
Join Bayes Nets: A New Type of Bayes net for Relational Data

Oliver Schulte
Computer Science Dept.
Simon Fraser University

oschulte@cs.sfu.ca

Hassan Khosravi
Computer Science Dept.
Simon Fraser University

hkhosrav@cs.sfu.ca

Bahareh Bina
Computer Science Dept.
Simon Fraser University

bba18@cs.sfu.ca

Flavia Moser
Computer Science Dept.
Simon Fraser University

fmoser@cs.sfu.ca

Abstract
Many real-world data are maintained in relational
format, with different tables storing information
about entities and their links or relationships. The
structure (schema) of the database is essentially
that of a logical language, with variables rang-
ing over individual entities and predicates for
relationships and attributes. Our work combines
the graphical structure of Bayes nets with the
logical structure of relational databases to achieve
knowledge discovery in databases. We introduce
Join Bayes nets, a new type of Bayes nets for
representing and learning class-level dependencies
between attributes from the same table and from
different tables; such dependencies are important
for policy making and strategic planning. Focusing
on class-level dependencies brings advantages
in terms of the simplicity of the model and the
tractability of inference and learning. As usual
with Bayes nets, the graphical structure supports
efficient inference and reasoning. We show that
applying standard Bayes net inference algorithms
to the learned models provides fast and accurate
probability estimates for queries that involve
attributes and relationships from multiple tables.

1 Introduction
Many real-world applications store data in relational format,
with different tables for entities and their links. Standard ma-
chine learning techniques are applied to data stored in a single
table, that is, in nonrelational, propositional or “flat” format
[10]. The field of statistical-relational learning (SRL) aims
to extend machine learning algorithms to relational data [6].
One of the major machine learning tasks is to use data to
build a generative statistical model that represents the joint
distribution of the random variables that describe the appli-
cation domain [6]. In the single-table learning setting, the
goal is often to represent predictive dependencies between
the attributes of a single individual (e.g., between the intel-
ligence and ranking of a student). In the SRL setting, the
goal is often to represent in addition dependencies between
attributes of different individuals that are related or linked to
each other (e.g., between the intelligence of a student and the
difficulty of a course given that the student is registered in
the course). Many SRL models represent such dependencies
on two different levels, a class dependency model and an in-
stance dependency model. For instance, in a graphical SRL
model, the nodes in the instance dependency model represent

attributes of individuals or relationships [5]. The nodes in the
class dependency model correspond to attributes of the tables.
A class-level model is instantiated with the specific entities,
their attributes and their relationships in a given database to
obtain an instance dependency model. For instance, the class-
level model may contain a node age(S) to represent the age of
a generic member of the student class, and the instance model
may contain a node age(Jack) to represent the age of a spe-
cific student Jack . The node age(Jack) inherits the parame-
ters and associations indicated at the class level for age(S).

In this paper we apply Bayes nets (BNs) to model class-
level dependencies between variables that appear in separate
tables. What is new about our approach is that we focus
on class-level variables only rather than making predictions
about individual entities. Our class-level Bayes nets con-
tain nodes that correspond to the descriptive attributes of the
database tables, plus Boolean nodes that indicate the presence
of a relationship; we refer to these as Join Bayes nets (JBNs).
We introduce a new database join operation as a conceptual
aid that provides semantics for JBNs. The focus on class-
level dependencies brings advantages in terms of the simplic-
ity of the model and the tractability of inference and learn-
ing, while it involves some loss of expressive power, because
our BN model cannot answer queries about individual enti-
ties. Examples of applications that provide motivation for the
class-level queries answered by our BN include the following.

(1) Policy making and strategic planning. A university ad-
ministrator may wish to know which program characteristics
attract high-ranking students, rather than predict the rank of
a specific student in a specific program.

(2) Query optimization is one of the applications of SRL
where a statistical model predicts a probability for given
join conditions that can be used to infer the size of the join
result [7]. The join conditions often do not involve specific
individuals.

