
Machine Learning manuscript No.
(will be inserted by the editor)

Learning Directed Relational Models With Recursive
Dependencies

Oliver Schulte and Hassan Khosravi
Tong Man
oschulte@cs.sfu.ca, hkhosrav@cs.sfu.ca,
mantong01@gmail.com

Abstract Recently, there has been an increasing interest in generative models
that represent probabilistic patterns over both links and attributes. A common
characteristic of relational data is that the value of a predicate often depends on
values of the same predicate for related entities. For directed graphical models,
such recursive dependencies lead to cycles, which violates the acyclicity constraint
of Bayes nets. In this paper we present a new approach to learning directed rela-
tional models which utilizes two key concepts: a pseudo likelihood measure that is
well defined for recursive dependencies, and the notion of stratification from logic
programming. An issue for modelling recursive dependencies with Bayes nets are
redundant edges that increase the complexity of learning. We propose a new normal
form format that removes the redundancy, and prove that assuming stratification,
the normal form constraints involve no loss of modelling power. Emprirical evalu-
ation compares our approach to learning recursive dependencies with undirected
models (Markov Logic Networks). The Bayes net approach is orders of magni-
tude faster, and learns more recursive dependencies, which lead to more accurate
predictions.

1 Introduction: Relational Data and Recursive Dependencies

Relational data are very common in real-world applications, ranging from social
network analysis to enterprise databases. A phenomenon that distinguishes rela-
tional data from single-population data is that the value of an attribute for an
entity can be predicted by the value of the same attribute for related entities; this
phenomenon has been called a “nearly ubiquitious characteristic” of relational
datasets [1, Sec.1]. For example, whether individual a smokes may be predicted

Supported by a Discovery Grant from the Natural Sciences and Engineering Research Council
of Canada. We are indebted to reviewers of the ILP conference and the Machine Learning
journal for helpful comments.

School of Computing Science
Simon Fraser University
Vancouver-Burnaby, B.C., Canada

2

by the smoking habits of a’s friends. This pattern can be represented by clausal
notation such as Smokes(X)← Smokes(Y),Friend(X ,Y).

Different subfields concerned with relational data have introduced different
terms for this phenomenon. From a logic programming perspective, it is natu-
ral to speak of a recursive dependency, where a predicate depends on itself. In
statistical-relational learning, Jensen and Neville introduced the term relational
autocorrelation in analogy with temporal autocorrelation [2,1]. In multi-relational
data mining, such dependencies are found by considering self-joins where a table is
joined to itself [3]. We will use both the terms recursive dependency and autocor-
relation. The former emphasizes the format of the rules we consider, whereas the
latter distinguishes the probabilistic dependencies we model from deterministic
logical entailment.

In this paper we investigate a new approach to learning recursive dependencies
with Bayes nets, specifically Poole’s Parametrized Bayes Nets (PBNs) [4]; however,
our results apply to other directed relational models as well, such as Probabilis-
tic Relational Models (PRMs) [5] and Bayes Logic Programs (BLPs) [6]. Two
key difficulties are well known for learning recursive dependencies using directed
models.

(1) Recursive dependencies lead to cyclic dependencies among ground facts [7–
9]. The cycles make it difficult to define a model likelihood function for observed
ground facts in the data, which is an essential component of statistical model
selection. To define a model likelihood function for Bayes net search, we utilize
Schulte’s recent relational Bayes net pseudo likelihood [10] that measures the fit
of a PBN to a relational database and is well-defined even in the presence of
recursive dependencies. The recent efficient learn-and-join algorithm [11] searches
for models that maximize the pseudo likelihood. In this paper we evaluate the
pseudo likelihood approach on datasets with strong autocorrelations.

(2) A related problem is that defining valid probabilistic inferences in cyclic
models is difficult. To avoid cycles in the ground model while doing inference,
Khosravi et al. proposed converting a learned Bayes net to an undirected model
using the standard moralization procedure [11]. In graphical terms, moralization
connects all co-parents of a node, then omits edge directions. Inference with recur-
sive dependencies can then be carried out using Markov Logic Networks (MLNs),
a prominent relational model class that combines the syntax of logical clauses with
the semantics of Markov random fields [8]. The moralization approach combines
the efficiency and scalability of Bayes net learning with the high-quality inference
procedures of MLNs.

(3) A third problem that we observed in research with autocorrelation datasets
is that the repetition of predicates causes additional complexity in learning if each
predicate instance is treated as a separate random variable. For example, suppose
that the dependence of smoking on itself is represented in a Bayes net with a
3-node structure

Smokes(Y)→ Smokes(X)← Friend(X ,Y).

