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Abstract

We analyze common reasoning about admissibility in the strategic and
extensive form of a game. We define a notion of sequential proper admissi-
bility in the extensive form, and show that, in finite extensive games with
perfect recall, the strategies that are consistent with common reasoning
about sequential proper admissibility in the extensive form are exactly
those that are consistent with common reasoning about admissibility in
the strategic form representation of the game. Thus in such games the
solution given by common reasoning about admissibility does not depend
on how the strategic situation is represented. We further explore the links
between iterated admissibility and backward and forward induction.

1 Introduction

A well known problem with non-cooperative game theory is that Nash
equilibria are seldom relevant for predicting how the players will play. The
equilibria of a game do not represent all the possible outcomes. Rather,
they represent the set of self-enforcing agreements: had the players known
their respective choices before playing the game, then they must have
constituted an equilibrium. Some game theorists have argued that pre-
dictability must involve what Binmore (1987/88) has called an “eductive”
procedure. When asking how the players’ deductive processes might un-
fold, one must usually specify some basic principles of rationality, and
then examine what choices are consistent with common knowledge of the
specified principles. The advantage of this approach is that it is pos-
sible to refine our predictions about how players might choose without
assuming that they will coordinate on a particular equilibrium. Princi-
ples such as iterated strict dominance or rationalizability (Pearce 1984),
(Bernheim 1984) are examples of how it is possible to restrict the set of
predictions using rationality arguments alone. In this paper we embrace
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the eductive viewpoint, and examine the game-theoretic implications of
adopting the classic admissibility postulate of decision theory. An ad-
missible choice is a choice that is not weakly dominated, and we take
rationality to coincide with admissibility. However, a player might be
indifferent between two strategies, one of which is weakly dominated by
the other, if she assigns probability zero to the state on which the weakly
dominant act is strictly preferred. To guarantee that a player will always
eliminate a weakly dominated strategy, we have to impose a strict coher-
ence requirement (Shimony 1955), meaning that–when a player starts
deliberating about a game–each player must assess positive probability
for each of the other players’ strategies. The admissibility principle thus
follows from combining Savage’s sure thing principle (1954, pp.21—26) and
strict coherence. We assume rationality to be common knowledge, and de-
scribe players’ common reasoning about admissibility in the strategic and
extensive forms of a game. Common reasoning about admissibility in the
extensive form leads to iterated elimination of weakly dominated strategies
(IWD). In the last part of the paper we explore the relationship between
IWD in the extensive and strategic forms of a game. One commonly held
disadvantage of IWD is that–unlike iterated strict dominance–different
orders of deletion can result in different solutions. A standard solution to
this problem is to delete at each round all weakly dominated strategies of
all players (Rochet 1980), (Moulin 1986), (Harper 1991). We support this
view by arguing that order-independent elimination of weakly dominated
strategies captures common reasoning about admissibility in the strategic
form. In the extensive form of a game, a strategy may prescribe choices in
parts of the tree that will never be reached if that strategy is played. If we
evaluate strategies only with respect to information sets that are consis-
tent with them (i.e., information sets that can be reached if the strategy
is played), we are led to the concept of sequential proper admissibility: A
strategy is sequentially properly admissible in a game tree just in case the
strategy is admissible at each information set that is consistent with the
strategy. A striking result of our paper is that, for finite extensive form
games with perfect recall, the strategies that are consistent with common
reasoning about sequential proper admissibility in the extensive form are
exactly those that are consistent with common reasoning about admis-
sibility in the strategic form representation of the game. Thus in these
games, the solution given by common reasoning about admissibility does
not depend on how the strategic situation is represented.

Like iterated strict dominance and rationalizability, application of it-
erated weak dominance (IWD) has the advantage that it does not require
advanced computation of equilibria. It is therefore a more global condition
than backward and forward induction principles, some of whose features
IWD is held to capture. Though backward and forward induction prin-
ciples are understood to be local conditions, in that they provide a test
which can only be applied after the equilibria of a game have been com-
puted, we think that our characterization of IWD captures some crucial
features of both principles. For example, we show that, in generic finite
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game of perfect information, common reasoning about weak admissibility
yields exactly the backward induction solution. And in finite games of
imperfect information, common reasoning about admissibility yields typ-
ical forward induction solutions. Thus backward and forward induction
seem to follow from one principle, namely that players’ choices should be
consistent with common reasoning about admissibility. This result may
seem questionable, as it is also commonly held that backward and for-
ward induction principles are mutually inconsistent. That is, if we take
backward and forward induction principles to be restrictions imposed on
equilibria, then they lead to contradictory conclusions about how to play.
We show that the problem with the examples one finds in the literature
is that no constraints are set on players’ forward induction “signals”. We
define a credible forward induction signal in an extensive game as a signal
consistent with common reasoning about sequential admissibility. Thus
the examples in the literature which purport to show the conflict between
backward and forward induction principles involve forward induction sig-
nals that are not credible.

2 Extensive Form Games

We introduce the basic notions for describing games in extensive form.
Note that our formalization is limited to finite games, and that we restrict
players to only play pure strategies. A finite extensive form game for
players N = 1, 2, ..., n is given by a game tree T with finitely many nodes
V , root r, payoff functions ui which assigns a payoff to each player i at
each terminal node in T , and information sets Ii for each player i. For
each node x in T , I(x) is the information set containing x. A pure strategy
si for player i in a game tree T assigns a unique action, called a move,
to each information set Ii of player i in T . We denote the set of i’s pure
strategies in T by Si(T ) (in what follows, the term “strategy” always
refers to pure strategies.) A strategy profile in T is a vector (s1, s2, ..., sn)
consisting of one strategy for each player i. We denote the set of pure
strategy profiles in T by S(T ); i.e. S(T ) = ×i∈NSi(T ). We use ‘s’ to
denote a generic strategy profile. It is useful to denote a vector of length
n − 1 consisting of strategy choices by player i’s opponents by s−i. We
write S−i(T ) for the set of strategy profiles of i’s opponents, i.e. S−i(T )
= ×j∈N−{i}Sj(T ).

Given a strategy profile s, we use s[i] to denote the strategy of player
i in s, and s[−i] to denote the strategy profile of i’s opponents in s.

