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Abstract
This is a position paper that presents a new approach
to identifying important nodes or entities in a complex
heterogeneous network. We provide a novel definition
of an importance score based on a statistical model: An
individual is important to the extent that including an
individual explicitly in the model improves the data fit
of the model more than it increases the model’s com-
plexity. We apply techniques from statistical-relational
learning, a recent field that combines AI and machine
learning, to identify statistically important individuals
in a scalable manner. We investigate empirically our ap-
proach with the OPTA soccer data set for the English
premier league.

Introduction
We present a new approach, based on a statistical model,
to identifying important individuals in a complex network.
Many, if not most, new datasets contain information about
networks whose nodes are linked entities. Identifying im-
portant individuals in a network is an important task for net-
work analysis. Our new statistical approach is as follows.
First, we learn a baseline generic statistical model that de-
scribes the dependencies among link types and node features
in the network. The generic model refers only to classes of
individuals, not to any individual in particular. While adding
an individual to the model increases the expressive power
of the model, it also increases the number of model param-
eters and hence the model complexity. A standard statisti-
cal model selection score quantifies the trade-off between
data fit and model complexity. The importance score of an
individual is the improvement in the model selection score
that results from introducing the individual into the model.
For typical statistical scores (e.g., BIC, AIC), the score im-
provement can be interpreted in minimum description length
terms: whereas adding the individual to the model requires
extra bits for specifying the new parameter values, it saves
bits by fitting the data more closely. Our model class in this
paper is Bayes nets, and the statistical score is the Bayes
Information criterion (BIC).

Compared to other approaches for ranking individuals in a
network, our statistical approach has several advantages. 1)
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If the statistical score can be evaluated quickly, as is the case
with BIC, computing the score improvement associated with
an individual is fast. 2) The importance metric is derived
from a general metric of predictive power. Because impor-
tance is tied to correlations and probabilitic predictions, the
metric provides an explanation of the ranking. 3) Most pre-
vious work assumes a homogeneous network with only one
type of node and link (e.g., social network, Twitter, web-
pages) (Chen et al. 2009). We use models from statistical-
relational learning that apply generally to networks with any
number of node link types. 4) The statistical score provides
a discrete decision as to whether the individual is important
or not (score improvement> 0), in addition to ranking. This
does not require specifying a k-value for selecting the top-k
individuals.

We present a preliminary investigation of our approach
on premier league soccer data. Here a player is statistically
important to the extent that introducing them into a model
increases the quality of predicting their team’s results and
other features of teams and matches.

Related Work
In a Bayesian network model, single-table features corre-
spond to nodes (e.g., age, gender). These feature nodes
should not be confused with nodes in the data network
that represent individuals (e.g. Silva,Chelsea) (Neville and
Jensen 2007). For single-table data, there has been much
work on selecting, fusing, ranking, and scoring features. The
majority of this work applies to explicitly listed features
(e.g., column headers) that are shared between independent
individuals. Single-table feature selection is different from
the problem we address: 1) We describe a method for in-
troducing new features that are not explicitly listed in the
data. These new features are of a special type, intuitively
“being related to special individual x”. 2) In our definition,
the importance of an individual x is based on how much
being linked to x explains the features of other individuals.
Thus our scoring method is designed to take into account the
interdependence of linked individuals that is the defining as-
pect of relational data.

The task of identifying important individuals was stud-
ied in many contexts such as sparse data university en-
vironments (Balog et al. 2007) and for bibliographic data
and digital libraries (Deng, King, and Lyu 2008)(Zhou et



al. 2007). Probability models, topic models (Griffiths and
Steyvers 2004), vector space (Demartini, Gaugaz, and Ne-
jdl 2009) and voting models have previously been used to
rank individuals. Also, HITS (Kleinberg 1999) and PageR-
ank (Page et al. 1999), algorithms were applied for scoring
objects in a homogenous network (Hulgeri and Nakhe 2002;
Nie et al. 2005); for an extension to heterogeneous networks
see (Cao et al. 2012). Several communities have worked
on sports data with the goal of predicting match results
(Joseph, Fenton, and Neil 2006; Baio and Blangiardo 2010;
Vaz de Melo, Almeida, and Loureiro 2008; Onody and de
Castro 2004).