Now suppose that we also include a binary attribute Cancer that indicates whether
a person has cancer or not. Then a Bayes net learner would potentially consider two
edges, Smokes(X)→ Cancer(X) and Smokes(Y)→ Cancer(Y). If there is in fact
a statistical dependence of cancer on smoking, then each of these edges correctly

3

represents this dependency, but one of them is redundant, as the logical variables
X, Y are interchangeable placeholders for the same domain of entities. We propose
a normal form for Parametrized Bayes nets that eliminates such redundancies:
For each function/predicate symbol, designate one node as the main node. Then
constrain the Bayes net such that only main nodes have edges pointing into them.
In the example above, if Cancer(X) is the main functor for Cancer , the edge
Smokes(Y) → Cancer(Y) is forbidden. We prove that this constraint incurs no
loss of expressive power in the following sense: if a Bayes net B is stratified, then
there is a Bayes net B

�
in main functor format such that B and B

�
induce the

same ground graph for every relational database instance. We show how the learn-
and-join algorithm can be extended to incorporate this constraint.

We compared our learning algorithms with two state-of-the-art Markov Logic
Network methods using public domain datasets The pseudo likelihood algorithm
with main functor format is orders of magnitude faster, and learns more recursive
dependencies, which lead to more accurate predictions.

Paper Organization. We review the relevant background and define our notation.
We prove theoretical results regarding relational autocorrelation: the first gives
a necessary and sufficient condition for a ground Parametrized Bayes net to be
acyclic, the second is the normal form theorem mentioned. We describe the normal
form extension of the learn-and-join algorithm. Our simulations evaluate the ability
of the extended algorithm to learn recursive dependencies, compared to Markov
Logic Network learner.

Contributions. The main contributions may be summarized as follows.

1. A new formal form theorem for Parametrized Bayes nets that addresses redun-
dancies in modelling autocorrelations.

2. An extension of the learn-and-join algorithm for learning Bayes nets that in-
clude autocorrelations.

3. An evaluation of the pseudo-likelihood measure [10] for learning autocorrela-
tions.

2 Related Work.

Parametrized Bayes nets (PBNs) are a basic statistical-relational model due to
Poole [4]. PBNs utilize the functor concept from logic programming to connect
logical structure with random variables.

Bayes Net Learning for Relational Data. Adaptations of Bayes net learning
methods for relational data have been considered by several researchers [11,12,
7,13,6]. Issues connected to learning Bayes nets with recursive dependencies are
discussed in detail by Ramon et al. [7]. Early work on this topic required ground
graphs to be acyclic [6,13]. For example, Probabilistic Relational Models allow
dependencies that are cyclic at the predicate level as long as the user guarantees
acyclicity at the ground level [13]. A recursive dependency of an attribute on itself
is shown as a self loop in the model graph. If there is a natural ordering of the
ground atoms in the domain (e.g., temporal), there may not be cycles in the ground
graph; but this assumption is restrictive in general. The generalized order-search

4

of Ramon et al. instead resolves cycles by learning an ordering of ground atoms. A
basic difference between our work and generalized order search is that we focus on
learning at the predicate level. Our algorithm can be combined with generalized
order-search as follows: First use our algorithm to learn a Bayes net structure at
the predicate/class level. Second carry out a search for a good ordering of the
ground atoms. We leave integrating the two systems for future work.

Stratified Models. Stratification is a widely imposed condition on logic pro-
grams, because it increases the tractability of reasoning with a relatively small
loss of expressive power. Our definition is very similar to the definition of local
stratification in logic programming [14]. The difference is that levels are assigned
to predicates/functions rather than ground literals, so the definition does not need
to distinguish positive from negative literals. Related ordering constraints appear
in the statistical-relational literature [15,13].

3 Background and Notation

We define the target model class of Parametrized Bayes nets. Then we briefly
discuss the problems arising from cyclic dependencies that have been addressed in
our previous work. The next section discusses the redundancy problem that has
not been previously addressed.