In the games we consider, the root is the only member of its informa-
tion set (i.e. I(r) = {r}), so that a strategy profile s in T determines a
unique maximal path < r, x1, x2, ..., xn > from the root r to a terminal
node xn; we refer to this path as the play sequence resulting from s, and
denote it by play(s). When a strategy profile s in T is played, each player
receives as payoff the payoff from the terminal node reached in the play
sequence resulting from s. With some abuse of notation, we use ui to
denote both a function from strategy profiles to payoffs for player i, as
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well as a function from terminal nodes to a payoff for player i, and define
ui(s) = ui(x), where x is the terminal node in the play sequence play(s).
For a finite game tree T , the height of a node x in T is denoted by h(x),
and defined recursively by h(x) = 0 if x is a terminal node in T , and
h(x) = 1 +max{h(y) : y is a successor of x in T} otherwise.

An important part of players’ deliberation about which strategy to
choose in a given game consists of ruling out possibilities about how the
game might be played. Though players may use different principles to
exclude some plays of the game, any such reasoning will result in a game
tree restricted to those possibilities consistent with the application of a
given principle. The following definitions allow us to describe this notion
precisely.

Definition 1 Restricted Game Trees

• Let T be a finite game tree for N = 1, 2, . . . , n players.

• T |V is the restriction of T to V , where V is a subset of the nodes in
T . All information sets in T |V are subsets of information sets in T .

• Tx is the game tree starting at node x (i.e. Tx is the restriction of T
to x and its successors.) If I(x) = {x}, then Tx is called a subgame.

• If si is a strategy for T and T 0 is a restriction of T , si|T 0 is the
strategy that assigns to all information sets in T 0 the same choice
as in T . Formally, si|T 0 (I 0i) = si(Ii), where Ii is the (unique)
information set in T that contains all the nodes in I 0i. Note that
si|T 0 is not necessarily a strategy in T 0; for the move assigned by si
at an information set Ii in T may be not possible in T

0.

• If s is a strategy profile in T and T 0 is a restriction of T , s|T 0 is the
strategy vector consisting of s[i]|T 0 for each player i.

• Let S ⊆ S(T ) be a collection of strategy profiles in a game tree T
with players N . Then a node x is consistent with S if and only
if there is a strategy profile s in S such that x is part of the play
sequence resulting from s, i.e. x ∈ range(play(s)). The restriction
of T to nodes consistent with S is denoted by T |S. We observe that
T |S(T ) = T .

• A node x is consistent with a strategy si by player i in T just in case
there is a strategy profile s−i in T such that x appears in the play
sequence play(si, s−i).

3 Common Reasoning About Rational-
ity

We may assume that in deliberating players use some principle to rule
out plays of the game that are inconsistent with that principle. One
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such principle is rationality. In the next sections we explore the conse-
quences of adopting two rationality criteria: weak admissibility, which fol-
lows from sure-thing (Savage 1954) and coherence principles, and admis-
sibility, which follows from sure-thing and strict coherence principles. In
the first case, a player never plays a strictly dominated strategy, whereas
in the second case also weakly dominated strategies are eliminated. As-
suming strict coherence (Shimony 1955) is crucial, since a player might be
indifferent between two strategies, one of which is weakly dominated by
the other, if she assigns probability zero to the state on which the weakly
dominant act is strictly preferred. To guarantee that a player will always
eliminate a weakly dominated strategy, we have to impose a strict coher-
ence requirement, meaning that — at the beginning of a game — each player
must assess positive probability to each of the other players’ strategies.

A player who is reasoning, say, with the help of admissibility would not
go very far in eliminating plays of the game inconsistent with it, unless he
assumes that the other players are also applying the same principle. In
the game of Figure 1, for example, player 1 could not eliminate a priori
any play of the game unless he assumed player 2 never plays a dominated
strategy. 1 In general, even assuming that other players are rational might
not be enough to rule out possibilities about how a given game might
be played. Players must reason about other players’ reasoning, and such
mutual reasoning must be common knowledge. Unless otherwise specified,
we shall assume that players have common knowledge of the structure of
the game and of rationality, and examine how common reasoning about
rationality unfolds.

3.1 Strict Dominance and Subgame Perfection

This section explores in detail the implications of common reasoning about
weak admissibility, the requirement that players should avoid strictly dom-
inated actions. We show that in finite games of perfect information, com-
mon reasoning about weak admissibility gives exactly the same results as
Zermelo’s backward induction algorithm, which in finite games of perfect
information corresponds to Selten’s notion of subgame perfection 2. We
then show by examples that the tight connection between common rea-
soning about weak admissibility and subgame perfection breaks down in
games of imperfect information.

We define a strategy to be sequentially weakly admissible in a game
tree T if it is weakly admissible at each information set in T . A strategy
si for player i is not weakly admissible at a given information set Ii if
the strategy is strictly dominated at Ii. This means that there is some
other strategy s0i that yields i a better outcome than si at every node x
in Ii. For example, in the game of Figure 1, playing right (‘R’) at 2’s
information set is strictly dominated by playing left (‘L’).

1Here and elsewhere, the payoff at a terminal node is given as a pair (x, y), where x is the
payoff for player 1 and y is the payoff for player 2.

2cf. (Osborne and Rubinstein, 1994, Ch. 6).
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Figure 1: Weak Admissibility
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The formal definition of sequential weak admissibility is the following.

Definition 2 Strict Dominance and Weak Admissibility in Extensive Form
Games

• Let T be a finite game tree for N = 1, 2, . . . , n players.

• We define the payoff to player i from strategy si and strategy profile
s−i at x, written ui(si, s−i, x), to be ui(si, s−i, x) = ui(si|Tx, s−i|Tx).

• A strategy si is strictly dominated by another strategy s0i at an infor-
mation set Ii belonging to i in T just in case for all strategy profiles
s−i in T , and for all y in Ii, ui(si, s−i, y) < ui(s0i, s−i, y).

• A strategy si is weakly admissible at an information set Ii in T just
in case si is not strictly dominated at Ii.

• A strategy si is sequentially weakly admissible in T if and only if si
is weakly admissible at each information set Ii in T that belongs to
player i.

Our procedure for capturing common reasoning about sequential weak
admissibility in T is the following. First, eliminate at each information set
in T all moves that are inconsistent with weak admissibility, i.e. strictly
dominated choices. The result is a restricted game tree T 0.

