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Abstract. We present an algorithm for learning correlations among link
types and node attributes in relational data that represent complex net-
works. The link correlations are represented in a Bayes net structure.
This provides a succinct graphical way to display relational statisti-
cal patterns and support powerful probabilistic inferences. The current
state of the art algorithm for learning relational Bayes nets captures only
correlations among entity attributes given the existence of links among
entities. The models described in this paper capture a wider class of cor-
relations that involve uncertainty about the link structure. Our base line
method learns a Bayes net from join tables directly. This is a statisti-
cally powerful procedure that finds many correlations, but does not scale
well to larger datasets. We compare join table search with a hierarchical
search strategy.

1 Introduction

Scalable link analysis for relational data with multiple link types is a challenging
problem in network science. We describe a method for learning a Bayes net
that captures simultaneously correlations between link types, link features, and
attributes of nodes. Such a Bayes net provides a succinct graphical representation
of complex statistical-relational patterns. A Bayes net model supports powerful
probabilistic reasoning for answering “what-if” queries about the probabilities of
uncertain outcomes conditional on observed events. Previous work on learning
Bayes nets for relational data was restricted to correlations among attributes
given the existence of links [16]. The larger class of correlations examined in our
new algorithms includes two additional kinds:

1. Dependencies between different types of links.
2. Dependencies among node attributes given the absence of a link between the

nodes.
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Discovering such dependencies is useful for several applications.

Knowledge Discovery. Dependencies provide valuable insights in themselves.
For instance, a web search manager may wish to know whether if a user
searches for a video in Youtube for a product, they are also likely to search
for it on the web.

Relevance Determination. Once dependencies have been established, they
can be used as a relevance filter for focusing further network analysis only
on statistically significant associations. For example, the classification and
clustering methods of Sun and Han [19] for heterogeneous networks assume
that a set of “metapaths” have been found that connect link types that are
associated with each other.

Query Optimization. The Bayes net model can also be used to estimate re-
lational statistics, the frequency with which statistical patterns occur in the
database [17]. This kind of statistical model can be applied for database
query optimization [4].

Approach. We consider three approaches to multiple link analysis with Bayes
nets.

Flat Search. Applies a standard Bayes net learner to a single large join table.
This table is formed as follows: (1) take the cross product of entity tables.
(An entity table lists the set of nodes of a given type.) (2) For each tuple of
entities, add a relationship indicator whose value “true” or “false” indicates
whether the relationship holds among the entities.

Hierarchical Search. Conducts bottom-up search through the lattice of table
joins hierarchically. Dependencies (Bayes net edges) discovered on smaller
joins are propagated to larger joins. The different table joins include infor-
mation about the presence or absence of relationships as in the flat search
above. This is an extension of the current state of the art Bayes net learning
algorithm for relational data [16].

Evaluation. We compare the learned models using standard scores (e.g., Bayes
Information Criterion, log-likelihood). These results indicate that both flat search
and hierarchical search are effective at finding correlations among link types. Flat
search can on some datasets achieve a higher score by exploiting attribute cor-
relations that depend on the absence of relationships. Structure learning time
results indicate that hierarchical search is substantially more scalable.

The main contribution of this paper is extending the current state-of-the-art
Bayes net learner to model correlations among different types of links, with a
comparison of a flat and a hierarchical search strategy.

Paper Organization. We describe Bayes net models for relational data (Poole’s
Parametrized Bayes Nets). Then we present the learning algorithms, first flat
search then hierarchical search. We compare the models on four databases from
different domains.
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2 Related Work

Approaches to structure learning for directed graphical models with link uncer-
tainty have been previously described, such as [3]. However to our knowledge,
no implementations of such structure learning algorithms for directed graphical
models are available. Our system builds on the state-of-the-art Bayes net learner
for relational data, whose code is available at [6]. Implementations exist for other
types of graphical models, specifically Markov random fields (undirected models)
[2] and dependency networks (directed edges with cycles allowed) [10]. Structure
learning programs for Markov random fields are provided by Alchemy [2] and
Khot et al [9]. Khot et al. use boosting to provide a state-of-the-art dependency
network learner. None of these programs are able to return a result on half of
our datasets because they are too large. For space reasons we restrict the scope
of this paper to directed graphical models and do not go further into undirected
model. For an extensive comparison of the learn-and-join Bayes net learning
algorithm with Alchemy please see [16].