3.1 Bayes Nets for Relational Data

We follow the original presentation of Parametrized Bayes nets due to Poole [4].
A functor is a function symbol or a predicate symbol. In this paper we dis-
cuss only functors with a finite range of possible values. A functor whose range
is {T ,F} is a predicate, usually written with uppercase letters like P, R. A
parametrized random variable or functor node or simply fnode is of the
form f(X1, . . . , Xk) = f(X) where f is a functor and each first-order variable Xi is
of the appropriate type for the functor. If a functor node f(τ) contains no variable,
it is ground node. An assignment of the form f(τ) = a, where a is a constant in
the range of f , is an atom; if f(τ) is ground, the assignment is a ground atom.
A population is a set of individuals, corresponding to a domain or type in logic.
Each first-order variable X is associated with a population. An instantiation or
grounding for a set of variables X1, . . . , Xk assigns to each variable Xi a constant
from the population of Xi. Getoor and Grant discuss the applications of function
concepts as a unifying language for statistical-relational modelling [16].

Figure 1 shows a simple database instance in the E-R format [8] and the ground
atoms in functor notation. The results in this paper extend to functors built with
nested functors, aggregate functions [17], and quantifiers; for the sake of notational
simplicity we do not consider more complex functors explicitly. A table join of
two or more tables contains the rows in the Cartesian products of the tables
whose values match on common fields. In logical terms, a join corresponds to a
conjunction [18].

A Bayes net structure is a directed acyclic graph (DAG) G, whose nodes
comprise a set of random variables. A family is a child node together with its
parents. A Bayes net (BN) is a directed acyclic graph with conditional probability

5

Fig. 1 Left: A simple relational database instance. Right: The ground atoms for the database,
and their values as specified by the database, using functor notation.

Fig. 2 A Parametrized Bayes Net and its grounding for two individuals a and b. The double
arrow↔ is equivalent to two directed edges, hence a cycle between Smokes(a) and Smokes(b).

parameters. A Parametrized Bayes Net (PBN) is a Bayes net whose nodes
are functor nodes. A ground PBN B is a directed graph derived from B by
instantiating the variables in the functor nodes in B with all possible constants.
Figure 2 illustrates a Parametrized Bayes Net for the dataset in Figure 1 and its
grounding. In what follows, we often refer to PBNs simply as Bayes Nets.

3.2 Relational Pseudo-Likelihood Measure for Bayes Nets

Score-based learning algorithms for Bayes nets require the specification of a nu-
meric model selection score that measures how well a given Bayes net model fits
observed data. A common approach to defining a score for a relational database is
known as knowledge-based model construction [19–22]. The basic idea is to consider
the ground graph for a given database, illustrated in Figure 2. A given database
like the one in Figure 1 specifies a value for each node in the ground graph. Thus
the likelihood of the Parametrized Bayes net for the database can be defined as
the likelihood assigned by the ground graph to the facts in the database following
the usual Bayes net product formula.

In the presence of recursive dependencies, the grounding approach runs into
the cyclicity problem: As illustrated in Figure 2, the ground graph may contain a
cycle. It is well-known that such cycles arise in the presence of self-relationships
that relate entities of the same type [23] (e.g., Friend is a self-relationship that
relates one person to another). Schulte [10] proposed a way to measure the fit of
a Bayes net model to relational data that does not require acylicity: the idea is to
consider a random grounding of the 1st-order variables in the Parametrized Bayes

6

Γ X Y F(X,Y) S(X) S(Y) C(Y) P γ
B ln(P γ

B)
γ1 Anna Bob T T T F 0.105 -2.254
γ2 Bob Anna T T T T 0.245 -1.406
γ3 Anna Anna F T T T 0.263 -1.338
γ4 Bob Bob F T T F 0.113 -2.185

Table 1 The computation of the random grounding pseudo likelihood for the Bayes net of
Figure 2 and the database of Figure 1. Each row is a simultaneous grounding of all 1st-order
variables in the Bayes net. The values of functors for each grounding defines an assignment of
values to the Bayes net nodes. The Bayes net assigns a likelihood for each grounding using the
standard product formula. The rounded numbers shown were obtained using the CP parame-
ters of Figure 2 together with PB(Smokes(X) = T) = 1 and PB(Friend(X ,Y) = T) = 1/2 ,
chosen for easy computation. The pseudo log-likelihood is the average of the log-likelihoods
for each grounding, given by −(2.254 + 1.406 + 1.338 + 2.185)/4 ≈ −1.8.

net, rather than a complete grounding. The pseudo log-likelihood is defined as
follows.

1. Randomly select a grounding for all 1st-order variables that occur in the Bayes
Net. The result is a ground graph with as many nodes as the original Bayes
net.

2. Look up the value assigned to each ground node in the database. Compute the
log-likelihood of this joint assignment using the usual product formula; this
defines a log-likelihood for the random instantiation.