This paper defines JBN models and a probabilistic seman-
tics for them. Our algorithmic contribution is an efficient
dynamic programming procedure for parameter learning
in JBNs. This algorithm solves the problem of estimating
frequencies conditional on the absence of a relationship. Due
to the construction of our Bayes nets, class-level queries can
be answered using standard BN inference algorithms “as is”.

Paper Outline We review background from relational
databases and Bayes nets. Then we introduce our class-level
Bayes nets and define their semantics. We describe algo-
rithms for structure learning and parameter estimation. The
algorithms and the inference capabilities of the Bayes nets
they learn are evaluated on three data sets, one artificial and

two real-word ones (the MovieLens and the Financial data
set).
Related Work Researchers in statistical-relational learning
have developed a number of generative models that include
attributes and relationships of entities; for an overview see [8;
4; 3]. Markov Logic Networks (MLNs) are a prominent
class of SR models that are based on undirected graphs [3].
The most direct comparison of JBNs is with other directed
models; we discuss Bayes Logic Networks (BLNs) [9]
and Probabilistic Relational Models (PRMs) [5, Sec.5.5.3].
Similar points of comparison apply to other SRL models.

The class-level model of a BLN—-called a Bayes Logic
Program (BLP)—is syntactically similar to a JBN: a JBN
with n nodes into a n translates into n BLP clauses of
the form xi|parent i,1, parent i,2, . . . , parent i,k, where
i = 1, . . . , n indexes the nodes and node xi has k parents. In
addition, a BLP features combining rules. These specify how
instance-level predictions from information about different
related entities are to be combined into a single prediction.
For instance, if the task is to predict a specific student’s
intelligence based on his grade in 10 courses he has taken,
the class-level BLP clauses may be used to predict the
intelligence based on a single course, and the combining rule
would specify how to collect these predictions into a single
prediction for the specific student. A feature of JBNs not nec-
essarily present in BLPs is that variables ranging over entities
are associated with entity types (e.g., S ranges over entities
in the Student table); the use of such types is key for the
probabilistic semantics of JBNs. As for inference, it appears
that in principle a BLP could be translated into a Bayes net
and standard BN inference algorithm could be used to carry
out class-level inference; to our knowledge, this approach to
lifted inference with BLNs has not yet been evaluated.

The class-level model of a PRM is also a directed graphi-
cal model, and the nodes in the PRM graph are essentially the
same as in Join Bayes nets (if the PRM includess uncertainty
about the existence of links [5, Sec.5.5.3]). Nodes are associ-
ated with entity types as in a JBN. In the case in which entity
types may be related to themselves (e.g., the Parent relation-
ship relates people to people), a PRM may contain self-loops.
In order to make predictions about individual entities given
the other entities they are related to, a PRM requires the speci-
fication of an aggregate function for many-many relationships
[5, Def.5.2]. For instance, if the task is to predict a specific
student’s intelligence based on his grade in 10 courses he has
taken, a PRM may specify that the prediction is to be based
on the student’s average grade. The CP-tables for a class-level
PRM may be defined in terms of the value of the aggregate
functions. In that case, standard BN algorithms cannot be ap-
plied to the class-level PRM, and adaptations are required [5].

In addition to inference, the two major differences between
JBNs and PRMs resp. BLNs concern semantics and learning.
(1) In terms of semantics, SR models are usually viewed as
a template for instance-level models: For a given database,
the class-level model is instantiated with the specific entities,
their attributes and their relationships to obtain an instance-
level model, which inherits the parameters specified at the
class level. In contrast, we do not view our class-level BNs
as templates for instance-level BNs. Thus we avoid problems
with potential cycles at the entity level, which is a major
concern for directed relational models [5]. (2) In order to
make predictions about individual entities given the other
entities they are related to, BLNs and PRMs require extra
components in addition to the Bayes net-like class-level
structure (combining rules resp. aggregate functions). While

Student(student id, intelligence , ranking)
Course(course id, difficulty , rating)
Professor (professor id, teaching ability, popularity)
Registered (student id, Course id, grade, satisfaction)