Repeat the pruning procedure with T 0 to obtain another restricted
game tree, and continue until no moves in the resulting game tree are
strictly dominated. Note that the recursive pruning procedure does not
start at the final information sets. Our procedure allows players to con-
sider the game tree as a whole and start eliminating branches anywhere
in the tree by applying weak admissibility. To illustrate the procedure,
look at the game of figure 1. R is eliminated at 2’s information set in
the first iteration, and then c is eliminated for player 1 because, after R
is eliminated, either a or b yield player 1 a payoff of 1 for sure, while c
yields 0. The pruning procedure is formally defined as follows. For a given
game tree T , let Weak−Adi(T ) = {si ∈ Si(T ) : si is sequentially weakly
admissible in T}, and let Weak −Ad(T ) = ×i∈NWeak −Adi(T ) .
Definition 3 Common Reasoning about Sequential Weak Admissibility

• Let T be a finite game tree for N = 1, 2, . . . , n players.

• The strategies in T consistent with common reasoning about sequen-
tial weak admissibility are denoted by CRWA(T ), and are defined as
follows:

1. WA0(T ) = S(T ).

2. WAj+1(T ) =Weak −Ad(T |WAj(T )).
3. s ∈ CRWA(T )⇐⇒ ∀j : s|[T |WAj(T )] ∈WAj+1(T ).

If T is a finite game tree, the set of strategies for player i, Si(T ) is
finite, and our procedure will go through only finitely many iterations.
To be precise, let max =

P
i∈N |Si|−1; then the procedure will terminate

after max iterations, i.e. for all j ≥ max,WAj(T ) =WAj+1(T ).
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We introduce the concept of Nash equilibrium and one of its refine-
ments, subgame perfection, for generic finite games in extensive form. A
strategy si in a game tree T is a best reply to a strategy profile s−i of i’s
opponents if there is no strategy s0i for player i such that ui(s

0
i, s−i) >

ui(si, s−i). A strategy profile s is a Nash equilibrium if each strategy
s[i] in s is a best reply against s[−i]. A strategy profile s is a subgame
perfect equilibrium if for each subgame Tx of T, (s|Tx) is a Nash equilib-
rium of Tx. We say that a strategy si in T is consistent with subgame
perfection if there is a subgame perfect strategy profile s of which si
is a component strategy, i.e. si = s[i]. We denote the set of player i’s
strategies in T that are consistent with subgame perfection by SPEi(T ),
and define the set of strategy profiles consistent with subgame perfection
by SPE(T ) = ×i∈NSPEi(T ) . Note that not all strategy profiles that
are consistent with subgame perfection are subgame perfect equilibria. In
figure 2, all strategy profiles are consistent with subgame perfection, but
L, ba0 and R, ab0 are not equilibria, since in equilibrium 1 must be playing
a best reply to 2’s strategy.

Finally, T is a game of perfect information if each information set I of
T is a singleton. The game in Figure 2 is a game of perfect information.

A standard approach to finite games of perfect information is to apply
Zermelo’s backwards induction algorithm which yields the set of strategy
profiles that are consistent with subgame perfection, i.e. SPE(T ) 3. Com-
mon reasoning about weak admissibility, as defined by the procedureWA,
does not follow Zermelo’s backwards induction algorithm. For example,
suppose that in a game tree a move m at the root is strictly dominated
by another move m0 at the root for the first player. Common reasoning
about weak admissibility rules out m immediately, but the backwards in-
duction algorithm eliminates moves at the root only at its last iteration.
Nonetheless, our first result is that in games of perfect information, the
final outcome of the two procedures is the same: In these games, the
strategies that are consistent with common reasoning about sequential
weak admissibility are exactly those consistent with subgame perfection.

proposition 1 Let T be a finite game tree of perfect information. Then
a strategy si is consistent with common reasoning about sequential weak
admissibility in T if and only if si is consistent with subgame perfection.
That is, CRWA(T ) = SPE(T ).

In games of imperfect information, the equivalence between strategies
consistent with subgame perfection and those consistent with common rea-
soning about sequential weak admissibility fails in both directions. Figure
1 shows that a strategy profile s may be a subgame perfect equilibrium al-
though s is not consistent with common reasoning about sequential weak
admissibility: The strategy profile (c, R) is a subgame perfect equilibrium,
but R and (hence) c are not consistent with common reasoning about se-
quential weak admissibility. And in figure 3, a is not strictly dominated
for player 2, but a is neither a best reply to L nor to R. Although a is

3cf. (Osborne and Rubinstein, 1994, Ch. 6.2).
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not strictly dominated, a seems like a bad choice because it never gives
player 2 a better payoff than the alternatives and sometimes gives her less.
In other words, a is weakly dominated. In the remainder of this paper,
we investigate how players might reason about a game on the assumption
that no player will choose a weakly dominated strategy.

4 Sequential Weak Dominance and For-
ward Induction

4.1 Weak Dominance

Informally, a strategy si is weakly dominated by another strategy s
0
i at

an information Ii in a game tree T if s
0
i never yields less to i at Ii than si

does, and sometimes yields more. For example, in the game of Figure 3, a
is weakly dominated at 2’s information set. And in the game of Figure 4,
choosing b is weakly dominated for 2 because a yields player 2 the payoff
2 for sure, while b may yield only 0 if player 1 plays R2. As in the case
of weak admissibility, we call a strategy si sequentially admissible just in
case si is admissible at each information set belonging to player i.

Definition 4 Weak Dominance and Admissibility in Extensive Form Games

• Let T be a finite game tree for N = 1, 2, . . . , n players.

• A strategy si is weakly dominated by another strategy s
0
i at an in-

formation set Ii belonging to i in T just in case

1. for all strategy profiles s−i in T , and for all y in Ii, ui(si, s−i, y) ≤
ui(s

0
i, s−i, y), and

2. for some strategy profile s−i and some node y in Ii, ui(si, si, y) <
ui(s

0
i, s−i, y).

• A strategy si is admissible at an information set Ii in T just in case
si is not weakly dominated at Ii.

• A strategy si is sequentially admissible in T if and only if si is
admissible at each information set Ii in T that belongs to i.

We define a procedure to capture common reasoning about sequen-
tial admissibility analogous to common reasoning about sequential weak
admissibility. To illustrate the procedure, consider figure 4. Common
reasoning about admissibility rules out b as a choice for player 2 because
b is weakly dominated. Then given that only a remain at 2’s decision
node, R1 (strictly) dominates L1 for player 1. So the only play consistent
with common reasoning about sequential admissibility is for player 1 to
play R1 and end the game. Note however that common reasoning about
sequential weak admissibility, i.e. the standard backwards induction pro-
cedure, is consistent with both R1 and the play sequence L1, b, L2. So
even in games of perfect information, common reasoning about sequential
admissibility may lead to stronger results than common reasoning about
sequential weak admissibility.
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For a given game tree T, let Seq − Adi(T ) = {si ∈ S(T ) : si is
sequentially admissible in T}, and let Seq−Ad(T ) = ×i∈NSeq−Adi(T ).
Definition 5 Common Reasoning about Sequential Admissibility

• Let T be a finite game tree with players N = 1, 2, ...n.