3. The expected value of this log-likelihood is the pseudo log-likelihood of the
database given the Bayes net.

Table 1 shows the computation of the pseudo likelihood assigned to our toy
database by the Bayes net of Figure 2. A naive computation of the pseudo log-
likelihood involves enumerating all possible groundings of the 1st-order Bayes net,
which is infeasible for realistic population sizes. However, there is an equivalent
tractable closed-form expression [10, Prop. 2]. The closed form is almost exactly
the same as the standard log-likelihood for a Bayes net given a single data table,
except that row counts in the data table are replaced by event frequencies in
the database. Schulte shows that the learn-and-join algorithm [11] (implicitly)
maximizes the pseudo-likelihood [10].

3.3 Inference and Moralization

In the presence of cycles, the ground graph does not provide a valid basis for prob-
abilistic inference. Several researchers advocate the use of undirected rather than
directed models because cycles do not arise with the former [8,9,1]. Undirected
Markov random fields are therefore important models for inference with relational
data. The recently introduced moralization approach [11] is essentially a hybrid
method that uses directed models for learning and undirected models for inference.

Bayes net graphs can be converted to undirected Markov net graphs through
the standard moralization method [8, 12.5.3]: Connect (“marry”) all co-parents,
then omit edge directions. We refer to the result of this conversion as a Moralized
Bayes Net. Figure 3 shows the Moralized Bayes Net of Figure 2. Valid proba-
bilistic inferences can then be defined in terms of the ground Markov network, also
shown in Figure 3.

7

Fig. 3 The moralized Bayes net of Figure 2 and its ground Markov network for the database
of Figure 1.

Pedro Domingos has connected Markov random fields to logical clauses by
showing that 1st-order formulas can be viewed as templates for Markov random
fields whose nodes comprise ground atoms that instantiate the formulas. Markov
Logic Networks (MLNs) are presented in detail by Domingos and Richardson
[8]. The qualitative component or structure of an MLN is a finite set of formulas
or clauses {φi}, and its quantitative component is a set of weights {wi}, one for
each clause. The Markov Logic Network corresponding to a Moralized Bayes net
simply contains one conjunctive clause for each possible state of each family. Thus
the Markov Logic Network for a moralized PBN contains a conjunction for each
conditional probability specified in the Bayes net. For converting the Bayes net
conditional probabilities to MLN clause weights, Domingos and Richardson suggest
using the log of the conditional probabilities as the clause weight [8, 12.5.3]. This
is the standard conversion for propositional Bayes nets. Figure 3 illustrates the
MLN clauses obtained by moralization using log-probabilities as weights.

4 Stratification and Recursive Dependencies

In this section we first consider analytically the relationship between cycles in a
ground Bayes net and orderings of the functors that appear in the nonground
Bayes net. It is common to characterize a Logic Program by the orderings of the
functors that the logic program admits [24]; we adapt the ordering concepts for
Bayes nets. The key ordering concept is the notion of a level mapping. We apply
it to Bayes nets as follows.

Definition 1 Let B be an Parametrized Bayes net. A level mapping assigns to
each functor f in B a nonnegative integer level(f).

– A Bayes net is strictly stratified if there is a level mapping such that for
every edge f(τ)→ g(τ), we have level(f) < level(g).

– A Bayes net is stratified if there is a level mapping such that for every edge
f(τ)→ g(τ), we have level(f) ≤ level(g).

Strict stratification corresponds to the concept of a hierarchical rule set [24].
Since it implies that one fnode cannot be an ancestor of another fnode with the
same functor, strict stratification rules out recursive clauses. Stratification with
a weak inequality, by contrast, does allow the representation of autocorrelations.
Stratification is a widely imposed condition on logic programs, because it increases

8

the tractability of reasoning with a relatively small loss of expressive power [24,
Sec.3.5],[14]. We next show that strict stratification characterizes the absence of
cycles in a ground Bayes net. The proof is in Section 8.

Proposition 1 Let B be a Parametrized Bayes net, and let D be a database in-
stance such that every population (entity type) has at least two members. Then the
ground graph B for D is acyclic if and only if the Bayes net B is strictly stratified.

This result shows that cyclic dependencies arise precisely when a node asso-
ciated with one functor is an ancestor of another node associated with the same
functor.1 This in turn is exactly the graphical condition associated with recursive
dependencies, which means that recursive dependencies and cyclic dependencies
are closely connected phenomena.

While stratified Bayes nets have the expressive power to represent autocorre-
lations, there is potential for additional complexity in learning if each functor is
treated as a separate random variables. We discuss this issue in the next subsection
and propose a normal form constraint for resolving it.

