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Abstract
An important task for relational learning is
Bayesian network (BN) structure learning. A
fundamental component of structure learning is a
model selection score that measures how well a
model fits a dataset. We describe a new method
that upgrades for multi-relational databases, a log-
linear BN score designed for single-table i.i.d. data.
Chickering and Meek showed that for i.i.d. data,
standard BN scores are locally consistent, meaning
that their maxima converge to an optimal model,
that represents the data generating distribution and
contains no redundant edges. Our main theorem
establishes that if a model selection score is lo-
cally consistent for i.i.d. data, then our upgraded
gain function is locally consistent for relational data
as well. To our knowledge this is the first con-
sistency result for relational structure learning. A
novel aspect of our approach is employing a gain
function that compares two models: a current vs.
an alternative BN structure. In contrast, previous
approaches employed a score that is a function of
a single model only. Empirical evaluation on six
benchmark relational databases shows that our gain
function is also practically useful: On realistic size
data sets, it selects informative BN structures with a
better data fit than those selected by baseline single-
model scores.

1 Introduction
Many organizations maintain their data in a multi-relational
database. I.i.d. data can be viewed as a special limiting case
of multi-relational data with no relationships [Nickel et al.,
2016]. Statistical-relational learning (SRL) aims to general-
ize i.i.d. machine learning methods for multi-relational data;
this is called upgrading the method [Getoor and Taskar, 2007;
Laer and de Raedt, 2001]. Statistical-relational models have
achieved state-of-the-art performance in a number of applica-
tion domains, such as ontology matching, information extrac-
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tion, entity resolution, link-based clustering, query optimiza-
tion, representing uncertainty in databases, etc [Domingos
and Richardson, 2007; Niu et al., 2011; Getoor et al., 2001a].
This paper addresses the important SRL task of learning a
Bayesian network (BN) structure from a relational dataset.

The most common approach to BN structure learning is to
search for a structure that optimizes a model selection score
for a given dataset. We propose a general method for upgrad-
ing BN model selection scores. Our method can be applied
with any of the standard BN scores, such as AIC, BIC, BDeu,
MDL etc. [Bouckaert, 1995]. Its main theoretical property is
preserving local consistency [Chickering and Meek, 2002]:
If the i.i.d. model criterion is locally consistent for i.i.d.
data, the upgraded criterion is locally consistent for multi-
relational data. Local consistency combines (i) consistency:
as the amount of available data increases, the model selection
criterion selects a graph that can represent the data generat-
ing distribution, and (ii) optimality: the graph contains no
edges that are redundant for representing the data generating
distribution. While our theorem generalizes the classic i.i.d.
results [Chickering and Meek, 2002], a major point of depar-
ture is that we employ a gain function that compares a current
vs. an alternative BN structure, rather than a single-model
score. The gain function transforms the sufficient statistics
for compared structures to the same scale.

Our experiments indicate that the gain function in prac-
tice strikes a desirable balance between selecting overly dense
and overly sparse structures. In contrast, for baseline scores
that are a function of a single model only, the scores either
under-weight or over-weight model complexity, selecting ei-
ther overly dense or overly sparse structures.

Contributions. Our main contributions may be summa-
rized as follows.

1. A novel method for upgrading an i.i.d. BN structure
score to relational databases, based on a gain function
that compares the data fit of two graph structures.

2. Preserving local consistency proof: if a score is consis-
tent for i.i.d. data, the upgraded gain function is consis-
tent for relational data. To our knowledge this is the first
consistency result for relational structure learning.

Paper Organization. We review background on Bayesian
networks and relational data. Then we define our gain func-
tion method for upgrading model selection scores, as well as



baseline upgrade methods for comparison. Theoretical anal-
ysis demonstrates that the gain function method preserves lo-
cal consistency, whereas the baseline single-model scores do
not. Empirical evaluation on six benchmark data sets com-
pares the BN structures selected by the gain function to those
selected by the baseline scores, with respect to data fit and
model complexity.