• The strategies in T consistent with common reasoning about se-
quential admissibility are denoted by CRSeq(T ), and are defined as
follows:

1. Seq0(T ) = S(T ).

2. Seqj+1(T ) = Seq −Ad(T |Seqj(T )).
3. s ∈CRSeq(T )⇐⇒ ∀j : s|[T |Seqj(T )] ∈ Seqj+1(T ).

We have seen that common reasoning about sequential admissibility
can lead to stronger results than common reasoning about sequential weak
admissibility; we next show that the former never leads to weaker results
than the latter. The key is to observe that if a strategy si is strictly
dominated in a game tree T , si will be strictly dominated in a restriction
of T . The next lemma asserts the contrapositive of this observation: If a
strategy si is admissible in a restriction of T , si is not strictly dominated
in T .

Lemma 2 If T is a restriction of T 0 and si is sequentially admissible in
T , then there is an extension s0i of si to T

0 such that s0i is sequentially
weakly admissible in T 0.

This means that our procedure Seq yields, at each stage j, a result that
is at least as strong as that of common reasoning about weak admissibility,
the procedure WA. Hence we have the following proposition.

proposition 3 Let T be a finite game tree. If a play sequence is con-
sistent with common reasoning about sequential admissibility in T , then
that play sequence is consistent with common reasoning about sequential
weak admissibility. That is, {play(s) : s ∈ CRSeq(T )} ⊆ {play(s) : s ∈
CRWA(T )}.

4.2 Forward Induction

It is commonly held that iterated weak dominance (i.e., iterated sequen-
tial admissibility) captures some of the features of backward and forward
induction. Fudenberg and Tirole (1993, p.461) thus state that: “Iterated
weak dominance incorporates backward induction in games of perfect in-
formation: The suboptimal choices at the last information sets are weakly
dominated; once these are removed, all subgame-imperfect choices at the
next-to-last information sets are removed at the next round of iteration;
and so on. Iterated weak dominance also captures part of the forward
induction notions implicit in stability, as a stable component contains a
stable component of the game obtained by deleting a weakly dominated
strategy”.
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Indeed, we have previously shown that, in finite game of perfect in-
formation, common reasoning about weak admissibility yields exactly the
backward induction solution. In this section we show how, in finite games
of imperfect information, common reasoning about admissibility yields
typical forward induction solutions. Thus backward and forward induc-
tion seem to follow from one principle, namely that players’ choices should
be consistent with common knowledge of (and common reasoning about)
admissibility. This result may seem questionable, as it is also commonly
held that backward and forward induction principles are mutually incon-
sistent (Kohlberg and Mertens 1986), (Myerson 1991). That is, if we take
backward and forward induction principles to be restrictions imposed on
equilibria, then they may lead to contradictory conclusions about how to
play.

A backward induction principle states that each player’s strategy must
be a best reply to the other players’ strategies, not only when the play
begins at the initial node of the tree, but also when the play begins at any
other information set.4 A forward induction principle says that players’
beliefs should be consistent with sensible interpretations of the opponents’
play. Thus a forward induction principle restricts the range of possible
interpretations of players’ deviations from equilibrium play. Deviations
should be constructed as ‘signals’ (as opposed to mistakes), since players
should privilege interpretations of the opponents’ play that are consistent
with common knowledge of rationality. The typical example of a con-
tradiction between backward and forward induction principles would be a
game of imperfect information, where one may apply forward induction in
one part of the tree, and then use the conclusion for a backward induction
argument in a different part of the tree (Kohlberg 1990).

The game of Figure 5 is taken from (Kohlberg 1990, p.10). Since
player I, by choosing y, could have received 2, then by forward induction
if he plays n he intends to follow with T ; but for the same reason II, by
choosing D, shows that she intends to play R, and hence–by backward
induction– I must play B. What seems to be at stake here is a conflict
between different but equally powerful intuitions. By playing D, player
II is committing herself to follow up with R, and thus player I would be
safe to play y. On the other hand, once player I’s node has been reached,
what happened before might be thought of as strategically irrelevant, as I
now has a chance–by choosing n–of signaling his commitment to follow
with T . Which commitment is firmer? Which signal is most credible?

We must remember that players make their choices about which strat-
egy to adopt after a process of deliberation that takes place before the
game is actually played. During deliberation, we have argued, players will
employ some shared principle that allows them to rule out some plays of
the game as inconsistent with it. A plausible candidate is admissibil-
ity. Let us now see how the ex ante deliberation of the players might
unfold in this game by applying the procedure Seq(T ) to the strategies
UL,UR,DL,DR and yT, yB, nT, nB. Note that if we recursively apply

4This principle corresponds to subgame perfection.
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to this game the concept of sequential admissibility presented in the pre-
vious section, we must conclude that the only strategies consistent with
common reasoning about sequential admissibility are UR, and yT . In-
deed, common reasoning about sequential weak admissibility alone yields
this result. For during the first round of iteration, the strategy nB of
player I is eliminated because this strategy is strictly dominated by any
strategy that chooses y at I’s first choice node. Similarly, the strategy
DL of player II is immediately eliminated because this strategy is strictly
dominated by any strategy that chooses U at the root. So after the first
round of elimination, II’s second information set is restricted to the node
reached with nT , and her choices at this information set are restricted to
R only. This means in turn that y now strictly dominates nT at I’s first
information set, and U strictly dominates DR at the root. Finally, the
strategies yB and UL are not strategies in the restricted tree obtained
after the first round of elimination, and therefore they are eliminated.
After the second round of elimination, only UR and yT survive. Thus
we predict that players who deliberate according to a shared admissibility
principle will expect U to be chosen at the beginning of the game.

A brief comment about the intuitive plausibility of our procedure is
now in order. Note that the procedure we propose does not allow the
players to discount whatever happens before a given information set as
strategically irrelevant. For example, if player II were to choose D, player
I should not keep playing as if he were in a new game starting at his
decision node. We rather suggest that I should expect II to follow with
R, if given a chance. In which case he should play y and player II, who
can replicate I’s reasoning, will in fact never play D. On the other hand,
playing D to signal that one wants to continue–if given a chance–with
R would make little sense, since II must know that nB is never going to
be chosen, and R makes sense only if it follows nB. In other words, D
is not a rational move for player II. Similar reasoning excludes nB as a
rational strategy for player I.