Table 1: A relational schema for a university domain. Key
fields are underlined. An instance for this schema is given in
Figure 1.

these extra components considerably increase the expressive
power of these models, they also substantially increase the
complexity of learning. In particular, fitting the models to
data requires evaluating their predictive power with regard
to instance-level predictions that are based on the entire rela-
tional context of an entity. In contrast, inference and learning
for JBNs can be carried out efficiently with algorithms whose
design we outline in this paper.
2 Preliminaries
We employ notation and terminology from [11] for a
Bayesian Network. A Bayes net structure is a directed
acyclic graph (DAG) G, whose nodes comprise a set of
random variables denoted by V . A Bayes net (BN) is a pair
〈G, θG〉 where θG is a set of parameter values that specify
the probability distributions of children conditional on in-
stantiations of their parents, i.e. all conditional probabilities
of the form P (X = x|paG

X). These conditional probabilities
are specified in a conditional probability table for variable
X or CP-table. We write P (X1 = x1, ...,Xn = xn) = p,
sometimes abbreviated as P (x1, ..., xn) = p, to denote
that the joint probability of random variables X1, . . . ,Xn
taking on values x1, . . . , xn is p. We also use vector notation
P (X = x) = p.

We assume a standard relational schema containing a
set of tables, each with key fields, descriptive attributes,
and possibly foreign key pointers. A database instance
specifies the tuples contained in the tables of a given database
schema. We assume that tables in the relational schema
are divided into entity tables and relationship tables. This
is the case whenever a relational schema is derived from
an entity-relationship model (ER model) [13, Ch.2.2]. The
symbol E refers to entity tables, and the symbol R refers to
relationship tables. Table 1 shows a relational schema for a
university domain. A field or attribute named name in table
T is denoted by T.name . Each attribute has a domain of
values denoted by dom(T.name). The number of tuples in a
table T for a database instance D is written as |T |D. We view
a descriptive attribute of an entity table E as a deterministic
function of an entity from E, and a descriptive attribute of
a relationship table R as a deterministic function of entities
linked by R. The relationship R itself can be viewed as a
Boolean function that indicates for each entity tuple of the
appropriate type whether it is linked by R. The natural join
of two tables is the set of tuples from their cross product that
agree on the values of fields common to both tables.
3 Join Bayes Nets and the Attribute-Relation Table
A Join Bayes net contains a node for each attribute field
in the database, and a Boolean indicator node for each
relationship table. The definition assumes that a given basic
entity table is referenced at most once in a given relationship
table. A generalization for the case in which entity sets may
be related to themselves is treated in [12].

Definition 1 A Join Bayes Net (JBN) structure for a

database schema with entity tables and relationship tables
is a DAG G with one node for each descriptive attribute
A.name in the database, whose domain is dom(A.name),
and one binary node for each relationship table in the
database.

We adopt the following functional notation for the vari-
ables in a JBN. We use a mnemonic Roman letter, e.g. V ,
to refer to a given entity table (e.g., S for the Student table,
C for the Course table). An entity attribute node for the
table is denoted by name(V) (e.g., ranking(S)). The node
for a descriptive attribute R.name of a relationship table is
denoted by name(V1, . . . , Vk) where V1, . . . , Vk refers to
the entity tables linked to R by foreign key constraints (e.g.,
grade(S, C)). Similarly, the indicator node for R is denoted
by R(V1, . . . , Vk) (e.g., Registered(S, C)). Figure 1(e)
shows a JBN for the university schema with this notation.

We associate with a given database D a joint distribution
PD over relationships and descriptive attributes, which is
defined by a new join table—called the attribute-relation
table—that is constructed as follows.
1. Form the cross product of all entity tables.
2. Extend the table with descriptive attributes of the re-

lationship tables and one additional Boolean field for
each relation. The boolean field for relationship table R
takes the value T when the relationship R holds for the
corresponding entity tuple and takes on the value F oth-
erwise. When R is true for an entity tuple, the descriptive
attributes of R are filled in with the corresponding values.