2 Related Work
Relational Consistency. There have been several recent
studies of the consistency of relational learning. Sakai
and Yamanishi (2013) provide an asymptotic analysis of
selecting the number of relational clusters by optimizing
minimum description length. For BN parameter learning,
Schulte (2011) upgraded the i.i.d. log-likelihood score by
normalizing, which converts feature counts to proportions.
Xiang and Neville (2011) prove that the normalized log-
likelihood (NLL) is consistent for parameter learning in
Markov Logic Networks. We use their framework of learn-
ing from one network, to investigate consistency for Bayesian
network structure learning. Our gain function extends the
NLL score with a normalized model complexity penalty term.
The weighted pseudo log-likelihood score for Markov Logic
networks [Lowd and Domingos, 2007], also normalizes the
log-likelihood term, but not the penalty term, and is non-
consistent for the same reason as the count score defined be-
low.

Consistency and Frequencies. A BN structure G can be
parametrized to represent a distribution p if and only if G is an
I-map of p, meaning that every d-separation in G corresponds
to conditional independence in p

[Pearl, 1988]. The blueprint
for a consistency argument in the i.i.d. setting is that as the
sample size increases, the empirical frequencies approach the
data generating distribution p, and the score approaches the
maximum likelihood score, and therefore selects an I-map of
p. The most straightforward way to generalize this blueprint
is to view a multi-relational BN structure as a model of
database frequencies, rather than a template model [Getoor,
2001; Schulte et al., 2014]. Using Getoor’s terminology, we
consider a Statistical-Relational Model (SRM) rather than a
Probabilistic-Relational Model (PRM).

Relational Template Models. Many SRL models employ
a log-linear likelihood function [Kimmig et al., 2014]; our
upgrade method generalizes to any such model. A common
approach for defining relational likelihood functions with di-
rected graphical models is to aggregate the information from
the multiple parent instances of a ground node using ag-
gregate functions [Getoor et al., 2001b] or combining rules
[Poole, 2003]. Recent representation results [Buchman and
Poole, 2015] show that such aggregators can be represented
in a log-linear model that introduces complex functions (e.g.
the number of action movies rated by a user). Since our up-
grade method is defined for complex functions, it can in prin-
ciple be applied to aggregate functions and combining rules.
A direct empirical evaluation is currently not possible as there
is no implementation of relational BN structure learning with
complex functions.

The Inductive Logic Programming FOIL system [Quinlan

Figure 1: Excerpt from a relational dataset/database.

and Cameron-Jones, 1993] defined the information gain that
results from adding a new condition (literal) to a first-order
rule. The FOIL information gain is similar to our approach in
that 1) it defines a gain function rather than a score, and 2) the
key issue concerns adding population variables. It is different
in that 1) it is applied with a discriminative not generative
model, and 2) different rule groundings are combined using
existential quantification rather than a log-linear model.

Previous application of the Learn-and-Join search strategy
[Schulte and Khosravi, 2012] used a BN learner for i.i.d. data
as a subroutine for learning a multi-relational BN. LAJ search
upgrades a BN learning algorithm, but does not define an ob-
jective function for model optimization.

3 Background and Notation
We adopt a function-based formalism for combining rela-
tional and statistical concepts [Poole, 2003; Russell, 2015].
For a set of random variables X = {X

1

, . . . , Xn}, the no-
tation P (X = x) ⌘ P (x) denotes the joint probability that
each random variable Xi takes on value xi.

Relational Data A multi-relational model is typically a
multi-population model. A population is a set of individu-
als of the same type (e.g., a set of Users , a set of Movies).
Individuals are denoted by constants (e.g., user3 and thor ).
A k-ary functor, denoted f, f

0 etc., maps a tuple of k indi-
viduals to a value. The arguments of a functor are restricted
to appropriate types. The possible values of a functor form
the domain of the functor. Like [Poole, 2003], we assume
that (1) the domain of each functor is finite, and (2) functor
values are disjoint from individuals. Throughout the paper
we assume complete data. A complete relational dataset or
database D, specifies:

1. A finite sample population I
1

, I
2

. . ., one for each type.
2. The values of each functor, for each input tuple of ob-

served sample individuals of the appropriate type.