3 Background and Notation

Poole introduced the Parametrized Bayes net (PBN) formalism that combines
Bayes nets with logical syntax for expressing relational concepts [12]. We adopt
the PBN formalism, following Poole’s presentation.

3.1 Bayes Nets for Relational Data

A population is a set of individuals. Individuals are denoted by lower case
expressions (e.g., bob). A population variable is capitalized. A functor rep-
resents a mapping f : P1, . . . ,Pa → Vf where f is the name of the functor,
each Pi is a population, and Vf is the output type or range of the functor. In
this paper we consider only functors with a finite range, disjoint from all pop-
ulations. If Vf = {T ,F}, the functor f is a (Boolean) predicate. A predicate
with more than one argument is called a relationship; other functors are called
attributes. We use uppercase for predicates and lowercase for other functors.

A Bayes Net (BN) is a directed acyclic graph (DAG) whose nodes comprise
a set of random variables and conditional probability parameters. For each as-
signment of values to the nodes, the joint probability is specified by the product
of the conditional probabilities, P (child |parent values). A Parametrized ran-
dom variable is of the form f(X1, . . . , Xa), where the populations associated
with the variables are of the appropriate type for the functor. A Parametrized
Bayes Net (PBN) is a Bayes net whose nodes are Parametrized random vari-
ables [12]. If a Parametrized random variable appears in a Bayes net, we often
refer to it simply as a node.
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Table 1. A relational schema for a university domain. Key fields are underlined. An
instance for this schema is given in Figure 1.

Student(student id, intelligence, ranking)
Course(course id, difficulty , rating)
Professor (professor id, teaching ability, popularity)

Registered (student id, Course id, grade, satisfaction)

Teaches(professor id , course id)

3.2 Databases and Table Joins

We begin with a standard relational schema containing a set of tables, each
with key fields, descriptive attributes, and possibly foreign key pointers. A
database instance specifies the tuples contained in the tables of a given
database schema. We assume that tables in the relational schema can be di-
vided into entity tables and relationship tables. This is the case whenever a
relational schema is derived from an entity-relationship model (ER model) [21,
Ch.2.2]. The functor formalism is rich enough to represent the constraints of an
ER schema by the following translation: Entity sets correspond to types, de-
scriptive attributes to functions, relationship tables to predicates, and foreign
key constraints to type constraints on the arguments of relationship predicates.
Assuming an ER design, a relational structure can be visualized as a complex
network [13, Ch.8.2.1]: individuals are nodes, attributes of individuals are node
labels, relationships correspond to (hyper)edges, and attributes of relationships
are edge labels. Conversely, a complex network can be represented using a rela-
tional database schema.

Table 1 shows a relational schema for a database related to a university. In
this example, there are two entity tables: a Student table and a Course table.
There is one relationship table Registered with foreign key pointers to the Student
and Course tables whose tuples indicate which students have registered in which
courses. Figure 1 displays a small database instance for this schema together with
a Parametrized Bayes Net (omitting the Teaches relationship for simplicity.)

The natural table join, or simply join, of two or more tables contains the
rows in the Cartesian products of the tables whose values match on common
fields. In logical terms, a join corresponds to a conjunction [21].

4 Bayes Net Learning With Link Correlation Analysis

We outline the two methods we compare in this paper, flat search and hierar-
chical search.

4.1 Flat Search

The basic idea for flat search is to apply a standard propositional or single-table
Bayes net learner to a single large join table. To learn correlations between link



Relational Bayes Nets with Link Uncertainty 127

Fig. 1. Database Table Instances: (a) Student (b) Registered (c) Course . To simplify,
we added the information about professors to the courses that they teach. (d) The
attribute-relation table Registered+ derived from Registered , which lists for each pair
of entities their descriptive attributes, whether they are linked by Registered , and the
attributes of a link if it exists. (e) A Parametrized Bayes Net for the university schema.

types, we need to provide the Bayes net with data about when links are present
and when they are absent. To accomplish this, we add to each relationship table a
link indicator column. This columns contains T if the link is present between
two entities, and F if the link is absent. (The entities are specified in the primary
key fields.) We add rows for all pairs of entities of the right type for the link, and
enter T or F in the link indicator column depending on whether a link exists or
not. We refer to relationship tables with a link indicator column as extended
tables. Extended tables are readily computed using SQL queries. If we omit the
entity Ids from an extended table, we obtain the attribute-relation table that
lists (1) all attributes for the entities involved, (2) whether a relationship exists
and (3) the attributes of the relationship if it exists. If the attribute-relation
table is derived from a relationship R, we refer to it as R+.