The problem with Kohlberg’s and similar examples is that no con-
straints are set on players’ forward induction “signals”. We define the
notion of a credible signal in an extensive form game, and show that the
credible signals are the signals consistent with common reasoning about
sequential admissibility (much as Selten’s subgame-perfect equilibria char-
acterize “credible threats”). Thus the examples in the literature which
purport to show the conflict between backward and forward induction
principles involve forward induction signals that are not credible.

The following definition formulates the notion of a forward induction
signal in general, and a credible forward induction signal in particular.
The idea is this: Let us consider a move m at a given information set Ii,
and ask what future moves of player i at lower information sets I 0i are con-
sistent with sequential admissibility and the fact that m was chosen at Ii.
If there are future moves that are consistent with sequential admissibility
and the fact that m was chosen at Ii, then we take the move m at Ii to be
a signal that player i intends to follow with one of those moves at I 0i. But
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we argue that in order for this signal to be credible to i’s opponents, at
least one of the future admissible moves must be consistent with common
reasoning about sequential admissibility in T .

We say that an information set I 0i in a game tree T is reachable from
another information set Ii with a strategy si if there is are nodes x ∈ Ii, y ∈
I 0i such that some play sequence that is consistent with si|Tx contains y.
Definition 6 Let T be a game tree with information set Ii. Let T |Ii
denote the restriction of T to nodes in Ii and successors of nodes in Ii.

• A strategy si is consistent with forward induction at Ii if si is se-
quentially admissible at Ii.

• A move m at an information set Ii is a forward induction signal for
S∗i at a lower information set I

0
i (written < Ii : m, I

0
i : S

∗
i >), where

si ∈ S∗i ⇐⇒
1. si(Ii) = m;

2. I 0i is reachable from Ii with si;

3. si is consistent with forward induction at Ii.

• A forward induction signal < Ii : m, I
0
i : S

∗
i > is credible if some

strategy si in S
∗
i is consistent with common reasoning about sequen-

tial admissibility in T , i.e. si ∈ CRSeq(T )i.
Let us illustrate these concepts in the game of figure 5. According to

our definitions, the only strategy that chooses n at I’s first information set
and is consistent with forward induction is nT . So < I1I : n, I

2

I : {nT} >
is a forward induction signal, where I1I denotes I’s first information set

and I2I denotes I’s second information set. However, < I
1

I : n, I
2

I : {nT} >
is not a credible signal. For nT is inconsistent with common reasoning
about sequential admissibility, since such reasoning rules out L at II’s
second information set. Similarly for player II, < I1II : D, I

2

II : {DR} >
is a forward induction signal. But it is not a credible signal, since DR is
inconsistent with common reasoning about sequential admissibility. Hence
neither forward induction signal is credible, as ”sending” either signal
is inconsistent with common reasoning about sequential admissibility as
defined by CRSeq.

In terms of reasoning about admissibility, the difference between Kohlberg’s
and our analysis is this. Kohlberg applies admissibility once to argue that
D is a forward induction signal for R and n is a forward induction signal
for T . But if we assume that admissibility is common knowledge among
the players, then neither D nor n are credible signals. Indeed, common
knowledge is not even needed to get to this conclusion: it is sufficient to
apply admissibility twice to get the same result.
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5 Common Reasoning about Admissibil-
ity in the Extensive and Strategic Forms

A game G in strategic form is a triple hN,Si∈N , ui∈N i, where N is the
number of players and, for each player i ∈ N , Si is the set of pure strategies
available to i, and ui is player i’s utility function. Given a strategy profile
s = (s1, . . . , sn), ui(s) denotes the payoff to player i when players follow
the strategies (s1, . . . , sn). Consider the set of strategy profiles S = S1 ×
S2 × ...×Sn, and two strategies si, s0i ∈ Si of player i. Player i’s strategy
si is weakly dominated by her strategy s

0
i given S just in case:

1. for all n − 1-tuples s−i chosen by i’s opponents that are consistent
with S, ui(si, s−i) ≤ ui(s0i, s−i) and

2. for at least one n − 1-tuple s−i consistent with S, ui(si, s−i) <
ui(s

0
i, s−i).

A strategy si is weakly dominated given S just in case there is a strategy
s0i consistent with S such that s

0
i weakly dominates si given S. A strategy

si is admissible in S just in case si is not weakly dominated given S. We
denote the strategic form of an extensive form game T by the collection
S(T ) of strategies in T , with payoffs defined as in T .

Our goal in this section is to determine what reasoning in the strate-
gic form of a game corresponds to common reasoning about sequential
admissibility. To this end we characterize what properties a strategy si
must satisfy in the extensive form T of a game in order to be admissible in
the strategic form S(T ). The key idea is to evaluate a strategy only with
respect to information sets that can be reached by the given strategy. For
example, in the game of figure 4, the strategy (R1R2) for player 1 yields
the same payoff as (R1L2). Hence neither strategy weakly dominates the
other in the normal form, although (R1L2) is sequentially admissible and
(R1R2) is not. Evaluating strategies only with respect to information sets
that are consistent with them leads to what we call proper weak domi-
nance, and proper admissibility. So in the game of figure 4, (R1R2) is
properly admissible.

We say that an information set I in a game tree T is reachable with a
strategy si if some node in I is consistent with si.

Definition 7 Sequential Proper Admissibility

• Let T be a finite game tree.
• A strategy si is properly weakly dominated at an information set
Ii belonging to i in T just in case Ii is reachable with si and si is
weakly dominated at Ii.

• A strategy si is properly admissible at an information set Ii just in
case si is not properly weakly dominated at Ii.

• A strategy si is sequentially properly admissible in T if and only if
si is properly admissible at each information set Ii in T that belongs
to player i.
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We define the result of common reasoning about sequential proper
admissibility in the by now familiar way. For a given game tree T , let
Seq − PAi(T ) = {si ∈ Si(T ) : si is sequentially properly admissible in
T}, and let Seq − PA(T ) = ×i∈NSeq − PAi(T ).
Definition 8 Common Reasoning About Sequential Proper Admissibility

• Let T be a game tree, with players N = 1, 2, ...n.

• The strategies in T consistent with common reasoning about sequen-
tial proper admissibility are denoted by CRPSeq(T ), and are defined
as follows:

1. PSeq0(T ) = S(T ).

2. PSeqj+1(T ) = Seq − PA(T |PSeqj(T )).
3. s ∈ CRPSeq(T )⇐⇒ ∀j : s|[T |PSeqj(T )] ∈ PSeqj+1(T ).

The two notions of sequential admissibility are equivalent in terms of
their predictions about how the game will be played. That is, exactly the
same play sequences are consistent with both restrictions.