4.1 Stratification and the Main Functor Node Format

Fig. 4 A stratified Bayes net with different parent predictors for Smokes(X) and Smokes(Y),
and its grounding for two individuals a and b.

Consider the left Bayes net in Figure 4. If we treat Smokes(X) and Smokes(Y)
as entirely separate variables, learning needs to consider additional edges similar
to those already in the Bayes net, like

Smokes(X)→ Cancer(X)

and
age(Y)→ Smokes(Y).

However, such edges are redundant because the 1st-order variables X and Y are
interchangeable as they refer to the same entity set. In terms of ground instances,
the two edges connect exactly the same ground instances.

Redundant edges can be avoided if we restrict the model class to the main
functor format, where for each function symbol f , there is a main functor node

1 In some statistical-relational models such as PRMs and LBNs, the ground graph is con-
structed somewhat using the known relational context to add fewer edges [13,15]. In that
case strict stratification remains sufficient for acyclicity but may no longer be necessary; see
Section 2.

9

f(τ) such that all other functor nodes f(τ �) associated with the same functor are
sources in the graph, that is, they have no parents. The intuition for this restriction
is that statistically, two functors with the same function symbol are equivalent,
so it suffices to model the distribution of these functors conditional on a set of
parents just once. This leads to the following formal definition.

Definition 2 A Bayes net B is in main functor node form if for every functor
f of B, there is a distinguished functor node f(τ), called the main functor node
for f , such that every other functor node f(τ �), where τ � �= τ , has no parents in
B.

Example. The Bayes net of Figure 4 is not in main functor form because we
have two functor nodes for Smokes with nonzero indegree. The Bayes net in Figure
5 is in main variable format where Smokes(Y) is the main functor for Smokes(X).
In terms of ground instances, the two Bayes nets have exactly the same ground
graph.

Fig. 5 An Bayes net in main functor format where Smokes(Y) is the main functor for
Smokes(X). The ground Bayes net is the same as the ground Bayes net for the graph of
Figure 4.

The next proposition shows that this equivalence holds in general: For any
Bayes net B there is an equivalent Bayes net B� in main functor node form.
This claim is established constructively by showing how the orginal B can be
transformed into B�. The transformation procedure is a conceptual aid, rather than
an algorithm to be used in practice; to build a practical learning algorithm, we
simply restrict the Bayes net candidates to be in main functor form (see Section 5
below). It is easy to see that we can make local changes to the 1st-order variables
such that all child nodes for a given functor are the same. For instance, in the
Bayes net of Figure 4 we can first substitute Y for X to change the edge age(X)→
Smokes(X) into the edge age(Y)→ Smokes(Y). Then we delete the former edge
and add the latter, that is, we make age(Y) a parent of Smokes(Y). Figures 4
and 5 illustrate that the original and transformed Bayes nets have the same ground
graph. However, in general the change of variables may introduce cycles in the
Bayes net. The basis for the next proposition is that if the original Bayes net is
stratified, the transformed functor node graph is guaranteed not to contain cycles.
The proof is in Section 8.

Theorem 1 Let B be a stratified Bayes net. Then there is a Bayes net B� in main
functor form such that for every database D, the ground graph B is the same as
the ground graph B�.

10

4.2 Discussion.

Even if Bayes nets with or without the main functor constraints have the same
groundings, at the variable or class level the two models may not be equivalent. For
instance, the model of Figure 4 implies that age(X) is independent of Friend(X ,Y)
given Smokes(X). But in the model of Figure 5, the node age(Y) is dependent
on (d-connected with) Friend(X ,Y) given Smokes(Y). The transformed model
represents more of the dependencies in the ground graph. For instance, the ground
nodes age(a) and Friend(b, a) are both parents of the ground node Smokes(a),
and hence d-connected given Smokes(a).

In general, the Bayes net that satisfy the main functor constraint feature more
dependencies and nodes with more parents than Bayes nets without. If the depen-
dencies do not exist in the data, the independencies are not captured in the Bayes
net graph, but can be represented in the conditional probability table, or using a
more flexible representation. For instance, in a Bayes Logic Program [6], we may
have two Bayesian clauses2

Smokes(Y)← age(Y)

and
Smokes(Y)← Smokes(X),Friend(X ,Y).

In a Parametrized Bayes Net, the two clauses are effectively merged into a single
clause

Smokes(Y)← age(Y),Smokes(X),Friend(X ,Y).

Fundamentally, the merging occurs because the graphical format does not distin-
guish different sets of parents, not because of the main functor node form.