The attribute-relation table is readily defined for a set of relationships: take
the cross-product of all populations involved, and add a link indicator column for
each relationship in the set. For instance, if we wanted to examine correlations
that involve both the Registered and the Teaches relationships, we would form
the cross-product of the entity types Student,Course,Professor and build an
attribute-relation table that contains two link indicator columns Registered(S,C)
and Teaches(P ,C ). The full join table is the attribute-relation table for all
relationships in the database.

The flat search Bayes net learner takes a standard Bayes net learner and
applies it to the full join table to obtain a single Parametrized Bayes net. The
results of [14] can be used to provide a theoretical justification for this procedure;
we outline two key points.

1. The full join table correctly represents the sufficient statistics[5,14] of the
database: using the full join table to compute the frequency of a joint
value assignment for Parametrized Random Variables is equivalent to the
frequency with which this assignment holds in the database.
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2. Maximizing a standard single-table likelihood score from the full join table
is equivalent to maximizing the random selection pseudo likelihood. The ran-
dom selection pseudo log-likelihood is the expected log-likelihood assigned
by a Parametrized Bayes net when we randomly select individuals from each
population and instantiate the Bayes net with attribute values and relation-
ships associated with the selected individuals.

4.2 Hierarchical Search

Khosravi et al. [16] present the learn-and-join structure learning algorithm. The
algorithm upgrades a single-table Bayes net learner for relational learning. We
describe the fundamental ideas of the algorithm; for further details please see
[16].

The key idea is to build a Bayes net for the entire database by level-wise search
through the table join lattice. The user chooses a single-table Bayes net learner.
The learner is applied to table joins of size 1, that is, regular data tables. Then
the learner is applied to table joins of size s, s+ 1, . . ., with the constraint that
larger join tables inherit the absence or presence of learned edges from smaller
join tables. These edge constraints are implemented by keeping a global cache of
forbidden and required edges. Algorithm 1 provides pseudocode for the previous
learn-and-join algorithm (LAJ) [15].

To extend the learn-and-join algorithm for multiple link analysis, we replace
the natural join in line 7 by the extended join (more precisely, by the attribute-
relation tables derived from the extended join). The natural join contains only
tuples that appear in all relationship tables. Compared to the extended join, this
corresponds to considering only rows where the link indicator columns have the
value T . When the propositional Bayes net learner is applied to such a table, the
link indicator variable appears like a constant. Therefore the BN learner cannot
find any correlations between the link indicator variable and other nodes, nor can
it find correlations among attributes conditional on the link indicator variable
being F . Thus the previous LAJ algorithm finds only correlations between entity
attributes conditional on the existence of a relationship. In sum, hierarchical
search with link correlations can be described as follows.

1. Run the previous LAJ algorithm (Algorithm 1) using natural joins.
2. Starting with the constraints from step 1, run the LAJ algorithm where

extended joins replace natural joins. That is, for each relationship set shown
in the lattice of Figure 2, apply the single-table Bayes net learner to the
extended join for the relationship set.

5 Evaluation

All experiments were done on a QUAD CPU Q6700 with a 2.66GHz CPU and
8GB of RAM. The LAJ code and datasets are available on the world-wide web
[6]. We made use of the following single-table Bayes Net search implementation:
GES search [1] with the BDeu score as implemented in version 4.3.9-0 of CMU’s
Tetrad package (structure prior uniform, ESS=10; [20]).
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Fig. 2. A lattice of relationship sets for the university schema of Table 1. Links from
entity tables to relationship tables correspond to foreign key pointers.

Methods Compared We compared the following methods.

LAJ The previous LAJ method without link correlations (Algorithm 1).
LAJ+ The new LAJ method that has the potential to find link correlations

(Algorithm 1 with the extended join tables instead of natural join tables).
Flat Applies the single-table Bayes net learner to the full join table.