Lemma 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility are exactly those consistent with sequential
proper admissibility. That is, {play(s) : s is sequentially admissible in
T} = {play(s) : s is sequentially properly admissible in T}.

From this fact it follows immediately that common reasoning about
sequential admissibility yields the same predictions as common reasoning
about proper sequential admissibility.

proposition 5 Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are exactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s ∈ CRSeq(T )} = {play(s) : s ∈ CRPSeq(T )}.

However, it is not always the case that a strategy that is admissible in
the strategic form of a game is properly admissible in an extensive form of
the game. For example, in the game of figure 6, the strategy L is properly
weakly dominated for player 2 at her information set: at node y,R yields a
higher payoff than L, and starting at node x, both choices yield the same.
On the other hand, node y cannot be reached when 2 plays L, so that L is
admissible in the strategic form of the game, yielding 2’s maximal payoff
of 1. The game in figure 6 has the strange feature that if 2 plays R at x to
arrive at y, she has ‘forgotten’ this fact and cannot distinguish between
x and y. Indeed, this is a game without perfect recall. Perfect recall is
defined as follows.

Definition 9 (Kuhn) Let T be a finite game tree. Then T is an extensive
game with perfect recall if and only if for each information set Ii belonging
to player i, and each strategy si in T, all nodes in Ii are consistent with
si if any node in Ii is.
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Figure 6: A Game Without Perfect Recall
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We note that if T is a game with perfect recall, then all restrictions of
T satisfy perfect recall. The next proposition shows that in extensive form
games with perfect recall, the notion of proper weak dominance coincides
exactly with admissibility in the strategic form.

proposition 6 Let T be a finite game tree with perfect recall. Then a
strategy si for player i is admissible in the strategic form S(T ) if and only
if si is sequentially properly admissible in T .

Consider a game G in strategic form. We define an order-free iterative
procedure for eliminating weakly dominated strategies. If S is a set of
strategy profiles, let Admissi(S) be the set of all strategies si for player i
that are consistent with S and admissible given S, and let Admiss(S) =
×i∈NAdmissi(S).
Definition 10 Common Reasoning About Admissibility in the Strategic
Form

• Let the strategic form of a finite gameG be given by hN,Si∈N , ui∈N i,
and let S = S1 × S2 × ...× Sn be the set of strategy profiles in G.

• The strategies in S consistent with common reasoning about admis-
sibility are denoted by CRAd(S), and are defined as follows.

1. Ad0(S) = S.

2. Adj+1(S) = Admiss(Adj(S)).

3. CRAd(S) =
T∞
j=0

Adj(S).

The procedure goes through at most
P

i∈N |Si − 1| iterations; that is,
for all j ≥P

i∈N |Si − 1|, Adj(S) = Adj+1(S) .
For example, consider the game in figure 7. In the first iteration, player

1 will eliminate c, which is weakly dominated by b, and player 2 will elim-
inate R, which is dominated by L and M . Since admissibility is common
knowledge, both players know that the reduced matrix only contains the
strategies a, b and L,M . Common reasoning about admissibility means
that both players will apply admissibility to the new matrix (and know
that they both do it), and since now L dominatesM , both will know that
M is being eliminated. Finally, common reasoning about admissibility
will leave b, L as the unique outcome of the game.

Our main result is that in games with perfect recall, iterated sequential
proper admissibility and order-free elimination of inadmissible strategies
in the strategic form yield exactly the same result.

Theorem 7 Let T be a finite game tree with perfect recall. A strategy pro-
file s is consistent with common reasoning about sequential proper admis-
sibility in T if and only if s is consistent with common reasoning about ad-
missibility in the strategic form of T . That is, CRPSeq(T ) = CRAd(S(T )).

It is noteworthy that if the order-free elimination of inadmissible strate-
gies in the normal form yields a unique solution, then that solution is a
Nash equilibrium (Bicchieri 1994).

General existence is now easy to establish.
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Figure 7: Order-Free Elimination of Weakly Dominated Strategies

proposition 8 For all finite games G with pure strategy profiles S, CRAd(S) 6=
∅.

6 Proof of Results

For the proof of proposition 1, we rely on the well-known one-deviation
property of subgame perfect equilibrium: If it is possible for one player
to profitably deviate from his subgame perfect equilibrium strategy si, he
can do so with a strategy s0i that deviates from si only once.

Lemma 0 Let T be a finite game tree of perfect information. Then s is a
subgame perfect equilibrium in T if and only if for each node x, for each
player i, ui(s[i], s[−i], x) ≥ ui(s0i, s[−i], x), whenever s[i] and s0i differ only
at x.

Proof. See (Osborne and Rubinstein 1994, Lemma 98.2).
For the next proposition, we note that if T is finite, then our iterative

procedure goes only through finitely many iterations. In particular, this
means that if a strategy si is strictly dominated given CRWA(T ), then si
is not in CRWA(T ).

proposition 1 Let T be a finite game tree of perfect information. Then
a strategy si is consistent with common reasoning about sequential weak
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admissibility in T if and only if si is consistent with subgame perfection.
That is, CRWA(T ) = SPE(T ).

Proof. We prove by induction on the height x of each node that
CRWA(Tx) = SPE(Tx). The proposition follows when we take x to be
the root of T .

Base Case, h(x) = 1. Then all successors of x are terminal nodes. Let
player i be the player to move at x. Let max(x) be the maximum payoff
player i can achieve at x (i.e. max(x) = max{ui(y) : y is a successor of
x}). Then si|Tx is consistent with subgame perfection at x if and only if
si(x) yields i the maximum payoff max(x), which is exactly when si|Tx is
not strictly dominated at x.

Inductive Case: Assume the hypothesis in the case when h(y) < h(x)
and consider x.

