log-likelihood for this random instantiation.

3. The expected value of this log-likelihood—the mean over all instantiations—
is the pseudo log-likelihood of the database given the Bayes net.

Table 1 shows an example computation of the pseudo likelihood. The pseudo like-
lihood matches the random selection semantics that we have proposed for class-
level Bayes nets. It has several attractive theoretical properties [1]. (1) Because



it does not make reference to a single ground model, the measure is well defined
even in the presence of cyclic dependencies in the data. For instance, ground-
ing the Bayes net of Figure 1 shows a cyclic dependency between the genders
of di↵erent users. Nonetheless a pseudo-likelihood value can be computed as in
Table 1. The pseudo-likelihood can be used to e↵ectively learn cyclic or recursive
dependencies [13]. (2) It is closely related to relational pseudo-likelihood mea-
sures proposed for other graphical models (e.g., Markov random fields). (3) It is
invariant under equivalence transformations of the logical predicates (database
normalization). (4) For a fixed database D and Bayes net structure, the pa-
rameter values that maximize the pseudo-likelihood are the conditional empirical
frequencies observed in the database [1, Prop.3.1]. We refer to these frequencies
as the database probabilities. This result is exactly analogous to maximum
likelihood estimation for i.i.d. data, where the empirical frequencies in an i.i.d.
sample maximize the model likelihood.

The database probability distribution PD of a node assignment is the number
of instantiations of the population variables in the functor nodes that satisfy the
assignment in the database, divided by the number of all possible instantiations.
The formal definition is as follows [11]:

– Let f1 = v1, . . . , fn = v
n

be an assignment of appropriate values to n nodes.
– Let X1, . . . , X`

be the population variables that appear in the nodes, with
associated population sizes |P1|, . . . , |P`

|.
– Let #D(f1 = v1, . . . , fn = v

n

) be the number of instantiations or groundings
of the population variables that satisfy the assigned values in D.

– Then the database probability of the value assignment is given by

PD(f1 = v1, . . . , fn = v
n

) =
#D(f1 = v1, . . . , fn = v

n

)

|P1|⇥ · · ·⇥ |P
`

| .

Example. Following Figure 1(b), where the complete person population is {anna, bob},
we have

PD(gender(X ) = M ) = 1/2

and

PD(Friend(X ,Y ) = T , gender(X ) = M , gender(Y ) = W ) = 1/4 .

In the next section we consider how to compute database probabilities.

5 Computing Relational Statistics

In this section we describe algorithms for computing probability estimates for
the parameters PD(child value, parent values) in a functor Bayes net. The pa-
rameters can be estimated independently for each child node. We refer to a joint
specification of values (child value, parent values) as a family state. Consider
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Fig. 3. (a) A Bayes net with two relationship nodes. (b) An illustrative trace of the
inverse Möbius transform (see text).

a child node specifying a relationship R1 whose parents comprise relationship
nodes R2, . . . , Rm

, and attribute nodes f1, . . . , fj . The algorithms below can be
applied in the same way in the case where the child node is an attribute node.
The number of family states r is the cardinality of the Cartesian product of
the ranges for every node in the family. The Bayes net parameters are r condi-
tional probabilities of the form (we separate relationships from attributes by a
semicolon)

P (R1 = b1|R2 = b2, . . . , Rm

= b
m

; f1 = v1, . . . , fj = v
j

), (2)

where the b
i

values are Boolean and each v
j

is from the domain of f
j

. Fig-
ure 3 (Top) provides an example with R1 = Friend(X ,Y ), R2 = Follows(X ,Y ),
and f1 = gender(X ). In this example, all nodes are binary, so the CP-table re-
quires the specification of r = 2⇥ 2⇥ 2 = 8 values.1

Conditional probabilities can be easily estimated from the su�cient statistics,
which are the database probabilities for a family state:

PD(R1 = b1, R2 = b2, . . . , Rm

= b
m

; f1 = v1, . . . , fj = v
j

). (3)

For the rest of this section, we focus on computing these joint probabilities. So
long as a database probability involves only positive relationships, the compu-
tation is straightforward. For example, in PD(gender(X ) = M ,Friend(X ,Y ) =
T ), the value #D(gender(X ) = M ,Friend(X ,Y ) = T ), the count of friendship
pairs (x, y) where x is male and the Friend relationship is true, can be computed
by regular table joins or optimized virtual joins [16].