Scoring
We use Poole’s Parametrized Bayes nets that are defined as
follows. The relational structure contains a list of popula-
tions P1, . . . ,Pk, such as player , teams,matches . Popula-
tion variables such as Player ,Team1 ,Team2 ,Match are
associated with a unique population. A functor is a predicate
or function. A functor node is of the form f(σ1, ..., . . . , σa)
where each σi is a constant or variable of the appropriate
population. A Parametrized Bayes net is a Bayes net whose
nodes are functor nodes. The state-of-the-art learn-and-join
algorithm (Schulte and Khosravi 2012) takes as input (1)
a relational database D representing a network, (2) a set
of functor nodes, and produces a Bayes net for the func-
tor nodes. The learn-and-join algorithm includes a method
for extracting a default set of functor nodes from a relational
database schema; they can also be chosen by the user.

The user chooses a statistical score score(B ,D) that
scores a Parametrized Bayes net B for a database D. In our
experiments, we used the relational Bayes Information Cri-
terion (BIC) (Schulte 2011; Alsanie and Cussens 2012). We
evaluate the score improvement due to a target individual
t as follows. Let t be a constant denoting an individual that
instantiates population variable X , with associated popula-
tion P . Let Dt be the database where the population of X
is restricted to the single member t. Let D−t be the database
where t is removed from the population of X .

1. Learn a generic model BD for the entire database.

2. Apply Bayes net learning to (1) input database D+
t , and

(2) the functor nodes that have X replaced by t. Call the
result Bt.

3. The score improvement is given by

[
1

|P|
score(Bt ,Dt)+

|P| − 1

|P|
score(BD,D−t )]−score(BD,D).

The score improvement formula can be interpreted as fol-
lows. Suppose that we randomly select a member x of the
population X . There are two cases: 1) x = t is the tar-
get individual. In that case we use the score for the target’s
model Bt applied to the data describing the target and its
links, which is represented by Dt. 2) x 6= t is different from
the target individual. In that case we use the score for the
generic model BD applied to the data describing the popu-
lation without t, which is represented by D−t . The first case

occurs with probability 1/|P| and the second with probabil-
ity (|P| − 1)/|P|. Therefore the expected score using the
individual as well as the generic model is

1

|P|
score(Bt ,Dt) +

|P| − 1

|P|
score(BD,D−t ).

The score improvement formula compares the score for
the two models to the score for using only the generic model
for all individuals, which is given by score(BD,D).

Complexity. Typical statistical scores such as BIC can be
computed in closed-form given the sufficient statistics. In
the case of Bayes nets these are the counts of joint child-
parent states, which can be described by conjunctive queries.
The complexity of evaluating scores is therefore essentially
the complexity of computing the frequency of conjunctive
queries in a database. Most Bayes net learners follow a
score-based approach where candidate models are repeat-
edly evaluated by applying the score. The cost of applying
the score once to evaluate the score improvement is there-
fore dominated by the cost of learning the Bayes net models.
Current state-of-the-art Bayes net learners for relational data
scale well to databases with table sizes on the order of 105
(Schulte and Khosravi 2012); extending the scope of scal-
able relational Bayes net learning is an active research area.

Examples. To build specific models for important players,
in the Bayes net of Figure 1(c), we can replace the variable
Player by Player = Nasri (b). The database Dt contains
only rows where team = ManchesterCity (MC) and player
= Nasri. The database D−t contains the rows for all the other
players of MC. Figure (a) illustrates the result of the same
procedure for Player = Silva .

To build specific models for important teams, we can re-
place the variable Team in the generic model of Figure
(left) by MC .

Dataset and Results
The dataset in this paper is the Opta data, released by
Manchester City. It is a time coded feed that lists all the ball
actions within each game by each player from 2011 to 2012.
Number of goals, passes, fouls, tackles, saves and blocks and
also position assigned to a player in a match are examples of
the information associated with each player. The informa-
tion can be visualized as a heterogeneous network that links
players to teams, and teams to matches.