(⇒): Let s be a strategy profile consistent with common reasoning
about sequential weak admissibility (i.e. s ∈ CRWA(Tx) ). Suppose that
it is player i’s turn at x. For each player j, s[j]|Ty is consistent with
subgame perfection in each proper subgame Ty of Tx, by the inductive
hypothesis and the fact that s[j] is consistent with common reasoning
about sequential weak admissibility in Tx. So the implication (⇒) is
established if we show that s[i] is consistent with subgame perfection in
Tx. Let y be the successor of x that is reached when i plays s[i] at x.
Let max(y) be the maximum that i can achieve given common reasoning
about sequential weak admissibility when he follows s[i] (i.e. max(y) =
max{ui(s[i], s−i, x) : s−i is consistent with CRWA(Tx)}). For each y0 that
is a successor of x, let min(y0) be the minimum that i can achieve given
common reasoning about sequential weak admissibility when he follows
s[i] in Ty0 . Then we have (*) that max(y) ≥ min(y0) for each successor y0
of x. For otherwise player i can ensure himself a higher payoff than s[i]
can possibly yield, by moving to some successor y0 of x and continuing
with s[i]. That is, the strategy s∗i which moves to y

0 at x and follows s[i]
below y0 strictly dominates s[i] in Tx|CRWA(Tx). But since T and hence
Tx is finite, this contradicts the assumption that s[i] is consistent with
CRWA(Tx). Now by inductive hypothesis, CRWA(Ty0) = SPE(Ty0) for
each successor y0 of x. So there is a subgame perfect equilibrium smax in
Ty which yields i the payoff max(y) in Ty and in which player i follows
s[i] (i.e. s[i] = smax[i]). Again by inductive hypothesis, for each successor

node y0 of x there is a subgame perfect equilibrium sy
0
min in Ty0 which gives

player i the payoff min(y0) and in which player i follows s[i] in Ty0 . Now
we define a subgame perfect equilibrium s∗ in Tx in which player i follows
s[i]:

1. s∗[i]({x}) = s[i]({x}),
2. in Ty,s

∗ follows smax,

3. in Ty0 , s
∗ follows sy

0
min, where y

0 is a successor of x other than y.
By our observation (*), there is no profitable 1-deviation from s∗

for player i at x, and hence by lemma 0, s∗ is a subgame perfect
equilibrium in Tx.
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(⇐) Let s be consistent with subgame perfection in Tx. Let i be the
player moving at x. Consider any strategy s[j] in s, where j 6= i. Since
j is not moving at x, s[j] is consistent with common reasoning about se-
quential weak admissibility in Tx if and only if s[j]|Ty is consistent with
common reasoning about sequential weak admissibility in each subgame
Ty of Tx. Since s is consistent with subgame perfection in Tx, there is a
subgame perfect equilibrium s∗ in Tx in which j follows s[j]. Since s∗ is
subgame perfect, s∗|Ty is subgame perfect in Ty. Hence s[j]|Ty = s∗[j]|Ty
is consistent with subgame perfection in Ty. By inductive hypothesis, this
entails that s[j]|Ty is consistent with common reasoning about sequential
weak admissibility in Ty. Since this is true for any subgame Ty of Tx, s[j]
is consistent with common reasoning about sequential weak admissibil-
ity in Tx. Next, consider s[i], the strategy followed by the player who
is moving at x. We just established that for each iteration WAj(T ) of
common reasoning about weak sequential admissibility, s∗[−i] is consis-
tent with WAj(T ). Since s∗ is a subgame perfect equilibrium in Tx, s

∗[i]
is a best reply against s∗[−i] in Tx and each subgame of Tx. So in each
subgame Ty of Tx (including Tx) and at each iteration WA

j(T ), s∗[i] is a
best reply against some strategy profile of his opponents consistent with
WAj(T ), namely s∗[−i]|Ty, and hence s∗[i] is sequentially weakly admis-
sible given WAj(T ). Since CRWA(T ) = WA

k(T ) for some k, because T
is finite, s∗[i] is consistent with common reasoning about sequential weak
admissibility. This shows that all strategies in the strategy profile s are
consistent with common reasoning about sequential weak admissibility in
Tx, and completes the proof by induction.2

Lemma 2 If T is a restriction of T 0 and si is sequentially admissible in
T , then there is an extension s0i of si to T

0 such that s0i is sequentially
weakly admissible in T 0.

Proof. We construct s0i as follows. At each information set Ii in T
0

such that Ii contains a node in T, s
0
i = si. At all other information sets

Ii, s
0
i follows a strategy that is weakly admissible at Ii. We claim that s0i

is sequentially weakly admissible in T 0; let Ii be any information set in T 0

belonging to i.
Case 1: Ii contains a node x in T . Since T is a restriction of T 0,

Ii contains all nodes in IT (x), where IT (x) is the information set in T
containing x. So if si is strictly dominated in T

0 at Ii, then si is strictly
dominated in T at IT (x), contrary to the supposition that si is admissible
at IT (x)

Case 2: Ii contains no node x in T . By construction, si is weakly
admissible at Ii.2

proposition 3 Let T be a finite game tree. If a play sequence is con-
sistent with common reasoning about sequential admissibility in T , then
the play sequence is consistent with common reasoning about sequential
weak admissibility. That is, {play(s) : s ∈ CRSeq(T )} ⊆ {play(s) : s ∈
CRWA(T )}.
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Proof. We prove by induction on j ≥ 0 that for each j, T |Seqj(T ) is a
restriction of T |WAj(T ).

Base Case, j = 0. Then Seq0(T ) = WA0(T ), so the claim is immedi-
ate.

Inductive Step: Assume that T |Seqj(T ) is a restriction of T |WAj(T ),
and consider j + 1. Choose any strategy profile s in Seqj+1(T ). By
lemma 2, extend each s[i] in s to a strategy s0[i] that agrees with s[i] on
information sets that have members both in T |Seqj(T ) and T |WAj(T ),
and is sequentially weakly admissible in T |WAj(T ). Call the resulting
strategy profile s0; s0 is in WAj+1(T ). Clearly s and s0 result in the
same play sequence, i.e. play(s0) = play(s), because the same actions
are taken at each information set. So all nodes that are consistent with
Seqj+1(T ) are consistent withWAj+1(T ), which means that T |Seqj+1(T )
is a restriction of T |WAj+1(T ). This completes the proof by induction.
2

Lemma 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility are exactly those consistent with sequential
proper admissibility. That is, {play(s) : s is sequentially admissible in
T} = {play(s) : s is sequentially properly admissible in T}.

Proof. (⊇) Let s be a sequentially properly admissible strategy profile
in T , and let x be any node reached in play(s) such that I(x) belongs
to player i. Then s[i] is admissible at I(x) since I(x) is consistent with
s[i]. Now we may modify s to obtain a strategy profile s∗, in which each
player i follows s[i] at any information set containing a node in play(s),
and follows an admissible strategy at every other information set. Then
s∗ is sequentially admissible, and play(s∗) = play(s).

(⊆) This is immediate because all sequentially admissible strategies
are sequentially properly admissible.2

proposition 5 Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are exactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s ∈ CRSeq(T )} = {play(s) : s ∈ CRPSeq(T )}.