Figure 1 shows a toy database. The example follows the
closed-world convention: if a relationship between two indi-
viduals is not listed, it does not obtain.

Relational Random Variables A population variable
ranges over a population, and is denoted in upper case such
as User ,Movie,A. A term is of the form f(⌧

1

, . . . , ⌧k)

where each ⌧i is a population variable or a constant/individual
of the appropriate type. A term is ground if it contains
only constants; otherwise it is a first-order term with at



least one population variable. A first-order random variable
(FORV) is a first-order term [Wang et al., 2008]. FORV ex-
amples are age(User),rating(User ,Movie). We use tradi-
tional random variable notation like X,Y for FORVs.1 A
FORV can be instantiated with individual constants, much
like an index in a plate model [Kimmig et al., 2014]. A
grounding for a list of FORVs simultaneously replaces each
population variable in the list by a constant. The number
of possible groundings of a joint assignment is given by
N [X = x;D] ⌘ N [A

1

;D] ⇥ · · · ⇥ N [Am;D] where the
Ai are the population variables in X and N [A;D] is the size
of the sample population of A. The number of satisfying
groundings of a joint assignment in database D is denoted
by n [X = x;D]. The database frequency [Halpern, 1990]
is the number of satisfying groundings over the number of
possible groundings:

PD(X = x) =

n [X = x;D]

N [X = x;D]

. (1)

First-Order Bayesian Networks A Bayesian Network
(BN) structure is a directed acyclic graph G (DAG) whose
nodes comprise a set of random variables [Pearl, 1988]. A
Bayesian network B is a structure G together with a set of
parameter values, which specify the distribution of a child
node given an assignment of values to its parent node. For
an assignment of values to its nodes, a BN defines the joint
probability via the standard product formula:

PB(X = x) =

nY

i=1

PB(Xi = xi|PaGi = paGi ) (2)

where xi resp. paGi is the assignment of values to node Xi

resp. the parents of Xi determined by the assignment x.
A first-order Bayesian network (FOB) [Wang et al., 2008],

aka Parametrized BN [Kimmig et al., 2014], is a BN whose
nodes are first-order terms. Via Equation (2), a FOB defines
a joint distribution over FORVs, so a FOB can be viewed
as a Statistical-Relational Model (SRM) of database frequen-
cies [Getoor, 2001]. The semantics of first-order probability
logic provides a frequency semantics for FOBs, where a pop-
ulation variable represents an independent random selection
from its population [Halpern, 1990; Schulte et al., 2014]. The
basis of a model fit score is comparing the joint distribution
PB(·) from Equation (2) to the empirical database distribu-
tion PD(·) from Equation (1).

Examples Figure 2 shows an example of two small FOBs.
The rating value is n/a (for “not applicable”) if and only if the
user has not rated the movie (cf. [Russell and Norvig, 2010]).
Throughout the paper, conditional probability estimates are
computed from the IMDb database described below. Table 1
illustrates database frequencies using the IMDb dataset. The
number of users is 941, of which 376 are at age level 0, so
the frequency of age 0 users is 376/941. The number of user-
movie pairs is 1,582,762 of which 2,524 have the user at age

1Unfortunately this tradition in statistics clashes with the equally
strong tradition in logic of using X,Y for population variables.

Figure 2: Example First-Order Bayesian networks: left = B1 with
graph G1, right = B+

1 with graph G+
1 .

Table 1: The IMDb database frequency of a joint assignment to first-
order random variables, compared to the BN probabilities computed
using the network parameters of Figure 2.

X = x

Age(User) = 0

Age(User) = 0 ,

Rating(User ,Movie) = 1

n [X = x;D] 376 2,524
N [X = x;D] 941 1,582,762
PD(X = x) 376/941 ⇡ 0.3996 2, 524/1, 582, 762 ⇡ 0.0016

PB1(X = x) 0.3996 0.00297 · 0.3996 ⇡ 0.0012

PB+
1
(X = x) 0.3996 0.00297 · 0.53692 ⇡ 0.0016

level 0 and a rating of 1. Marginal and joint BN probabili-
ties are computed using Equation (2). The expanded BN B

+

1

matches the database distribution perfectly but at the cost of
more parameters.