To implement Flat Search and the LAJ+ algorithm efficiently, we apply the
Fast Möbius Transform to compute tables of sufficient statistics that involve
negated relationships. We discuss the details further in Section 6.

Performance Metrics We report learning time, log-likelihood, Bayes Information
Criterion (BIC), and the Akaike Information Criterion (AIC). BIC and AIC are
standard scores for Bayes nets [1], defined as follows. We write

L(Ĝ,d)

for the log-likelihood score, where Ĝ is the BN G with its parameters instantiated
to be the maximum likelihood estimates given the dataset d, and the quantity
L(Ĝ,d) is the log-likelihood of Ĝ on d.
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Algorithm 1. Pseudocode for previous Learn-and-Join Structure Learning for
Lattice Search

Input: Database D with E1, ..Ee entity tables, R1, ...Rr Relationship tables,
Output: Bayes Net for D
Calls: PBN: Any propositional Bayes net learner that accepts edge constraints and
a single table of cases as input.
Notation: PBN(T,Econstraints) denotes the output DAG of PBN. Get-
Constraints(G) specifies a new set of edge constraints, namely that all edges in
G are required, and edges missing between variables in G are forbidden.

1: Add descriptive attributes of all entity and relationship tables as variables to G.
Add a boolean indicator for each relationship table to G.

2: Econstraints = ∅ [Required and Forbidden edges]
3: for m=1 to e do
4: Econstraints += Get-Constraints(PBN(Em , ∅))
5: end for
6: for m=1 to r do
7: Nm := natural join of Rm and entity tables linked to Rm

8: Econstraints += Get-Constraints(PBN(Nm, Econstraints))
9: end for
10: for all Ni and Nj with a foreign key in common do
11: Kij := join of Ni and Nj

12: Econstraints += Get-Constraints(PBN(Kij , Econstraints))
13: end for
14: return Bayes Net defined by Econstraints.

The BIC score is defined as follows [1,14]

BIC (G,d) = L(Ĝ,d)− par(G)/2× ln(m)

where the data table size is denoted by m, and par (G) is the number of free
parameters in the structure G. The AIC score is given by

AIC (G,d) = L(Ĝ,d)− par(G).

Selection by AIC is asympotically equivalent to selection by cross-validation,
so we may view it as a closed-form approximation to cross-validation, which is
computationally demanding for relational datasets.

Datasets. We used one synthetic and three benchmark real-world databases,
with the modifications described by Schulte and Khosravi [16]. See that article
for more details.

University Database. We manually created a small dataset, based on the
schema given in Table 1. The dataset is small and is used as a testbed for the
correctness of our algorithms.
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Table 2. Size of datasets in total number of table tuples

Dataset #tuples

University 662

Movielens 1585385

Mutagenesis 1815488

Hepatitis 2965919

Small-Hepatitis 19827

MovieLens Database. A dataset from the UC Irvine machine learning repos-
itory. The data are organized in 3 tables (2 entity tables, 1 relationship table,
and 7 descriptive attributes).

Mutagenesis Database. A dataset widely used in ILP research. It contains
two entity tables and two relationships.

Hepatitis Database. A modified version of the PKDD’02 Discovery Challenge
database. The data are organized in 7 tables (4 entity tables, 3 relationship
tables and 16 descriptive attributes). In order to make the learning feasible, we
undersampled Hepatitis database to keep the ratio of positive and negative link
indicator equal to one.

Table 3. Data Preprocessing: Table Join Time in seconds

Dataset Data Processing Time

University 1.205

Movielens 1.539

Mutagenesis 0.723

Small-Hepatitis 57.794

Table 4. Model Structure Learning Time in seconds

Dataset Flat LAJ+ LAJ

University 1.916 1.183 0.291

Movielens 38.767 18.204 1.769

Mutagenesis 3.231 3.448 0.982

Small-Hepatitis 9429.884 7.949 10.617

5.1 Results

Learning Times. Table 3 shows the data preprocessing time that the different
methods require for table joins. This is the same for all methods, namely the
cost of computing the full join table using the fast Möbius transform described
in Section 6. Table 4 provides the model search time for each of the link analysis
methods. On the smaller and simpler datasets, all search strategies are fast,
but on the medium-size and more complex datasets (Hepatitis, MovieLens),
hierarchical search is much faster due to its use of constraints.
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Table 5. Statistical Performance of different Searching Algorithms by dataset