3. When R is false for an entity tuple, the descriptive
attributes of R are assigned the value ⊥ for “undefined”.

4. Remove the primary key columns.
The attribute-relation table is viewed as a regular data table
whose row frequencies represent a joint distribution over its
columns, which is the database distribution PD. Figure
1(d) shows the attribute-relation table for a small instance of
the university schema.
Discussion The database distribution is closely related
to joins as expressed in Datalog-style query languages
like the DRC [13]. In logic queries, a table join cor-
responds to a conjunction; for instance, the join of the
Registration table with the Student table selecting courses
with rating = 2 is expressed by the query formula
〈S, C : Registered(S, C), rating(C) = 2〉. The probability
assigned to this conjunction by the database distribution is
the size of the join result in the database that corresponds
to the conjunction, divided by the maximum size of the join
result given the foreign key constraints:

PD(Registered(S, C) = T , rating(C) = 2) = (1)
|〈S, C : Registered(S, C), rating(C) = 2〉|D

|Student |D × |Course|D
Equation (1) illustrates that the probabilities assigned by

the attribute-relation table have a natural alternative interpre-
tation. It also implies that from an estimation of the database
distribution PD, we can readily compute an estimate of join
sizes, which is an important application for query selection.

We define the database distribution over the full cross prod-
uct of the entities rather than just the join of entities with rela-
tionship tables. In relationship tables, entities with more links
appear more frequently than others. As a result, the probabil-
ity of an attribute value derived from the join of relationships
with entities may not reflect the real statistical information.

For instance, in Figure 1, in the join of the Student table with
the Registered table the frequency of rows with rating = 2 is
1/2, whereas the frequency of rows in the Course table with
rating = 2 is 1/3. This is one of the problems often raised
for basing statistical learning on a join table. The attribute
relation table overcomes the problem by using the cross prod-
uct of entities, so all entities from a given table appear in the
same number of rows regardless of how many links they have.
The subset of rows of the attribute-relation table in which
the indicator variable R = T corresponds to the join of the
entity tables with the relationship table R. We now consider
learning a JBN model for a given database distribution.
4 Parameter Estimation with a Virtual Join Algorithm
This section treats the problem of computing conditional
frequencies in the database distribution, which corre-
sponds to computing sample frequencies in the single
table case. The main problem is computing probabilities
conditional on the absence of a relationship. For instance,
to compute PD(difficulty(C) = 2|intelligence(S) =
3,Registered(S, C) = T), a frequency count on the
constraints given by the query is done on the join of
the Registered , Student , and Course tables. However,
computing conditional probabilities on queries with false
relationships (e.g., Registered(S, C) = F) raises difficulties
because it involves non-existent links (cf. [5]). This problem
arises because a JBN includes relationship indicator vari-
ables such as Registered(S, C), and building a JBN therefore
requires modelling the case where a relationship does not
hold. In principle, frequencies in the database conditional on
the absence of links can be computed with frequency counts
over the rows in the attribute-relation table where the link is
absent. However, because materializing this table is generally
not feasible, we instead use a virtual join algorithm that com-
putes the frequencies in the entity join table without actually
constructing the entity join. The virtual join algorithm is a dy-
namic programming algorithm for estimating joint probabili-
ties in a database instance whose database operations involve
only: (1) Joins of existing relationship tables with entity
tables, and (2) Joins of existing relationship tables with other
existing relationships tables that share an entity type (foreign
key pointer). Relationship tables, such as Registered , are
typically much smaller than the cross product of their related
entities [5], so the join operations (1) and (2) are feasible for
SQL queries, and our algorithm is much more efficient than
explicitly constructing the attribute relation table.
Virtual Join Algorithm: Outline and Example Our
algorithm computes joint probabilities. Conditional proba-
bilities can easily be computed from joint probabilities via
the equation P (x|y) = P (x, y)/