4 Multi-Relational Model Comparison
An i.i.d. score measures how well a DAG G fits an i.i.d.
dataset D [Chickering and Meek, 2002]. A BN score de-
fines a function S(G,nG

ijk(D)) that depends on the graph
structure and the sufficient statistics nG

ijk(D). For Bayesian
networks, the sufficient statistics are the observed instantia-
tion counts of the possible child-parent configurations. Let
Xi = xik,Pa

G
i = paGij be the assignment that sets node i

to its k-th value, and its parents to their j-th possible con-
figuration. Then n

G
ijk(D) ⌘ n

⇥
Xi = xik,Pa

G
i = paGij ;D

⇤

is the number of data points that satisfy the ijk assignment.
A standard BN score is decomposable, that is, the score can
be written as a sum of local scores Si, each of which is a
function only of one node Xi and its parents:

S(G,nG
ijk(D)) :=

X

i

Si(G,nG
ijk(D)). (3)

We use the following notation for relational sufficient
statistics.

• n

G
ijk(D) ⌘ n

⇥
Xi = xik,Pa

G
i = paGij ;D

⇤
is the number

of groundings that satisfy the ijk assignment.
• n

G
ij(D) ⌘

P
k n

G
ijk(D) is the number of groundings that

satisfy the j-th parent assignment.
• n

G
i (D) ⌘

P
j

P
k n

G
ijk(D) is the number of possible

groundings for node i.



Algorithm 1: The normalized gain method upgrades a
decomposable i.i.d. BN score S for multi-relational data.

Input: Database D; Bayesian network DAGs G,G

+

where Pa

G
i ✓ Pa

G+

i for each node Xi.
Output: Gain value �S(G,G

+

, D)

Calls local i.i.d. score Si(G,nijk). (Eq. (3))

1: nG
ijk(D) := nG

ijk(D)⇥ n

G+

i (D)

n

G
i (D)

{rescale sufficient
statistics for graph G}

2: for all nodes i do
3: �Si(G,G

+

,D) :=

[Si(G
+

,nG+

ijk (D))� Si(G,nG
ijk(D))]/n

G+

i (D) {gain
= [score of G+-scaled score of G]/local sample size}

4: end for
5: return

P
i �Si(G,G

+

,D)

Since the quantity n

G
i plays the same role as the sample

size in i.i.d. data, we refer to it as the local sample size for
node i.

We propose a relational gain function �S(G,G

0
,D) that

measures how much an alternative structure G

0 improves a
current structure G according to criterion S. Our definition
focuses on the case where the alternative G

0 adds parents to
a node Xi in G. The case where G

0 removes parents re-
verses the role of G and G

0. This is sufficient for apply-
ing standard BN structure search algorithms, which consider
adding or deleting a single edge at a time, or distinct phases
for adding and deleting edges. The gain for edge reversals
adds the gains for a deletion and addition. Algorithm 1 shows
pseudo code for the gain function. Table 2 gives the normal-
ized gain penalty formulas for upgrading the standard log-
likelihood, AIC, and BIC scores [Bouckaert, 1995]. Algo-
rithm 1 can be applied with other scores as well (e.g. for
BDeu the normalized gain formula is given in [Gholami,
2016, Section 3.1.3]). We focus on AIC and BIC because
they are widely used and have a relatively simple definition.

Motivation Rescaling sufficient statistics for the current
graph G (line 1) makes comparable the scores of the current
graph and the alternative graph G

+. Normalization (line 3)
makes comparable the gains for different alternative graphs.
The normalization measures the gain per local instance.

Table 3 illustrates the importance of re-scaling counts. The
LLi(·,n·

ijk(·)) column shows the likelihood score with in-
stantiation counts. This term is an order of magnitude lower
for the expanded BN structure G

+

1

(-2266 vs. -497), sim-
ply because the expanded structure increases the local sample
size by the number of Movies.