University BIC AIC log-likelihood # Parameter

Flat -17638.27 -12496.72 -10702.72 1767

LAJ+ -13495.34 -11540.75 -10858.75 655

LAJ -13043.17 -11469.75 -10920.75 522

MovieLens BIC AIC log-likelihood # Parameter

Flat -4912286.87 -4911176.01 -4910995.01 169

LAJ+ -4911339.74 -4910320.94 -4910154.94 154

LAJ -4911339.74 -4910320.94 -4910154.94 154

Mutagenesis BIC AIC log-likelihood # Parameter

Flat -21844.67 -17481.03 -16155.03 1289

LAJ+ -47185.43 -28480.33 -22796.33 5647

LAJ -30534.26 -25890.89 -24479.89 1374

Hepatitis BIC AIC log-likelihood # Parameter

Flat -7334391.72 -1667015.81 -301600.81 1365357

LAJ+ -457594.18 -447740.51 -445366.51 2316

LAJ -461802.76 -452306.05 -450018.05 2230

Statistical Scores. As expected, adding edges between link nodes improves the
statistical data fit: the link analysis methods LAJ+ and Flat perform better
than the learn-and-join baseline in terms of log-likelihood on all datasets shown
in table 5, except for MovieLens where the Flat search has a lower likelihood.
On the small synthetic dataset University, flat search appears to overfit whereas
the hierarchical search methods are very close. On the medium-sized dataset
MovieLens, which has a simple structure, all three methods score similarly. Hi-
erarchical search finds no new edges involving the single link indicator node (i.e.,
LAJ and LAJ+ return the same model).

The most complex dataset, Hepatitis, is a challenge for flat search, which
seems to overfit severely with a huge number of parameters that result in a
model selection score that is an order of magnitude worse than for hierarchical
search. Because of the complex structure of the Hepatitis schema, the hierarchy
constraints appear to be effective in combating overfitting.

The situation is reversed on the Mutagenesis dataset where flat search does
well: compared to previous LAJ algorithm, it manages to fit the data better with
a less complex model. Hiearchical search performs very poorly compared to flat
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Fig. 3. Learned Parametrized Bayes Net for 3 complete datasets: (A) University
Database, (B) MovieLens Database, (C) Mutagenesis Database
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search (lower likelihood yet many more parameters in the model). Investigation
of the models shows that the reason for this phenomenon is a special property
of the Mutagenesis dataset: The two relationships in the dataset, Bond and
MoleAtm, involve the same descriptive attributes. The hierarchical search learns
two separate Bayes nets for each relationship, then propagates both sets to the
final result. However, the union of the two graphs may not be a compact model
of the associations that hold in the entire database. A solution to this problem
would be to add a final pruning phase where redundant edges can be eliminated.
We expect that with this change, hierarchical search would be competitive with
flat search on the Mutagenesis dataset as well.

We also provide learned Bayes net for three databases in terms of the best
statistical performance in Figure 3.

6 Computing Data Join Tables

The learning algorithms described in this paper rely on the availability of the
extended relational tables R+ (see Figure 1). A naive implementation constructs
this tables using standard joins. However, the cross-products grow exponentially
with the number of relations joined, and therefore do not scale to large datasets.
In this section we describe a “virtual join” algorithm that computes the required
data tables without the quadratic cost of materializing a cross-product.

Our first observation is that Bayes net learners do not require the entire
extended table, but only the sufficient statistics, namely the counts of how
many times each combination of values occurs in the data [11]. For instance,
the attribute-relationship table of Figure 1, each combination is observed ex-
actly once. Our second observation is that to compute the sufficient statistics, it
suffices to compute the frequencies of value combinations rather than the counts,
because counts can be obtained from frequencies by multiplying with the appro-
priate domain sizes. An efficient virtual join algorithm for computing frequencies
in relational data was recently published by Schulte et al. [18]. Their algorithm
is based on the fast Möbius transform (FMT). We outline it briefly.

Consider a set of relationship indicator nodes R1 = ·, R2 = ·, . . . , Rm and
attribute nodes f1, . . . , fj . The sufficient statistics correspond to a joint distri-
bution over these random variables.