∑
x′P (x′, y) where the

summation is taken over all possible values of x. The basic
idea can be described as follows. From probability laws, we
have the relation

P (x, R = F) = P (x)− P (x, R = T). (2)
Equation (2) shows how we can reduce a probability

involving a nonexistent relationship R = F to two other
computations that do not involve the nonexistent relationship:
(1) the case in which we do not condition on the value of R,
and (2) the case in which we condition on R = T . Let us
consider first the case in which the joint probability involves
only a single relationship variable together with descriptive
attributes of entities (cf. [5, Sec.5.8.4.2]). In that case, the
probability P (x, R = T) can be obtained from a frequency

Figure 1: Database Table Instances: (a) Student , (b) Registered (c) Course. To simplify, we added the information about
professors to the courses that they teach. (d) The attribute-relation table is formed in two steps: (1) take the cross product of the
student and course table (3 x 3 = 9 rows) and extend it with the matching attribute and relationship information. (2) Remove
the primary entity keys from the cross product of the entities. (e) A Join Bayes Net for the university schema variables.

count in the relationship table R in the database. The prob-
ability P (x) may involve descriptive attributes from more
than one entity table. It can be computed using the fact that
distinct entity tables are independent, unless they are linked
by a relationship variable [12], so the joint probability P (x)
is calculated by multiplying frequencies from entity tables.

Inductively, consider a joint probability involving m > 0
false relationships R1 = F , .., Rm = F . Then first, change
one of the false relationships to be true, e.g., R1 = T ,
and compute the joint probability for this case recursively,
since it involves one less false relationship. Second, change
the state of the chosen relationship to be unspecified, e.g.,
R1 = unspecified , and compute the conditional probability
for this case recursively, since it involves one less false re-
lationship. In our dynamic program, frequencies with fewer
false relationship variables are computed first, so the two fre-
quencies can be looked up from the previous computations.

Example. Figure 2 shows how to compute a joint proba-
bility with exactly one false relationship for the database in-
stance of Figure 1. To illustrate the case with multiple re-
lationships, suppose the university schema features another
entity table TA(ta id , expertise) to record the expertise of
teaching assistants and another relationship table relation
Assigned(ta id , course id) to record which assistants are
assigned to which course. Figure 2 shows how the compu-
tation of a joint probability with two false relationships can
be reduced to two probabilities, each without the false rela-
tionship Assigned(TA, C) = F . [12] provides further im-
plementation details, including pseudocode and complexity
analysis. In the next section we apply the parameter estima-
tion algorithm to build Join Bayes nets for three relational
datasets.
5 Evaluation and Experiments
We present results of applying our learning algorithms to
three relational data sets, the MovieLens and Financial
real-world databases, and an artifical University database for
the schema given in 1. Our evaluation method comprises the
following steps.
1. Learn a JBN structure for each database. For comparison,

we also apply a standard structure learning algorithm for
Markov Logic Networks to each database.

2. Fill in the CP-tables with maximum likelihood estimates.
3. Apply a standard Bayes net inference algorithm to

estimate conditional frequencies in the database, and
compare the estimates to the result of directly computing
conditional frequencies with SQL queries.

5.1 System Resources, Algorithms and Datasets
Our implementation used many of the procedures in version
4.3.9-0 of CMU’s Tetrad package [2]. Our Java code is avail-
able from the senior author upon request. All experiments
were done on a QUAD CPU Q6700 with a 2.66GHz CPU
and 8GB of RAM.

Learning Algorithms A description of our structure
learning method is beyond the scope of this note, but is
provided in [12]. Our method is modular in that it upgrades
any propositional single-table BN learner to a JBN learner.
We used the Tetrad implementation of GES search [1] with
the BDeu score (uniform structure prior, ESS=8) as the
base single-table BN learning program. After learning a
JBN structure, parameter estimation is carried out using the
algorithm described in the previous section.