1 Although only 4 of these values are independent, we take the number of parameters
to be r = 8 for simplicity of exposition of the inverse Moebius transform in the next
section.



Computing joint probabilities for a family containing one or more negative
relationships is harder. A naive approach would explicitly construct new data ta-
bles that enumerate tuples of objects that are not related. However, the number
of unrelated tuples is too large to make this scalable (think about the number
of user pairs who are not friends on Facebook). In their work on learning Prob-
abilistic Relational Models with existence uncertainty, Getoor et al. provided a
“1-minus trick” for the special case of estimating a conditional probability with
only a single negated relationship [10, Sec.5.8.4.2]. They did not treat parameter
learning with multiple negated relationships.

5.1 Statistics With Multiple Negated Relationships: The Fast
Möbius Transform

The general case of multiple negative relationships can be e�ciently computed
using the fast inverse Möbius transform (IMT), or Möbius transform for
short. We compute the joint probabilities (3) for r family states by first com-
puting the r Möbius parameters of the joint distribution, then using the inverse
Möbius transform to transform the Möbius parameters into the desired joint
probabilities. Figure 4 provides an overview of the computation steps. Because
the Möbius parameters involve probabilities for events with positive relationships
only, they can be estimated directly from the data. We next define the Möbius
parameters, then explain the IMT.

Let B = B1, . . . , Bm

be a set of binary random variables with possible values
0 or 1, and P be the joint distribution that specifies 2m probabilities, one for
each possible assignment of values to the m binary variables. For any subset
B ✓ B of the variables, let P (B = 1) denote the probability that the variables
in B are assigned the value 1, leaving the value of the other variables unspecified.
The Möbius parameters of the distribution P are the values P (B = 1) for
all subsets B ✓ B[17, Sec.3]. There are 2m Möbius parameters for m binary
variables, with 0  P (B = 1)  P (B = 1)  P (; = 1) = 1.

For a family state, if we fix the values v1, . . . , vj of the attribute atoms, the
su�cient statistics correspond to a joint distribution overm Boolean relationship
random variables:

P (R1 = ·, R2 = ·, . . . , R
m

= ·; f1 = v1, . . . , fj = v
j

).

We refer to the Möbius parameters of this joint distribution as the Möbius
parameters for the attribute values v1, . . . , vj .

Example. For the Bayes net of Figure 3 (Top), fix the attribute condition
gender(X ) = W . The four Möbius parameters for this attribute condition are

P (gender(X ) = W )

P (Friend(X ,Y ) = T ; gender(X ) = W )

P (Follows(X ,Y ) = T ; gender(X ) = W )

P (Friend(X ,Y ) = T ,Follows(X ,Y ) = T ; gender(X ) = W )
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Fig. 4. Computation of joint probabilities in a relational database. (1) Estimate Möbius
parameters using standard table join operations. (2) Transform the Möbius parameters
into joint probabilities. (3) Compute conditional probabilities from joint probabilities.
Only the first step involves data access.

5.2 The Inverse Möbius Transform

It is clear that the Möbius parameters can be computed from the joint prob-
abilities by marginalization. For example, for two binary random variables, we
have P (B1 = 1) = P (B1 = 1, B2 = 1) + P (B1 = 1, B2 = 0). Conversely, the
Möbius inversion lemma entails that the joint probabilities can be computed from
the Möbius parameters.2 The Inverse Möbius Transform is an optimal algorithm
for carrying out this computation, using the local update operation

P (R = F ,R) = P (R)� P (R = T ,R) (4)

2 There are several other ways to parametrize binary joint distributions, such as canon-
ical parametrizations [18, Sec.4.4.2.1]. See also Buchman et al. [19].



where R is a conjunction of relationship specifications, possibly with both posi-
tive and negative relationships. The equation holds for any fixed set of attribute
conditions f1 = v1, . . . , fj = v

j

. Eq. 4 generalizes the 1-minus trick: the joint
probabilities on the right hand side each involve exactly one less false relationship
than the joint probability on the left.