Relationship to Normalized Likelihood In previous work
on parameter learning, [Xiang and Neville, 2011; Schulte,
2011], the log-likelihood score LL was upgraded by the nor-
malized log-likelihood score NLL

LLi(G,nG
ijk(D)) ⌘ LLi(G,nG

ijk(D))/n

G
i (D),

which converts log-likelihood scores to the same scale, as
shown in Table 3. The normalized gain for the log-likelihood
score is equivalent to the normalized log-likelihood score dif-
ferential.

Observation 4.1 The normalized gain equals the difference
in normalized log-likelihood. In symbols:

�LLi(G,G

+

,D) = LLi(G
+

,nG+

ijk (D))�LLi(G,nG
ijk(D)).

Proof. It suffices to show that
LLi(G,nG

ijk(D))/n

G+

i (D) = LLi(G,nG
ijk(D))/n

G
i (D). In

the scaled log-likelihood LLi(G,nG
ijk(D)), the scale factor

n

G+

i (D)

n

G
i (D)

does not affect the conditional probability ratio, and
can be moved to the front of the sum. Therefore

LLi(G,nG
ijk(D)) =

n

G+

i (D)

n

G
i (D)

LLi(G,nG
ijk(D)).

Many standard BN scores, such as AIC and BIC,
are likelihood scores that combine the maximum likeli-
hood of the data under the model with a penalty term
f

S
(#pars

G
i ,nG

ijk (D)) that is a function of the number of pa-
rameters and the sample size [Bouckaert, 1995]. Observa-
tion 4.1 implies that the normalized gain for likelihood scores
is equivalent to adding a normalized penalty term to the nor-
malized likelihood. Whereas the normalized likelihood gain
can be represented as the difference of two fixed single-model
scores, this is no longer true for likelihood scores with penalty
terms, because the scaling factor n

G+

i (D) is applied to the
current graph but depends on the alternative graph. Our eval-
uation compare the gain function concept with single-model
scores as baselines.

Comparison With Single-Model Likelihood Scores. The
simplest approach to upgrading an i.i.d. score is to use it with
relational instance counts (i.e., Si(G,nG

ijk(D))). However,
this approach has the serious drawback that when a new edge
increases the local sample size by connecting different pop-
ulations, the likelihood decreases while the model complex-
ity increases (see Table 3). Therefore an instance count like-
lihood score is not consistent, because it fails to add edges
that introduce new population variables, no matter how large
the sample size (see [Schulte and Gholami, 2016] for em-
pirical confirmation). Our comparison therefore uses likeli-
hood scores that extend the normalized log-likelihood score
LL with a penalty term. The count method simply adds the
penalty term; the normalized method divides it by the local
sample size, which is equivalent to normalizing the instance
count score (i.e. Si(G,nG

ijk(D))/n

G
i (D)).

Count LLi(G,nG
ijk(D))� fS(#parsGi ,nG

ijk (D))

Normalized LLi(G,nG
ijk(D))�fS(#parsGi ,nG

ijk (D))/nG
i (D)

Table 4 gives the corresponding formulas for the AIC and
BIC penalty terms. Table 5 shows example values for the
scores and gains.



Score S Si(G
+

,nG+

ijk (D)) Si(G,nG
ijk(D)) �Si(G,G

+

,D)

LL

P
j

P
k n

G+

ijk (D) · log
2

✓
n

G+

ijk (D)

n

G+
ij (D)

◆ P
j

P
k n

G
ijk(D) · log

2

✓
nG

ijk(D)

nG
ij(D)

◆
[LLi(G

+

,nG+

ijk (D))�
LLi(G,nG

ijk(D))]/n

G+

i (D)

AIC LLi(G
+

,nG+

ijk (D))�#pars

G+

i LLi(G,nG
ijk(D))�#pars

G
i

�LLi(G,G

+

,D)+

[#pars

G
i �#pars

G+

i ]/n

G+

i (D)

BIC LLi(G
+

,nG+

ijk (D))-
log

2

(n

G+

i (D))/2 ·#pars

G+

i

LLi(G,nG
ijk(D))-

log

2

(n

G+

i (D))/2 ·#pars

G
i

�LLi(G,G

+

,D)+

log2(n
G+

i (D))

2n

G+
i (D)

[#pars

G
i �#pars

G+

i ]

Table 2: The normalized gain for selected standard BN scores. LL denotes the log-likelihood score. #parsHi denotes the number of
parameters for node Xi in DAG H . Some constant factors are omitted. Note that nG

i (D) = nG+

i (D).