Result(Match)-

goals(MC,Match)- TeamForma6on(MC,-
Match)-

WinningGoal(Player,-Match)-

Result(Match)-

goals(MC,-
Match)-

FirstGoal(Nasri,-
Match)-

Result(Match)-

goals(MC,-
Match)-

FirstGoal(Silva,-
Match)-

(a)- (b)-
(c)-

TimePlayed(Silva,-Match)-

Figure 1: Generic Bayes Net for Manchester City (MC) and
the special models for their players Nasri and Silva.
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Figure 2: Generic Bayes Net for Teams and the special
model for Team = MC (Manchester City). In the generic
model, team formation does not predict the result, but in the
specific model for Manchester City it does.

Name Position Score
Improvement

Predicted
WinPercentage

Actual
WinPercentage PWP/AVT Salary

Edin Dzeko striker 39.58 0.766 0.76 0.0153 56750
Carlos Tevez striker 49.227 0.663 0.76 0.0143 55800
Mario Balotelli striker 3.523 0.737 0.75 0.0128 55650
Sergio Aguero striker 18.712 0.807 0.82 0.0105 55550
James Milner Mid-Fielder 68.95 0.769 0.76 0.0126 54350
David Silva Mid-Fielder 98.324 0.7870 0.80 0.01 54400
Samir Nasri Mid-Fielder 79.223 0.632 0.80 0.008 54150

Table 1: Data for strikers and mid-fielders of Manchester
City: Model Score Improvement, Expected percentage of
wins when player plays (model estimate) = PWP, Actual
Percentage, PWP/Average Time played, salary.

Scoring Players
Figure 1 shows special models built for two players of
Manchester City (MC). In the generic MC model, scoring
the first goal does not predict the result but there is a corre-
lation if Nasri or Silva score it. The length of time played
by Silva positively correlates with higher results, but not
for Nasri. This illustrates how the Bayes net analysis can
find qualitative differences between individuals. We com-
pare the player’s importance score with a simple measure of
their value to the team: how the MC average number of wins
changes given that they play (WinPercentage). The average
number of MC wins is 78%. The BN general population es-
timates the winning percentage at 70%. The Predicted Win-
Percentage column shows that this estimate is improved for
each player by building a specific model (except for Nasri).
The last two columns in Table 1 show that if we divide each
player’s WinPercentage by their average time played, there
is a strong correlation with salary (r = 0.813). The table
shows data for the strikers and midfielders for whom we
could obtain salary data.

Scoring Teams
Table 2 shows that building a specific Bayes net for teams
with high importance score allows the model to make more
precise predictions for the teams results.

Discussion. In general, our method applies to any network
that can be represented in a relational database schema. In
network terms, the nodes in the Bayes net models in the soc-
cer domain concern correlations among attributes of links
and entities. For instance, Figure 1 models a relationship

TeamName Score.Imp. Exp.Res. Exp.Res.Diff
Swansea City 6.535 0.2971 0.0899
Tottenham Hotspur 33.0191 0.3947 0.0076
Bolton Wanderers 6.483 0.2632 0.1238
Manchester City 84.128 0.7895 0.4025
Everton 85.85 0.4211 0.0341

Table 2: Data for premier league teams with significant score
improvement: Score Improvement, Expected result of the
team (as estimated by the specific model), Expected Result
Difference from population mean over all teams (0.38).

Player-Appears-In-Match, with attribute FirstGoal. The
model shows how this can predict the result attribute of a
Match. In information networks, we may have few or no at-
tributes, but many links of different types. In principle, the
importance score applies also to networks with link infor-
mation only. Whether the importance score improves mod-
elling of link structure (as opposed to attribute correlations)
is a topic for future work.

Conclusion
We introduced a new statistical approach to identifying im-
portant individuals in a heterogenous network. The impor-
tance scores are fast to compute. The score results point to
qualitative differences between individuals, and improve es-
timates of a player’s contribution. These estimates correlate
strongly with contribution metrics that are independent of
the score (e.g., player salary). Questions for future work in-
clude defining a discriminative version of our importance
score, how to identify clusters of statistically similar play-
ers, and how to combine the generic Bayes net and the indi-
vidual Bayes nets into a single Bayesian hierarchical model
(Spiegelhalter et al. 1996)(Gyftodimos and Flach ).
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