P (R1 = ·, R2 = ·, . . . , Rm = ·; f1 = ·, . . . , fj = ·).
Our goal is to compute sufficient statistics of this form for relational data. The

FMT allows us to efficiently find sufficient statistics for binary random variables.
We apply it with a fixed set of values for the attribute nodes, which corresponds
to a joint distribution over the m Boolean relationship random variables:

P (R1 = ·, R2 = ·, . . . , Rm = ·; f1 = v1, . . . , fj = vj).
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Fig. 4. (a) A Bayes net with two relationship nodes. (b) An illustrative trace of the
fast Möbius transform.

The FMT uses the local update operation

P (R = F ,R) = P (R)− P (R = T ,R) (1)

where R is a conjunction of relationship specifications, possibly with both posi-
tive and negative relationships. The equation continues to hold if we extend rela-
tionship specifications with any fixed set of value assignments f1 = v1, . . . , fj =
vj to attribute functor nodes f1, . . . , fj. Using the convention that R = ∗ means
that the value of relationship R is unspecified, the equation (1) can be rewritten
as

P (R = F ,R) = P (R = ∗,R)− P (R = T ,R). (2)

The FMT begins with an initial table of sufficient statistics where all relation-
ship nodes have the value T or ∗ but not F . Since these sufficient statistics do
not involve false relationships, they can be computed efficiently from a relational
database using table joins. The procedure then goes through the relationship
nodes R1, . . . , Rm in order, at stage i replacing all occurrences of Ri = ∗ with
Ri = F , and applying the local update equation to obtain the probability value
for the modified row. At termination, all ∗ values have been replaced by F and
the table specifies all joint frequencies as required. Algorithm 2 gives pseudo
code and Figure 4 presents an example of the transform step. For example, the
probability entry for the second row of the middle table is computed by applying
the equation

P (R1 = F , R2 = T ; g(X) = W ) =

P (R1 = ∗, R2 = T ; g(X) = W )− P (R1 = T , R2 = T ; g(X) = W ) =

0.15− 0.1 = 0.05

which is an instance of Equation (2).
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Algorithm 2 . The inverse Möbius transform for parameter estimation in a
Parametrized Bayes Net

Input: database D; a set of nodes divided into attribute nodes f1, . . . , fj and rela-
tionship nodes R1, . . . , Rm.
Output: joint probability table specifying the data frequencies for each joint assign-
ment to the input nodes.

1: for all attribute value assignments f1 := v1, . . . , fj := vj do
2: initialize the table: set all relationship nodes to either T or ∗; find joint frequen-

cies with data queries.
3: for i = 1 to m do
4: Change all occurrences of Ri = ∗ to Ri = F .
5: Update the joint frequencies using (1).
6: end for
7: end for

7 Conclusion

We described different methods for extending relational Bayes net learning to
correlations involving links. Statistical measures indicate that Bayes net methods
succeed in finding relevant correlations. There is a trade-off between statistical
power and computational feasibility (full table search vs constrained search).
Hierarchical search often does well on both dimensions, but needs to be extended
with a pruning step to eliminate redundant edges.

A key issue for scalability is that most of the learning time is taken up by
forming table joins, whose size is the cross product of entity tables. These table
joins provide the sufficient statistics required in model selection. To improve
scalability, computing sufficient statistics needs to be feasible for cross product
sizes in the millions or more. A solution is applying virtual join methods that
compute sufficient statistics without materializing table joins, such as the Fast
Möbius Transform [17,22].

A valuable direction for future work is to compare learning link correlations
with directed and undirected models, such as Markov Logic Networks [2]. As we
explained in Section 2, current relational learners for undirected models do not
scale to most of our datasets. One option is to subsample the datasets so that
we can compare the statistical power of directed and undirect learning methods
independently of scalability issues. Khosravi et al. were able to obtain structure
learning results for Alchemy [7], but did not evaluate the models with respect to
link correlations. For the MLN-Boost system, we were able to obtain preliminary
results on several benchmark databases (including Mutagenesis and Hepatitis),
by selecting the right subset of target predicates. MLN-Boost is the current
state-of-the-art learner for Markov Logic Networks [8]. The Bayes net models
were competitive with the MLN-Boost models on a standard cross-validation
measure of predictive accuracy.
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