Family Configuration nijk nij ni nijk/ni CP LLi(·,n·
ijk(D))

LLi(·,n·
ijk(D))

n

G+
i (D)

Age(User)=0 376 — 941 0.3996 0.3996 -497.6217 -0.5288
Age(User)=0,
Rating(User,Movie)=1 2524 4703 1582762 0.0016 0.5367 -2266.2224 -0.0014

Table 3: For the node Age(User), and the IMDb dataset, the contribution of one family configuration to the unnormalized resp. normalized
log-likelihood score. Top: For the G1 structure of Figure 2. Bottom: For the expanded structure G+

1 .

Criterion AICi BICi

Count Score #pars

G
i #pars

G
i · 1

2 log2 (n
G
i (D))

Normalized Score #parsGi
n

G
i (D)

#pars

G
i · log2 (n

G
i (D)

2nG
i (D)

Table 4: Relational Penalty Terms for the AIC and BIC scores.
The evaluated scores add the penalty term to the normalized log-
likelihood LL.

5 Theoretical Consistency Analysis
We formalize consistency for relational data following pre-
vious work [Sakai and Yamanishi, 2013; Xiang and Neville,
2011]. The notation N(D) ! 1 from denotes that each
population size Ii goes to infinity. Similar to Sakai and Ya-
manishi, we make the identifiability assumption that

PD(·) ! Pw(·) ⌘ p as N(D) ! 1, (4)

where w represents a complete relational structure (network)
from which samples are drawn, and p denotes the generative
distribution associated with w. This assumption holds under
various sampling schemes such as subgraph sampling [Frank,
1978].2 Chickering and Meek introduced the concept of local
consistency, which we adapt for gain functions.

Definition 1 Let p be the data generating distribution. A
gain function is locally consistent if the following hold as
N(D) ! 1, for any graph G and expansion G

+

that adds
a single edge X

+

! Xi to G:

1. If X+ is not independent of Xi given PaGi in p, then
�(G,G+,D) > 0.

2. If X+ is independent of Xi given PaGi in p, then
�(G,G+,D) < 0.

2Assumptions for consistent parameter learning in PRMs (but
not SRMs) are discussed in several papers [Xiang and Neville,
2011; Shalizi and Rinaldo, 2013; Sakai and Yamanishi, 2013].

An upgrade method preserves local consistency if local
consistency for an i.i.d. gain function entails local consis-
tency for its upgrade. In the sample size limit, clause 1 en-
tails that the gain of a DAG model is (1) positive for any edge
that is necessary for eliminating an independence constraint
that does not hold in the generative distribution, and (2) is
negative for any edge that is unnecessary. Together, these
clauses ensure consistency—necessary edges are learned—
and optimality—only necessary edges are learned [Chicker-
ing and Meek, 2002].

Theorem 1 The normalized gain upgrade preserves local
consistency, and therefore consistency. The single-model
comparison scores do not preserve local consistency.

Appendix A gives the local consistency proof for the nor-
malized gain upgrade method. We provide the intuition rather
than a formal proof, for why the single-model scores are not
locally consistent. The count score fails Clause 1 because nei-
ther the NLL nor the parameter count increase with sample
size. E.g., if G+

1

is correct, its parameter count is 12, whereas
the NLL is -1.177 (in Table 5). The penalty term will remain
much bigger than the NLL even at large samples from G

+

1

.

The normalized score fails Clause 2 because the number of
parameters are divided by the local sample sizes. Adding a
redundant edge can increase the NLL and decrease the nor-
malized parameter count. For example, the parameter count
12 for G

+

1

is divided by 1,582,762, whereas the parameter
count 2 for G

1

is divided by only 941 (Table 5). So even
if G

1

is optimal, G+

1

will receive a higher normalized score
even at large samples drawn from G

1

. This analysis predicts
that the count score selects overly sparse structures, and the
normalized score overly dense structures.