5 The Learn-and-Join Structure Algorithm With Recursive
Dependencies

Khosravi et al. present the learn-and-join structure learning algorithm. Schulte
shows that the learn-and-join algorithm maximizes the relational pseudo likelihood
score (Section 3.2). The algorithm upgrades a single-table Bayes net learner for
relational learning. It learns dependencies among descriptive attributes conditional
on the existence of a relationship, or a chain of relationships, between them. We
describe the fundamental ideas of the algorithm; for details and pseudocode please
see [11]. The key idea is to build a Bayes net for the entire database by level-wise
search through the table join lattice. The user chooses a single-table Bayes net
learner. The learner is applied to table joins of size 1, that is, regular data tables.
Then the learner is applied to table joins of size s, s + 1, . . ., with the constraint
that the absence or presence of learned edges from smaller join tables is propagated
to larger join tables. These constraints are implemented by keeping a global cache
of forbidden and required edges. Implementing the main functor format simply
requires adding all edges to the forbidden edge cache that do not point to main
functor nodes. Thus the main functor format provides constraints that reduce the
complexity of learning. Algorithm 1 provides pseudocode for the case of a single

2 BLP notation uses | instead of ← for Bayesian clauses.

11

self-relationship R. The presentation for the single-relation case is simpler than for
the multi-relational case and highlights the differences with the previous version of
the learn-and-join algorithm [11]. Extending the algorithm to the multi-relational
case can be done using the lattice search framework; the details were provided in
previous work [11].

Algorithm 1: Pseudocode for structure learning (Single Self-Relationship)

Input: Database D with self-relationship R on entity table E.
Output: PBN graph G for D
Calls: PBN: Any propositional Bayes net learner that accepts edge constraints and a single
table of cases as input.
Notation: PBN(T, Econstraints) denotes the output DAG of PBN. Get-Constraints(G)
specifies a new set of edge constraints, namely that all edges in G are required, and edges
missing between variables in G are forbidden.

1: Add descriptive attributes of E and R to G. {These are the main functor nodes for the
attributes.}

2: Add a duplicate node, for each descriptive attribute of E to G. {The duplicates are
auxilliary nodes, not main functor nodes.}

3: Add a boolean indicator BR for relationship table R to G.
4: Econstraints = ∅ {Required and Forbidden edges}
5: Econstraints += Get-Constraints(PBN(E , ∅)).
6: J := join of R, E, E.
7: MainFunctorConstraints := forbid edges into attribute nodes of E that are not main

functor nodes.
8: Econstraints += MainFunctorConstraints.
9: Econstraints += Get-Constraints(PBN(J , Econstraints).

10: G := Set of all required edges from Econstraints.
11: If there is an edge u→ v from an auxiliary node to a main functor node, add an edge

BR → v to G.
12: Return G.

5.1 Example of Algorithm.

We consider a the self-relationship Friend defined on the People entity set. Figure 6
illustrates the construction visually.

1. Applying the single-table Bayes net learner to the People table may produce
a single-edge graph Smokes(Y)→ Cancer(Y). (Line 5)

2. Then form the join data table

J = Friend �� People �� People

(Line 6). The Bayes net learner is applied to J , with the following constraints.
(a) From the People Bayes net, there must be an edge Smokes(Y)→ Cancer(Y),

since Cancer(Y).
(b) No edges may point into Smokes(X) or Cancer(X), since these are not the

main functor nodes for the functors Smokes and Cancer (Line 8).

The Bayes net learner applied to the join table J then may find an edge Smokes(X)→
Smokes(Y) (Line 9). Since the dependency represented by this edge is valid only

12

!"#$%"&'()

*+#,"-&'() ./01"2&'()

3) 3)

3) 4)

./01"2&'()*+#,"-&'()

425"06&78'()

*&7() .&7() *&'() .&'()

3) 3) 3) 4)

3) 4) 3) 3)

425"06)9:;<)!"#$%")9:;<)!"#$%"))

./01"2&'()*+#,"-&7()

425"06&78'()

*+#,"-&'()

!"#$%")

Fig. 6 The 2-net lattice associated with the DB instance of Figure 1. The figure shows the
data tables associated with the only entity table People and the only relationship table Friend .
The block arrow indicates that the output of a single-table Bayes net learner on the data table
is the Bayes net shown. The dashed line that connects the two edges Smokes(Y)→ Cancer(Y)
indicates that this edge is propagated from the lower-level Bayes net to the higher-level Bayes
net.

for pairs of people that are friends (i.e., conditional on Friend(X ,Y) = T), the
algorithm adds an edge Friend(X ,Y) → Smokes(Y) (Line 11). In this example,
functor node Cancer(X) is disconnected, so the figure does not show it.