Inference Algorithms JBN inference was carried out with
Tetrad’s Rowsum Exact Updater algorithm. A direct com-
parison of class-level inference with other SRL formalisms
is difficult as the implementations we could find support
only instance-level queries. For example, both the Alchemy
package for MLNs [3] and the Balios BLN engine [9] support
only queries with ground atoms. We could not obtain source
code for PRM inference.

Data sets Our datasets are available on-line at
ftp://ftp.fas.sfu.ca/pub/cs/oschulte/datasets/.

University Database. In order to check the correctness of
our algorithms directly, we manually created a small data set,
based on the schema given in 1. The entity tables contain 38
students, 10 courses, and 6 Professors. The Registered table
has 92 rows and the RA table has 25 rows.

Figure 2: To illustrate the recursive scheme of our parameter estimation algorithm. The top example for the database instance
in Figure 1 reduces the computation of a joint probability involving one false relationship to two without any false relationship
indicators. The bottom example shows for a generic database instance how the computation of a joint probability involving
two false relationships can be reduced to two with just one false relationship each.

MovieLens Database. The second data set is the Movie-
Lens data set from the UC Irvine machine learning reposi-
tory. It contains two entity tables: User with 941 tuples and
Item with 1,682 tuples, and one relationship table Rated with
100,000 ratings. The User table has 3 descriptive attributes
age, gender , occupation . We discretized the attribute age
into three bins with equal frequency. The table Item rep-
resents information about the movies. It has 17 Boolean at-
tributes that indicate the genres of a given movie; a movie
may belong to several genres at the same time. For example, a
movie may have the value T for both the war and the action
attributes. The full table with 100,000 ratings exceeded the
memory limits of Tetrad, so we randomly picked 40% of the
ratings of the relationship table as input data.

Financial Database. The third data set is a modified ver-
sion of the financial data set from the PKDD 1999 cup. We
adapted the database design to fit the ER model. We have
two entity tables: Client with 5369 tuples and Account with
4,500 tuples. Two relationship tables, CreditCard with 5,369
tuples and Disposition with 892 tuples relate a client with
an account. The Client table has 10 descriptive attributes:
the client’s age, gender and 8 attributes on demographic data
of the client. The Account table has 3 descriptive attributes:
information on loan amount associated with an account, ac-
count opening date, and how frequently the account is used.

5.2 Experimental Results
We evaluate structure learning, parameter estimation and
inference with Join Bayes nets. Table 2 presents a summary
of the run time for parameter learning and structure learning
for the data sets. The computation times are well within the
range of practical feasibility (40 min for the most difficult
experiment).

Learning The graphs learned are shown in Figures 1, 3,
and 4. In the MovieLens data set, the algorithm finds a
number of cross-entity table links involving the age of a
user. Because genres have a high negative correlation, the
algorithm produces a dense graph among the genre attributes.
We simplified the graph by omitting genre variables that have
only indirect links with the rating or User attributes. The
richer relational structure of the Financial data set is reflected
in a more complex graph with several cross-table links. The
birthday of a customer (translated into discrete age levels)
has especially many links with other variables.

The university database is small enough to materialize
its attribute-relation table and verify the correctness of our
parameter estimates directly. For the larger databases, this
is not feasible. The next section provides an indirect way

Figure 3: The JBN structures learned by our merge learning
algorithmfor the MovieLens Data set.

Figure 4: The JBN structures learned by our merge structure
learning algorithmfor the Financial Data set.

to check the learning algorithms by comparing the proba-
bilities estimated by the JBN with the database frequencies
computed directly from SQL queries.
Inference To avoid bias, we randomly generated 10
queries, each involving 4 nodes, for each data set according
to the following procedure. We compared the probabilities
predicted by the JBN with the frequencies in the database

Data set PL SL in JBN
University 0.495 0.64
Movie Lens 2,018 135
Financial 2,472 574

Table 2: The run times—in seconds—for structure learning
(SL) and parameter learning (PL) on our three data sets.