As illustrated in Figure 4, our implementation of the transform uses two data
structures. Middle table: a joint probability table with r rows and k+2 columns.
The first k = j +m columns are for the parent nodes, column k + 1 is for the
child node, and column k + 2 is the joint probability for the row. The r rows
enumerate all possible combinations of the child and parent node value. Thus
the joint probability table is just like a conditional probability table, but with
joint probabilities instead of conditional ones. Top table: the Möbius table is
just like the joint probability table, but with entries T and * instead of T and
F for the Boolean relationship values. The value * represents “unspecified”. The
entries in the Möbius table do not involve negated relationships—all relationship
nodes have the value T or ⇤.

The IMT initializes the Möbius parameter values with frequency estimates
from the data (top table). It then goes through the relationship nodes R1, . . . , Rm

in order, at stage i replacing all occurrences of R
i

= ⇤ with R
i

= F , and applying
the local update equation to obtain the probability value for the modified row.
At termination, all ⇤ values have been replaced by F and the table specifies all
joint frequencies (middle table). In the final step, with complexity linear in r,
we compute conditional probabilities (bottom table).

This algorithm is repeated for all possible assignments of values to attribute
node, for every child node. Algorithm 1 gives pseudo code and Figure 3 presents
an example of the transform step.

5.3 Complexity Analysis.

Kennes and Smets [9] analyze the complexity of the IMT. We summarize the
main points. Recall that m is the number of binary relationship nodes in a single
node family.

1. The IMT only accesses existing links, never nonexisting links.
2. The inner loop of Algorithm 1 (lines 3–6) performs O(m2m�1) updates [9].

This is optimal [9, Cor.1].
3. If the joint probability table for a family contains r rows, the algorithm

performs O(m⇥ r) updates in total.

In practice, the numberm is small, often 4 or less.3 Wemay therefore treat the
number of updates as proportional to the number r of Bayes net parameters.Our
simulations confirm that the cost of the IMT updates is dominated by the data
access cost for finding the Möbius parameter frequencies.

3 For general m, the problem of computing a su�cient statistic in a relational
structure—a joint probability of the form (3)—is #P-complete [20, Prop.12.4].



Algorithm 1 The inverse Möbius transform for parameter estimation in a
Parametrized Bayes Net.

Input: database D; a set of nodes divided into attribute nodes f1, . . . , fj and rela-
tionship nodes R1, . . . , Rm.
Output: joint probability table specifying the data frequencies for each joint assign-
ment to the input nodes.

1: for all attribute value assignments f1 := v1, . . . , fj := vj do

2: initialize the table: set all relationship nodes to either T or ⇤; find joint frequen-
cies with data queries.

3: for i = 1 to m do

4: Change all occurrences of Ri = ⇤ to Ri = F .
5: Update the joint frequencies using (4).
6: end for

7: end for

6 Evaluation

We evaluated the learning times (Section 6.2) and quality of inference (Sec-
tion 6.3) of our approach to class-level semantics, as well as comparing the in-
ference accuracy of our methods to Markov Logic Networks. Another set of
simulations evaluates the accuracy of parameter estimates (conditional proba-
bilities). All experiments were done on a QUAD CPU Q6700 with a 2.66GHz
CPU and 8GB of RAM. The datasets and code are available on the Web [21].

6.1 Datasets

We used four benchmark real-world databases, with the modifications described
by Schulte and Khosravi [13]. See that article for details.

Mondial Database. A geography database, featuring one self-relationship,
Borders, that indicates which countries border each other. The data are orga-
nized in 4 tables (2 entity tables, 2 relationship tables, 10 descriptive attributes).