Discussion. The learn-and-join algorithm finds a structure that maximizes the
pseudo-likelihood described in Section 3.2 [10]. Khosravi et al. discuss the time
complexity of the basic learn-and-join algorithm and show that the edge-inheritance
constraint essentially keeps the model search space size constant even as the num-
ber of nodes considered grows with larger table joins. For the learn-and-join algo-
rithm, the main computational challenge in scaling to larger table joins is therefore
not the increasing number of columns (attributes) in the join, but only the increas-
ing number of rows (tuples). The main functor constraint contributes further to
decreasing the search space. For instance, suppose that we have k duplicate nodes
and n nodes in total. Then for each duplicate node, there are 2(n− 1) possible di-
rected adjacencies. The main functor constraint eliminates a possible direction for
adjacencies involving duplicate nodes, hence removes k(n−1) directed adjacencies
from consideration.

6 Evaluation

All simulations were done on a QUAD CPU Q6700 with a 2.66GHz CPU and
8GB of RAM. Our code and datasets are available on the world-wide web [25]. We
made use of the following existing implementations.

Single Table Bayes Net Search GES search [26] with the BDeu score as imple-
mented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; [27]).

13

MLN Parameter Learning The default weight training procedure [28] of the Alchemy
package [29], Version 30.

MLN Inference The MC-SAT inference algorithm [30] to compute a probability
estimate for each possible value of a descriptive attribute for a given object or
tuple of objects.

Algorithms. We compared three structure learning algorithms.

MBN An MLN structure is learned using the extended learn-and-join algorithm
(Section 5). The weights of clauses are learned using Alchemy. This method is
called MBN for “moralized Bayes Net” by Khosravi et al. [11].

LHL Lifted Hypergraph Learning [31] uses relational path finding to induce a more
compact representation of data, in the form of a hypergraph over clusters of
constants. Clauses represent associations among the clusters.

LSM Learning Structural Motifs [32] uses random walks to identify densely con-
nected objects in data, and groups them and their associated relations into a
motif.

We chose LSM and LHL because they are the most recent MLN structure
learning methods that can potentially learn recursive dependencies.3

Performance Metrics. We use 3 performance metrics: Runtime, Accuracy (ACC),
and Conditional log likelihood (CLL). Runtime includes structure learning and
parameter learning time. ACC and CLL have been used in previous studies of
MLN learning [34,31]. The CLL of a ground atom in a database given an MLN is
its log-probability given the MLN and the information in the database. Accuracy
is evaluated using the most likely value for a ground atom. For ACC and CLL the
values we report are averages over all attribute predicates. We evaluate the learning
methods using 5-fold cross-validation as follows. We formed 5 subdatabases for
each by randomly selecting entities from each entity table and restricting the
relationship tuples in each subdatabase to those that involve only the selected
entities [11]. The models were trained on 4 of the 5 subdatabases, then tested on
the remaining fold. We report the average over the 5 runs, one for each fold.

Synthetic Data. We manually created a small dataset (about 1000 tuples) for
a University domain [13], including a Friendship self-relationship among students.
The dataset features a strong autocorrelation for the gpa of friends and for the
coffee habits of friends. Table 2 shows the results.

Real-World Data. We use the Mondial Database. This dataset contains data
from multiple geographical web data sources [35]. We follow the modification of
[36], and use a subset of the tables and features. Our dataset includes a self-
relationship table Borders that relates two countries.

Results. Neither of the Markov Logic methods LHL nor LSM discovered any re-
cursive dependencies. In contrast, the learn-and-join algorithm discovered the de-
pendencies displayed in Table 4 using clausal notation. The dependency

religion(X)← continent(X),Border(X ,Y), religion(Y)

3 The gradient boosting algorithm of Khot et al is even more recent, but is restricted to
learn only non-recursive clauses [33].

14

University+ MBN LSM LHL
Time (seconds) 12 1 2941
Accuracy 0.86 0.44 0.47
CLL -0.89 -2.21 -4.68

Table 2 Results on synthetic data.

Mondial MBN LSM LHL
Time (seconds) 50 2 15323
Accuracy 0.43 0.26 0.26
CLL -1.39 -1.43 -3.69

Table 3 Results on Mondial.