Proof. We prove by induction on j that for each j ≥ 0, T |Seqj(T ) =
T |PSeqj(T ).

Base Case, j = 0. The claim is immediate since Seq0(T ) = PSeq0(T ) =
S(T ).

Inductive Case: Assume that T |Seqj(T ) = T |PSeqj(T ), and consider
j + 1. The claim follows immediately from lemma 4.2

proposition 6 Let T be a finite game tree with perfect recall. Then a
strategy si for player i is admissible in S(T ) if and only if si is sequentially
properly admissible in T .

Proof. Suppose that a strategy si in S(T ) for player i is weakly dom-
inated in S(T ). Then there is a strategy s0i consistent with S(T ) such
that
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1. for all strategy profiles s−i consistent with S(T ), ui(si, s−i) ≤ ui(s0i, s−i),
and

2. for some strategy profile s∗−i consistent with S(T ), ui(si, s
∗
−i) <

ui(s
0
i, s
∗
−i).

Let x be the first node that appears along both the plays of si against
s∗−i and si against s

∗
−i at which si deviates from s

0
i, so that x ∈ range(play(si, s∗−i))∩

range(play(s0i, s
∗
−i)) and si(Ii(x)) 6= s0i(Ii(x)). Then x is consistent with

si and s
0
i in T . Let y be any node at Ii(x) consistent with si and s

0
i,

and let s−i be any strategy profile of i’s opponents. Then ui(si, s−i, y) ≤
ui(s

0
i, s−i, y); for otherwise, by perfect recall, let s

∗
−i be a strategy profile

of i’s opponents such that both play(si, s
∗
−i) and play(s

0
i, s

∗
−i) reach y,

and such that s∗−i|Ty = s−i|Ty. Then ui(si, s∗−i) > ui(s0i, s∗−i), contrary to
the hypothesis that s0i weakly dominates si in S(T ). Since we also have
that ui(si, s

∗
−i, x) < ui(s

0
i, s

∗
−i, x), it follows that s

0
i weakly dominates si

at Ii(x) so that si is not sequentially properly admissible.
Suppose that a strategy si is properly weakly dominated at an infor-

mation set Ii in T by strategy s
0
i. Then there must be a node x in Ii con-

sistent with si and a strategy profile s
0
−i in T such that s

0
i yields a higher

payoff at x against s0−i than si does, i.e. ui(si, s
0
−i, x) < ui(s

0
i, s

0
−i, x).

Assume without loss of generality that x is reached by the play sequence
of si against s

0
−i, i.e. x ∈ range(play(si, s0−i)). Now we define a strategy

s∗i that weakly dominates si in T as follows.

1. At an information set I 0i that does not contain x or any successor of
x, s∗i (I

0
i) = si(I

0
i).

2. At an information set I 0i that contains x or a successor of x, s
∗
i (I

0
i) =

s0i(I
0
i).

We show that s∗i weakly dominates si in S(T ). Since play(si, s−i)
reaches x, play(s∗i , s−i) also reaches x, and so ui(s

∗
i , s−i) = ui(s

∗
i , s−i, x) =

ui(s
0
i, s−i, x) > ui(si, s−i, x) = ui(si, s−i). Thus s∗i weakly dominates si

in S(T ) if for no s−i in T, ui(si, s−i) > ui(s
∗
i , s−i), which we establish

now. Let a strategy profile s−i in T be given.
Case 1: the play sequence of (s∗i , s−i) does not reach Ii(x). Then

play(s∗i , s−i) = play(si, s−i), and the claim follows immediately.
Case 2: the play sequence of (s∗i , s−i) goes through some node y in

Ii(x). Since x is consistent with si and T is a game with perfect recall,
y is consistent with si, and so play(si, s−i) reaches y. As before, we have
that (a) ui(si, s−i, y) = ui(si, s−i) . Also, s∗i coincides with s

0
i after node

y, and so (b)ui(s
∗
i , s−i) = ui(s

0
i, s−i, y). Since s

0
i weakly dominates si at

Ii(x), and y is in Ii(x), it follows that (c) ui(s
0
i, s−i, y) ≥ ui(si, s−i, y).

Combining (a), (b) and (c) it follows that ui(s
∗
i , s−i) ≥ ui(si, s−i). This

establishes that si is weakly dominated given S(T ).2

Theorem 7 Let T be a finite game tree with perfect recall. A strategy
profile s is consistent with common reasoning about sequential proper ad-
missibility if and only if s is consistent with common reasoning about ad-
missibility in the strategic form of T . That is, CRPSeq(T ) = CRAd(S(T )).
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Proof. We prove by induction on j that for all j ≥ 0, PSeqj(T ) =
Adj(S(T )).

Base Case, j = 0. Then by definition, PSeq0(T ) = S(T ) = Ad0(S(T )).
Inductive Step: Assume that PSeqj(T ) = Adj(S(T )) and consider

j+1. By inductive hypothesis, T |PSeqj(T ) = T |Adj(S(T )). Now a strat-
egy si is in PSeq

j+1
i (T ) ⇐⇒ si is in PSeq

j
i (T ) and si is sequentially

properly admissible in T |PSeqj(T ). By inductive hypothesis, the first
condition implies that si is in Ad

j(S(T )). By proposition 6 and the facts
that T |PSeqj(T ) = T |Adj(S(T )) and that all restrictions of T are games
with perfect recall, the second condition implies that si is admissible in
S(T |Adj(S(T ))) = Adj(S(T )). So si is in Ad

j+1(S(T )). Conversely, a
strategy si is in Ad

j+1(S(T )) ⇐⇒ si is in Ad
j(S(T )) and si is admis-

sible in Adj(S(T )). By inductive hypothesis, the first condition implies
that si is in PSeq

j(T ), and the second condition may be restated to
say that si is admissible in S(T |Adj(S(T ))). By proposition 6, the sec-
ond condition then implies that si is sequentially properly admissible in
T |Adj(S(T )) = T |PSeqj(T ). Hence si is in PSeqj+1i (T ). This shows that
PSeqj+1(T ) = Adj+1(S(T )), and completes the proof by induction.2

proposition 8 For all finite games G with pure strategy profiles S,CRAd(S) 6=
∅.

Proof. The admissible elements in Sji survive at each iteration j ,
for each player i, and there always is a admissible element in each Sji

since each Sji is finite. Hence S
j 6= ∅ for any j, and so S

P
i∈N |Si−1| =

CRAd(S) 6= ∅.2
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