Hepatitis Database. A modified version of the PKDD’02 Discovery Challenge
database. The data are organized in 7 tables (4 entity tables, 3 relationship
tables and 16 descriptive attributes).

Financial A dataset from the PKDD 1999 cup. The data are organized in 4
tables (2 entity tables, 2 relationship tables, 13 descriptive attributes).

MovieLens. A dataset from the UC Irvine machine learning repository. The
data are organized in 3 tables (2 entity tables, 1 relationship table, and 7 de-
scriptive attributes).

To obtain a Bayes net structure for each dataset, we applied the learn-and-
join algorithm [13] to each database with the implementation provided by the
authors. This is the state-of-the-art structure learning algorithm for FBNs; for
an objective function, it uses the pseudo-likelihood described in Section 4.



6.2 Learning Times

Table 2 shows the run times for computing parameter values. The Complement
method uses SQL queries that explicitly construct tables for the complement
of relationships (tables representing tuples of unrelated entities), while the IMT
method uses the inverse Möbius transform to compute the conditional probabil-
ities. The IMT is faster by factors of 15–237.

Table 2. Learning times (sec) for algorithms that construct explicit complement tables
or use the inverse Möbius transform.

Database Parameters #tuples Complement IMT Ratio
Mondial 1618 814 157 7 22
Hepatitis 1987 12,447 18,246 77 237
Financial 10926 17,912 228,114 14,821 15
MovieLens 326 82,623 2,070 50 41

6.3 Inference

The evaluation of parameter learning for Bayes nets is based on query accuracy
of the resulting nets [23] because answering probabilistic queries is the basic
inference task for Bayes nets. Correct parameter values will support correct query
results, so long as the given Bayes net structure matches the true distribution
(i.e., is an I-map). We evaluate our algorithm by formulating random queries
and comparing the results returned by our algorithm to the ground truth, the
actual database frequencies.

We randomly generate queries for each dataset according to the following pro-
cedure. First, randomly choose a target node V 100 times, and go through each
possible value a of V such that P (V = a) is the probability to be predicted. For
each value a, choose randomly the number k of conditioning variables, ranging
from 1 to 3. Make a random selection of k variables V1, . . . , Vk

and corresponding
values a1, . . . , ak. The query to be answered is then P (V = a|V1 = a1, . . . , Vk

=
a
k

).
As done by Getoor et al. [2], we evaluate queries after learning parameter

values on the entire database. Thus the Bayes net is viewed as a statistical
summary of the data rather than as generalizing from a sample. Inference is
carried out using the Approximate Updater in CMU’s Tetrad program [22].
Figure 5(left) shows the query performance for each database. A point (x, y) on
a curve indicates a query such that the true probability value in the database is
x and the probability value estimated by the model is y. The Bayes net inference
is close to the ideal identity line, with an average di↵erence of less than 1% (inset
numbers).
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Fig. 5. Left: Query performance (Section 6.3): Estimated vs. true probability, with
average error and standard deviation. Number of queries/average inference time per
query: Mondial, 506/0.08sec; MovieLens, 546/0.05sec; Hepatitis, 489/0.1sec; Financial,
140/0.02sec. Right: Error (Section 6.4): Absolute di↵erence in estimated conditional
probability parameters, averaged over 10 random subdatabases and all BN parameters.
Whiskers indicate the 95th percentile. The 70% and 90% subsamples of the Financial
database had so little variance that the whiskers are not visible.



Comparison With Markov Logic Networks. To benchmark our results, we com-
pare the average error of FBN inferences with frequency estimates from Markov
Logic Network (MLN)s. MLNs are a good comparison point because (1) they
are currently one of the most active areas of SRL research; (2) the Alchemy sys-
tem provides an open-source, state-of-the-art implementation for learning and
inference [24]; (3) they do not require the specification of further components
(e.g., a combining rule or aggregation function); and (4) their undirected model
can accommodate cyclic dependencies.