AIC BIC
#groundings #parameters LL count normalized gain normalized count normalized gain normalized

G

1

941 2 -1.384 -3.38 — -1.3865 -11.26 — -1.3948
G

+

1

1582762 12 -1.177 -13.18 — -1.1775 -124.74 — -1.1776
GAIN 10 0.207 -9.79 0.20684 0.2090 -113.48 0.20678 0.2173

Table 5: Example values for the scores and gain functions defined in this section, for the IMDb dataset and the structures of Figure 2. Note
that count gain < normalized gain < normalized score gain. E.g., for AIC gains �9.79 < 0.020684 < 0.2090.

Dataset #Relationship
Tables/ Total #Tuples #Attributes

University 2 171 12
Movielens 1 / 3 1,010,051 7
Mutagenesis 2 / 4 14,540 11
Financial 3 / 7 225,932 15
Hepatitis 3 / 7 12,927 19
IMDb 3 / 7 1,354,134 17

Table 6: Datasets characteristics. #Tuples = total number of tuples
over all tables in the dataset. The datasets contain multiple relation-
ships and populations of different types.

6 Empirical Evaluation
Code and Datasets Our code is available on-line.3 We used
six benchmark real-world databases from the CTU Prague
Relational Learning Repository, described in [Motl and
Schulte, 2015] (also available4 in text format). Table 6
summarizes basic information about the benchmark datasets.
IMDb is the largest dataset in terms of number of total ta-
ble tuples (more than 1.3M tuples) and schema complexity.
It combines the MovieLens database with the Internet Movie
Database (IMDb). 5

Model Search Algorithm We used the previous learn-and-
join method (LAJ) for relational BN model search [Schulte
and Khosravi, 2012], with the implementation provided by
its creators. The LAJ method conducts a search through the
lattice of relational paths, similar to the iterative deepening
strategy of [Friedman et al., 1999]. At each lattice point, an
i.i.d. Bayesian network learner is applied, and learned edges
are propagated from shorter paths to longer paths. We recon-
figured the LAJ algorithm by changing the score class for
each of the 6 upgraded criteria.

Results For each learned graph G, we use maximum like-
lihood estimates to obtain a Bayesian network B to be eval-
uated. We report the normalized log-likelihood (NLL) of the
input data and the number of parameters for each learned
graph. The likelihood is the natural evaluation measure for
generative learning [Van Haaren et al., 2016]. Figure 3 shows
the metrics for the different upgrade methods.

Count Score. On each dataset, the count score introduces
no edges, therefore the smallest number of parameters (for
instance 69 on IMDb for AIC count vs. 14,450 for normal-
ized gain). Its NLL metric is substantially worse than the gain
NLL on 4/6 databases (e.g. on Financial -12.79 for AIC count

3
github.com/sfu-cl-lab/FactorBase_

Consistent

4
www.cs.sfu.ca/

˜

oschulte/jbn/

5
grouplens.org, 1M version; IMDb.com, July 2013

Figure 3: Log-likelihood and Number of Parameters for different
relational score upgrade methods. Top: AIC upgrades. Bottom:
BIC upgrades.



Figure 4: BN learning curves for the BIC normalized gain crite-
rion (labelled as ”dataset” NG) and the count score (labelled as
”dataset” C). The normalized gain BNs converge to the database
distribution (KLD = 0). The BIC count score ( C) selects the empty
graph on all data sets, so its KLD remains constant.

vs. -10.79 for the normalized gain). The relatively small ab-
solute difference in NLL on MovieLens and IMDb is due to
weak correlations and large local sample sizes. We conclude
that the count score structures are overly sparse.

Normalized Score. On each dataset, the normalized score
produces the largest number of parameters (for instance
1,199,853 on IMDb for AIC count vs. 14,450 for normal-
ized gain). The normalized gain function achieves almost the
same NLL with many fewer parameters. We conclude that the
count score structures are overly dense.

