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Inferring generalizations from data is one of the most interdisciplinary topics, studied of 
course in statistics, but also in branches of computer science, engineering, philosophy, 
and economics. The authors of “Reliable Reasoning” are two Princeton researchers from 
different disciplines Kalurkani (Electrical Engineering) and Harman (Philosophy). The 
book introduces learning theory, a mathematical framework for analyzing induction, with 
many applications in computer science and engineering. The main topic is binary 
classification: Consider an independent variable x ranging over a set X —the instances—
and a classifier function l: X →{0,1} that labels instances as positive or negative. In 
typical applications, the argument x is a feature vector that describes an instance. For 
example, a linear separator is specified by a set of weights w(i),..,w(n); it classfies a 
feature vector x as positive iff Σ x(i) w(i) > 0. Given a random sample of labelled 
instances, the problem is to infer the labeling function l that generates the data. This is an 
important problem with many applications, such as predicting whether an applicant will 
repay her loan, whether a patient will respond well to treatment, or whether an e-mail 
message is spam. Many other important inductive problems are not treated in the book; 
the advantage of the strict focus is a presentation that attains depth with little technicality.  
 
The book focuses on an approach to classification problems pioneered by Vapnik and 
Chervonenkis [VC 1971]; in computer science, the subject is known as PAC learning 
[Valiant 1984]. The VC learning model is as follows. Suppose we fix a classifier space H, 
a sampling distribution µ over the instance space X, and a classifier l from H. The learner 
is presented with a random sample of correctly labelled points <(x1,l1),…,(xk,lk)>, 
distributed according to µ. The error of a hypothesis l is the probability of 
misclassification according to the sampling distribution µ. The sample error of l is the 
error of l evaluated on the sample distribution. The weak law of large numbers implies 
that the sample error converges to the true error in probability. VC theory asks under 
what circumstances the convergence is uniform over the classifier space H. In symbols, 
the goal is as follows: given a desired accuracy ε in (0,1/2) and confidence parameter δ in 
(0,1/2), find a bound mH(ε,δ), depending only on the desired accuracy and confidence, 
such that: for every sample distribution µ, for any classifier l in H, for any sample of size 
at least mH(ε,δ), the probability is at least 1-δ that the sample error provides an ε-close 
estimate of the true error.  
 
Vapnik and Chernovenkis proved the deep result that uniform consistency depends on a 
finite combinatorial complexity measure called the VC dimension, defined as follows. 
Consider a set of instances {x1,..,xk}. If for each of the possible 2k labellings of the 
instance set, there is some classifer l from H that agrees with that labeling on the k 
instances, the class H is said to shatter the instances {x1,..,xk}. The VC dimension of a 
classifier space H is the maximum size k such that some instance set of size k is shattered 
by H. The VC theorem says that a hypothesis class H admits a  uniform bound on the 



convergence of the empirical error to the true error if and only if H has a finite VC 
dimension.  
 
Shattering and the VC dimension can be determined visually for the space of linear 
separations of two-dimensional points. Three collinear points cannot be shattered as no 
line separates both of the outer two points fom the interior one. If three points are not 
collinear, they form a triangle, and any one vertex of the triangle can be linearly 
separated from the other two. So the VC dimension is at least 3. No set of four points can 
be shattered: In the first case, one of the points is inside a triangle formed by the other 
three. Then no line separates the inside point from all the other three. In the second case, 
there are pairs (x1,x2) and (y1,y2) such that the two lines connecting x1,x2 and y1,y2 meet in 
the middle of the four points. No linear separation labels x1 and x2 as positive and y1 and 
y2 as negative. The fact that no set of four points can be shattered means that the VC 
dimension of the class of linear separators in two dimensions is at most 3. In general, the 
VC dimension of linear separators in n dimensions is n+1 [H & K, p.48]. 
 
About half of “Reliable Reasoning” introduces conceptual background, motivation, and 
examples for the VC dimension approach. The other half discusses extensions, 
alternatives, and applications. For example, an extension known as structural risk 
minimization proposes using the VC dimension as a parametrization-invariant definition 
of model complexity. The book compares structural risk minimization with traditional 
criteria such as the number of parameters in a model. Among the applications discussed 
in the book are support vector machines (SVM). SVMs use linear separators for 
classification, but in an extended instance space with extra dimensions added to the 
feature vectors. SVMs have been extensively applied in machine learning as their 
accuracy typically tops other classification learners [Taylor 2004]. 
 
“Reliable Reasoning” is a good introduction to statistical thinking in a focused setting. It 
presents several sophisticated mathematical ideas with a minimum of notation and a 
maximum of intuition. A reader with a background in statistics can read this book in a 
day and will learn much about how learning theory approaches fundamental issues in 
inferring classification rules. 
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