Like most statistical-relational models, MLNs were designed for instance-level
probabilities rather than class-level queries. We therefore need an extra step to
convert instance-level probabilities into class-level probabilities. To derive class-
level probability estimates from instance-level inference, the following method
due to Halpern [3, fn.3] can be used: Introduce a new individual constant for each
1st-order variable in the relational model (e.g., random-student, random-course,
and random-prof). Applying instance probability inference to these new individ-
uals provides a query answer that can be interpreted as a class-level probability.
To illustrate, if the only thing we know about Tweety is that Tweety is a bird,
then the probability that Tweety flies should be the frequency of flyers in the
bird population [25]. That is, the class-level probability P (Flies(B) = T ) can
be obtained from the instance-level marginal probability P (Flies(tweety) = T )
where tweety is a new constant not featured in the data used for learning. In the
experiments below, we apply MLN inference to new constants as described to
obtain class-level probability estimates. We compare these learning algorithms
[26]:

BN: Bayes net parametrized with maximum pseudo likelihood estimates.
LHL: A structure learning algorithm that produces a parametrized MLN, with
Alchemy’s MC-SAT for inference.
LSM: Another structure learning algorithm that produces a parametrized MLN,
with Alchemy’s MC-SAT for inference. In experiments by Kok and Domingos,
LSM outperformed previous MLN learners.

As shown in Table 3, the Bayes net models provide an order of magnitude
more accurate class-level estimates than the MLN models.

Table 3. Class-level query performance of Bayes nets vs. two algorithms for learning
Markov Logic Networks, as indicated by average absolute error between the predicted
frequency and the true database frequencies. NT denotes non-termination within the
system resources.

Average error
Dataset BN MLN(LSM) MLN(LHL)
Mondial 0.9% 8.6% 10.5%
Hepatitis 0.8% 11.2% 13.2%
Financial 0.9% 9.1% NT
Movielens 0.6% 14.2% NT



6.4 Conditional Probabilities

In the previous inference results, the correct query answers are defined by the
entire population, represented by the benchmark database, and the model is
also trained on the entire database. To study parameter estimation at di↵er-
ent sample sizes, we trained the model on N% of the data for varying N while
continuing to define the correct value in terms of the entire population. Concep-
tually, we treated each benchmark database as specifying an entire population,
and considered the problem of estimating the complete-population frequencies
from partial-population data. The N% parameter is uniform across tables and
databases. We employed standard subgraph subsampling [27, 28], which selects
entities from each entity table uniformly at random and restricts the relationship
tuples in each subdatabase to those that involve only the selected entities. Sub-
graph sampling provides complete link data and matches the random selection
semantics. It is applicable when the observations include positive and negative
link information (e.g., not listing two countries as neighbors implies that they are
not neighbors). The subgraph method satisfies an ergodic law of large numbers:
as the subsample size increases, the subsample relational frequencies approach
the population relational frequencies.

The right side of Figure 5 plots the di↵erence between the true conditional
probabilities and the MPLE estimates. With increasing sample size, MPLE
estimates approach the true value in all cases. Even for the smaller sample sizes,
the median error is close to 0, confirming that most estimates are very close to
correct. As the box plots show, the 3rd quartile of estimation error is bound
within 10% on Mondial, the worst case, and within less than 5% on the other
datasets.

7 Probability Logic

First-order logic was extended to incorporate statements about probabilities in
Halpern and Bacchus’s classic AI papers [3, 4]. Formalizing probability within
logic provides a formal semantics for probability assertions and allows principles
for probabilistic reasoning to be defined as logical axioms. This section provides
a brief outline of probability logic. We describe how the random selection concept
has been used to define a truth-conditional semantics for probability formulas
[3, 4]. This semantics is equivalent to our class-level interpretation of functor
random variables.

7.1 Syntax

We adopt Chiang and Poole’s version of predicate logic for statistical-relational
modelling [11]. We review only the concepts that are the focus of this paper.

Individuals are represented by constants, which are written in lower case
(e.g., bob). A type is associated with each individual, for instance bob is a person.
The population associated with type ⌧ , a set of individuals, is denoted by P(⌧).