Consistency. The BIC score is consistent for i.i.d.
data [Chickering and Meek, 2002], so Theorem 1 entails
that the BIC normalized gain is also consistent for relational
data. Figure 4 empirically verifies the consistency of the nor-
malized gain criterion, by showing the convergence to the
database distribution on our benchmark databases, meaning
that the standard Kulback-Leibler divergence (KLD) metric
goes to 0. Similar to previous experiments [Getoor et al.,
2001a; Schulte et al., 2014], we duplicate entities by a mag-
nification factor of m = 1, 5, 10, 20, which multiplies local
sample sizes by m. (We leave out the small University dataset
where convergence requires a higher magnification factor.)
The BIC count score adds no edges even with larger sample
sizes, so it fails to be consistent. The BIC normalized score
outputs a denser graph with KLD equivalent to the normal-
ized gain score (Figure 3). So it is consistent but not locally
consistent because it selects redundant edges.

7 Conclusion and Future Work
Generalizing i.i.d. model scores designed for i.i.d. data is
an important fundamental topic for relational learning. The
normalized gain, which measures the difference in data fit be-
tween two BN structures, is a novel scalable method for gen-
eralizing a Bayesian network score. For complete data, it can
be computed in closed form given the BN sufficient statistics.
Normalized gain functions preserve the convergence guaran-
tees of i.i.d. scores, and show good empirical performance:
they select structures that succinctly represent the data corre-
lations, compared with baseline single-model scores.

A promising avenue for future work is to apply our ap-
proach to other statistical-relational models, such as Markov
Logic Networks. Implementing a BN structure learning sys-
tem for functors that represent complex terms would allow
us to apply the normalized gain score with aggregate func-
tions/combining rules.

A Local Consistency Proof for the Normalized
Gain Upgrade Method (Theorem 1)

We show the local consistency of the rescaled gain, which
is the normalized gain with rescaled sufficient statistics but
without dividing by the local sample size:

�R(G,G

+

, D) ⌘ Si(G
+

,nG+

ijk (D))� Si(G,nG
ijk(D)) (5)

Since the rescaled gain has the same sign as the normal-
ized gain, proving the local consistency of the rescaled gain
implies the local consistency of the normalized gain. We say
that an edge adds a population variable if the parent con-
tains a population variable that is not contained in the child.

Case 1: The additional edge X

+

! Xi adds no popula-
tion variables. For such edges, the rescaled counts are the
same as the nonscaled counts used in the original i.i.d. score
(i.e., nG

ijk(D) = nG
ijk(D)). So the arguments of [Chickering

and Meek, 2002] can be applied to relational data, and the
rescaled gain score is locally consistent in this case.

Case 2: The additional edge X

+

! Xi adds a popula-
tion variable. For concreteness, assume that the edge is of the
form g(A,B) ! f(A), so the added sample size is N [B;D].
Consider a transformed database D0 where f(A) is replaced
by f

0
(A,B), with an inert second argument: f 0

(a, b) = f(a).
Since in the transformed schema, the additional edge X

+

!
X

0
i does not add a population variable, from case 1 we con-

clude that (i) the rescaled gain is locally consistent when ap-
plied to the transformed data D0. We next show that local
consistency for D0 data implies local consistency in D data.
The transformation does not change the information content
and is equivalent to rescaling counts:

nG
ijk(D0

) = nG
ijk(D)⇥N [B;D] = nG

ijk(D).

Since we also have nG+

ijk (D0
) = nG+

ijk (D), the transformed
and the original data agree on the rescaled gain:

�R(G,G

+

,D) = �R(G,G

+

,D0
), (6)

and agree on the conditional probabilities of a child node
value given parent node values:

n

G
ijk(D)

n

G
ij(D)

=

n

G
ijk(D0

)

n

G
ij(D0

)

. (7)

Therefore the identifiability condition (4) for the original
data D entails that in the sample size limit, the transformed
data D0 identify whether node Xi is independent of X

+

given
its parents in the data generating distribution p. So by condi-
tion (6), the rescaled gain is locally consistent for the original
data D. Hence in either case, the normalized gain is locally
consistent.
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