Figure 5: Comparing the probability estimates and run times
from the learned JBN models with SQL queries. Not all SQL
queries for the Financial data set terminated with a result.
The average is taken over 10 randomly generated queries.

as computed by an SQL query, as well as the run times for
computing the probability using the JBN vs. the SQL. We do
not expect the probabilities predicted by a JBN to be exactly
the same as the data frequencies, for the same reason that in
the single table case a BN learner would not just reproduce
the sample frequencies: the absence of links in the graph en-
tails probabilistic independence between variables that may
be slightly correlated in the data. But since we use maximum
likelihood estimates, and our sample sizes are not small, we
would expect the predicted probabilities to be fairly close to
the sample frequencies if the JBN structure is adequate. This
expectation is confirmed by our results: we see in Figure 5
that the predicted probabilities are close to the data frequen-
cies. For the small university data set, SQL queries are faster
than JBN inference. But for the larger MovieLens data set,
model inference is much faster, and for the largest Financial
data set, SQL queries were infeasible when conditioning
on the absence of relationships, whereas the JBN returns an
answer in around 10 seconds. Where the SQL queries did
return a frequency, it was close to the JBN estimate.

We observed that the number of tuples in the database
table is a very significant factor for the speed of SQL queries
but does not affect JBN inference. This is an important
observation about the data scalability of JBN inference:
While the learning algorithms depend on the size of the
database, once the learning is completed, query processing
is independent of database size. So for applications like
query optimization that involve many calls to the statistical
inference procedure, the investment in learning a JBN model
is quickly amortized in the fast inference time.

6 Conclusion
We showed how Join Bayes nets can be used to represent
class-level dependencies between attributes of entities or

relationships. This contrasts with instance-level depen-
dencies between attributes of specific entities. Class-level
generic dependencies are of interest in themselves, and they
support applications like policy making, strategic planning,
and query optimization. We defined a new semantics
for class-level Bayes nets based on a new database join
operation. The focus on class-level dependencies brings
gains in tractability of learning and inference. We described
efficient and scalable algorithms for structure and parameter
estimation in Join Bayes nets. Inference can be carried
out with standard algorithms “as is”. An evaluation of our
methods on three data sets shows that our algorithms are
computationally feasible for realistic table sizes, and that the
learned structures represented the statistical information in
the databases well. After learning has compiled the database
statistics into a Join Bayes net, querying these statistics via
the net is faster than directly with SQL queries, and does not
depend on the size of the database.
References
[1] David Maxwell Chickering and Christopher Meek.

Finding optimal bayesian networks. In UAI, pages
94–102, 2002.

[2] The Tetrad project: Causal models and statistical data,
2008. http://www.phil.cmu.edu/projects/tetrad/.

[3] Pedro Domingos and Matthew Richardson. Markov
logic: A unifying framework for statistical relational
learning. In Introduction to Statistical Relational
Learning [8].

[4] Lise Getoor and Christopher P. Diehl. Link mining: a
survey. SIGKDD Explorations Newsletter, 7(2):3–12,
2005.

[5] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. Probabilistic relational models.
In Introduction to Statistical Relational Learning [8].

[6] Lise Getoor and Ben Taskar. Introduction. In Getoor
and Taskar [8], pages 1–8.

[7] Lise Getoor, Benjamin Taskar, and Daphne Koller.
Selectivity estimation using probabilistic models. ACM
SIGMOD Record, 30(2):461–472, 2001.

[8] Lise Getoor and Ben Tasker. Introduction to statistical
relational learning. MIT Press, 2007.

[9] Kristian Kersting and Luc De Raedt. Bayesian logic
programming: Theory and tool. In Introduction to
Statistical Relational Learning [8].

[10] Tom M. Mitchell. Machine Learning. McGraw-Hill,
New York, 1997.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kauffmann, 1988.

[12] Oliver Schulte, Hassan Khosravi, Flavia Moser, and
Martin Ester. Join bayes nets: A new type of bayes
net for relational data. CS-Learning Preprint Archive,
http://arxiv.org/abs/0811.4458, 2008.

[13] J. D. Ullman. Principles of database systems, volume 2.
Computer Science Press, 1982.