We assume that the populations are specified as part of the type description. A
logical variable is capitalized and associated with a type. For example, the log-
ical variable Person is associated with the population person. We use the defini-
tion of functor given in Section 2.1; we assume that the language contains functor
symbols such as f, f 0, g. A literal is of the form f(�1, . . . ,�a

) = v, where v is in
the range of the functor, and each �

i

is either a constant or a population variable.
The types of �1, . . . ,�a

must match the argument types of f . If all the �1, . . . ,�a

are constants, then f(�1, . . . ,�a

) = v is a ground literal. A ground literal is
the basic unit of information. Literals can be combined to generate formulas. In
this paper we consider only formulas that are conjunctions of literals, denoted
by the Prolog-style comma notation f(�1, . . . ,�a

) = v, . . . , f 0(�0
1, . . . ,�

0
a

0) = v0.
The work of Halpern and Bacchus shows how to extend the random selection
semantics to the full syntax of first-order logic.

A probability literal is of the form

P (�) = p

where each p is a term that denotes a real number in the interval [0,1] and �
i

is
a conjunctive formula as defined above. A probability formula is a conjunction
of probability literals. We refer to predicate logic extended with probability
formulas as probability logic.

Let {X1, . . . , Xk

} be a set of logical variables of types ⌧1, . . . , ⌧k. A ground-
ing � is a set � = {X1\x1, . . . , Xk

\x
k

} where each x
i

is a constant of the same
type as X

i

. A grounding � for a formula � is a grounding for the variables that
appear in the formula, denoted by ��.

Examples. Consider again the social network model of Figure 1 (a), with a single
type, ⌧ = person, associated with two logical variables X and Y . A conjunction
of nonground literals is gender(X ) = W , gender(Y ) = M , Friend(X ,Y ) = T .
Applying the grounding {X\anna,Y \bob} produces the conjunction of ground
literals gender(anna) = W , gender(bob) = M ,Friend(anna, bob) = T .

An example of a nonground probability formula is

P (gender(X ) = W , gender(Y ) = M ,Friend(X ,Y ) = T ) = 1/4 ,

while an example of a ground probability formula is

P (gender(anna) = W , gender(bob) = M ,Friend(anna, bob) = T ) = 1/4 .

7.2 Semantics.

Halpern defines di↵erent semantics for probability formulas depending on whether
they contain only nonground probability literals (type 1), only ground proba-
bility literals (type 2), or both (type 3). Relational statistics are represented by
nonground probability formulas, so we give the formal definition for the type 1
semantics only. The type 2 semantics for probability formulas with ground liter-
als is is well-known in the statistical-relational learning community [29, 30],[12,



Ch.14.6.1]. An example of a mixed type 3 case is the connection between the
class-level probabilities and individual marginal probabilities that we utilized in
the Markov Logic Network experiments reported in Table 3. Schulte [25] dis-
cusses the importance of type 3 semantics for statistical-relational learning.

A relational structure S specifies (1) a population for each type, and (2) for
each functor f a set of tuples S

f

= {hx1, . . . , xa

, vi}, where the tuple hx1, . . . , xa

i
match the functor’s argument types, and the value v is in the range of f . Each
tuple hx1, . . . , xa

i appears exactly once in S
f

.
A relational structure defines truth conditions for ground literals, conjunctive

formulas, and probability formulas as follows. If the structure S assigns the same
value to a ground atom as a literal l, the literal is true in S, written as S |= l.
Thus

S |= f(x1, . . . , xa

) = v i↵ hx1, . . . , xa

, vi 2 S
f

.

A conjunction is true if all its conjuncts are true. All ground literals listed above
are true in the structure of Figure 1 (b). False literals include Co↵eeDrinker(bob)
= T and Friend(anna, anna) = T .

A relational structure does not determine a truth value for a nonground literal
such as gender(X ) = M , since a gender is not determined for a generic person
X. We follow database theory and view a nonground formula as a logical query
[31]. Intuitively, the formula specifies conditions on the population variables that
appear in it, and the result set lists all individuals that satisfy these conditions
in a given relational structure. Formally, we denote the formula result set for
a structure S as RS(�), defined by

RS(�) ⌘ {hx1, . . . , xk

i : S |= �{X1\x1, . . . , Xk

\x
k

}i

To define truth conditions for nonground probability formulas, a relational
structure is augmented with a distribution P

⌧

over each population P(⌧). There
is no constraint on the distribution. Halpern refers to such augmented structures
as type 1 relational structures; we continue to use the symbol S for type 1
structures. Given a type 1 structure, we may view a logical variable as a random
selection from its population. These random selections are independent, so for a
fixed set of population variables, the population distributions induce a distribu-
tion over the groundings of the variables. The random selection semantics states
that the probability of a formula in a type 1 structure is the probability of the set
of groundings that satisfy the formula. In other words, it is the probability that
the formula is satisfied by a randomly selected grounding. The formal definitions
are as follows.

1. PS(X1 = x1, . . . , Xa

= x
a

) =
df

P
⌧1(x1)⇥ · · ·⇥ P

⌧a(xa

) where ⌧
i

is the type
of variable X

i

and constant x
i

.
2. S |= P (�) = p if and only if p =

P
hx1,...,xai2RS(�) PS(x1, . . . , xa

).

Each joint probability specified by a functor Bayes net is a conjunction in
probability logic (like Equation 1). The net therefore specifies a set of non-
ground probability formulas. The logical meaning of these formulas according



to the type 1 semantics is the same as the meaning of class-level probabilities
according to the random selection semantics of Section 3. In the terminology of
Bacchus, Grove, Koller, and Halpern, a set of nonground probability formulas is
a statistical knowledge base [32]. In this view, a functor Bayes net is a compact
graphical representation of a statistical knowledge base, much as a small set of
axioms can provide a compact representation of a logical knowledge base.

8 Related Work and Discussion

Statistical Relational Models. To our knowledge, the Statistical Relational
Models (SRMs) of Getoor, Taskar and Koller [8], are the only prior statistical
models with a class-level probability semantics. A direct empirical comparison is
di�cult as code has not been released, but SRMs have compared favorably with
benchmark methods for estimating the cardinality of a database query result [2]
(Sec. 1).

SRMs di↵er from FBNs and other statistical-relational models in several
respects. (1) SRMs are derived from a tuple semantics [8, Def.6.3], which is dif-
ferent from the random selection semantics we propose for FBNs. (2) SRMs are
less expressive: The queries that can be formulated using the nodes in an SRM
cannot express general combinations of positive and negative relationships [8,
Def.6.6]. This restriction stems from the fact that the SRM semantics is based
on randomly selecting tuples from existing tables in the database. Complements
of relationship tables are usually not stored (e.g., there is no table that lists
the set of user pairs who are not friends). The expressive power of SRMs and
FBNs becomes essentially equivalent if the SRM semantics is extended to in-
clude drawing random tuples from complement tables, but this entails the large
increase in storage and processing described above.

Class-level vs. Instance-level Probabilities. Most previous work on statistical-
relational learning has been concerned with instance-level probabilities for pre-
dicting the attributes and relationships of individuals [33, 12]. Examples of
instance-level queries include the following.

– Given that Tweety is a bird, what is the probability that Tweety flies?
– Given that Sam and Hilary are friends, and given the genders of all their

other friends, what is the probability that Sam and Hilary are both women?
– What is the probability that Jack is highly intelligent given his grades?

Probability logic represents such instance-level probabilities by formulas with
ground literals (e.g., P (Flies(tweety)) = p). In graphical models, instance level
probabilities are defined by a template semantics [33]: the functors associated
with every node are grounded with every appropriate constant. Instance-level
probabilities can be computed by applying inference to the resulting graph.

A key di↵erence between class- and instance-level queries is that instance-
level queries can involve an unbounded number of random variables. For instance,



if m has 100 Facebook friends x1, . . . , x100, an instance-level query to predict the
gender of m given the genders of her friends would involve 200 ground literals
of the form

P (gender(m)|gender(x1 ),Friend(m, x1 ), . . . , gender(x100 ),Friend(m, x100 )).

In contrast, class-level queries are restricted to the set of random variables in
the class-level model, which is relatively small. For instance, the Bayes net of
Figure 1 (b) contains four class-level random variables. This allows a query like

P (gender(X )|gender(Y ),Friend(X ,Y )),

which predicts the gender of a single generic user, given the gender of a single
generic friend.

While we do not treat learning models for instance-level probabilities in this
paper, we note that the Bayes net structures that we use in this paper also
perform well for instance-level inference [13, 28]. The structures are learned using
the random selection pseudo likelihood as the main component of the objective
function. These evaluations suggest the pseudo likelihood guides learning towards
models that perform well for both class-level and instance-level inferences.

Parfactors and Lifted Inference. Lifted inference aims to speed up instance-
level inferences by computing parfactors, that is, counts of equivalent events,
rather than repeating equivalent computations [7]. For instance, the inference
procedure would count the number of male friends that m has, rather than re-
peat the same computation for each male friend. Based on the similarity with
computing event counts in a database, Schulte and Khosravi refer to learning
with the pseudo-likelihood as lifted learning [13]. The counting algorithms in
this paper can likely be applied to computing parfactors that involve negated
relations. The motivation for parfactors, however, is as a means to compute
instance-level predictions (e.g., predict the gender of m). In contrast, our mo-
tivation is to learn class frequencies as an end in itself. Because parfactors are
used with instance-level inferences, they usually concern classes defined with ref-
erence to specific individuals, whereas the statistics we model in this paper are
at the class-level only.

The Complete-Data and Closed-World Assumptions. In logic, the closed-
world assumption is that “atomic sentences not known to be true are in fact false”
[12, Ch.8.2.8]. While the closed-world assumption is used in logical reasoning
rather than learning, it is relevant for learning if we view it as an assumption
about how the data are generated. For instance, we have made the complete-data
assumption that if a link between two individuals is not listed in a database, it
does not exist. This entails that if a student registers in a course, this event is
recorded in the university database, so the absence of a record implies that the
student has not registered. If this assumption is not warranted for a particu-
lar data generating mechanism, the complete-data assumption fails, because for



some pairs of individuals, the data does not indicate whether a link between does
not actually exist or simply has not been recorded. One way to deal with missing
link data is to use imputation methods [34, 35]. Another approach is downsam-
pling existing links by adding random negative links [15, 36]. Many methods for
dealing with missing data employ complete-data learning as a subroutine (e.g.,
the Expectation Maximization algorithm; cf. [14, Ch.4.3]). Given the speed and
accuracy of pseudo-likelihood Bayes net learning in the complete-data case, we
expect that it will be useful for learning with missing data as well.

Another important point for this paper is that our methods can be used no
matter how link frequencies are estimated, whether from corrected or uncor-
rected observed link counts. Specifically, given estimates for the Möbius param-
eters, the Möbius transform finds the probabilities for negative link events that
those parameters determine. This computation assumes nothing but the laws of
the probability calculus.

9 Conclusion

Class-level probabilities represent relational statistics about the frequencies or
rates of generic events and patterns. Representing these probabilities has been a
long-standing concern of AI research. Class-level probabilities represent informa-
tive statistical dependencies in a relational structure, supporting such applica-
tions as strategic planning and query optimization. The class-level interpretation
of Bayes nets is based on the classic random selection semantics for probability
logic. Parameters are learned using the empirical frequencies, which are the max-
ima of a pseudo-likelihood function. The inverse Möbius transform makes the
computation of database frequencies feasible even when the frequencies involve
negated links. In evaluation on four benchmark databases, the maximum pseudo-
likelihood estimates approach the true conditional probabilities as observations
increase. The fit is good even for medium data sizes. Overall, our simulations
show that Bayes net models derived with maximum pseudo-likelihood parameter
estimates provide excellent estimates of class-level probabilities.
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