Database Recursive Dependency Discovered
University gpa(X)← ranking(X), grade(X, Y), registered(X, Y), F riend(X, Z), gpa(Z)
University coffee(X)← coffee(Y),Friend(X ,Y)
Mondial religion(X)← continent(X),Border(X ,Y), religion(Y)
Mondial continent(X)← Border(X, Y), continent(Y), gdp(X), religion(Y)

Table 4 Dependencies discovered by the autocorrelation extension of the learn-and-join al-
gorithm.

is a real-world example of the merging phenomenon discussed in Section 4.2.
The learn-and-join algorithm analyzes the country table to find the dependency
religion(X) ← continent(X). Intuitively, the continent of a country predicts its
religion. It then joins the Country table with the Borders relationship table to find
the recursive dependency religion(X) ← Border(X ,Y), religion(Y). Intuitively,
the religion of a country is correlated with the religion of its neighbors. As required
by the Bayes net format, the two dependencies are merged to form a single set of
parents continent(X), Border(X, Y), religion(Y).

The predictive accuracy using MLN inference was much better in the moral-
ized model (average accuracy improved by 25% or more). This indicates that the
discovered recursive dependencies are important for improving predictions.

Both MBN and LSM are fast. The speed of LSM is due to the fact that its
rules are mostly just the unit clauses that model marginal probabilities (e.g.,
intelligence(S , 1)).

Main Functor Constraint. Our last set of simulations examines the impact of
the main functor constraint. A common way to learn recursive dependencies in
multi-relational data mining is to duplicate the entity tables involved in a self-
relationship as follows [37,3]. For instance for a self-relationship Friend(U1 ,U2)
with two foreign key pointers to an entity table User , we introduce a second entity
table Useraux , which contains exactly the same information as the original User
table. Then the Friend relation is rewritten as Friend(U1 ,Uaux), where the second
copy of the User table is treated as a different entity table from the original one.
On the duplication approach, the Bayes net learning algorithm treats the variables
U1 and Uaux as separate variables, which we expect would lead to learning valid
but redundant edges.

Figure 7 illustrates this phenomenon on the University dataset. The graph
learned without the main functor constraint is much denser than the graph learned
with the main functor constraint. Without the constraint, the learn-and-join al-
gorithm learns 44 edges, whereas with the constraint, it learns 32 edges. Fig-
ure 7 shows various redundant edge pairs, for example an edge Intelligence(S)→
ranking(S) and Intelligence(Saux)→ ranking(Saux).

Figure 8 shows a similar pattern for the Mondial data. The graph learned
without the main functor constraint is much denser than the graph learned with

15

Fig. 7 Left: A parametrized Bayes net learned for the University database with the main
functor constraint. This prevents auxiliary functor nodes, such as ranking(Saux)from having
parents. As a result, some auxiliary functor nodes have no adjacencies at all and are not
included in the graph. Right: A parametrized Bayes net learned for the University database
without the main functor constraint. The resulting graph is much denser and contains duplicate
edges.

the main functor constraint. Without the constraint, the learn-and-join algorithm
learns 25 edges, whereas with the constraint, it learns 19 edges. Figure 8 shows
various redundant edge pairs, for example an edge govern(C) → population(C)
and govern(Caux)→ population(Caux).

We report the following quantitative measures of the differences.

SLtime(s) Structure learning time in seconds
Numrules Number of clauses in the Markov Logic Network excluding rules with

weight 0.
AvgLength The average number of atoms per clause.
AvgAbWt The average absolute weight value.

Table 5 shows the results for University and the Mondial datasets. Constraint is
the learn-and-join algorithm with the main functor constraint, whereas Duplicate
is the learn-and-join algorithm applied naively to the duplicate tables without the
constraint. As expected, the constraint speeds up structure learning, appreciably
in the case of the larger Mondial dataset. The number of clauses is significantly
less (50-60), while on average clauses are longer. The size of the weights indicates
that the main functor constraint focuses the algorithm on the important rules.
As expected from our theoretical analysis, the redundant edges do not improve
predictive performance.

16

Fig. 8 Left: A parametrized Bayes net learned for the Mondial database with the main func-
tor constraint. This prevents auxiliary functor nodesfrom having parents. As a result, some
auxiliary functor nodes have no adjacencies at all and are not included in the graph. Right:
A parametrized Bayes net learned for the University database without the main functor con-
straint. The resulting graph is much denser and contains duplicate edges.

University+ Constraint Duplicate
SLtime(s) 3.1 3.2
Rules 289 350
AvgLength 4.26 4.11
AvgAbWt 2.08 1.86
ACC 0.86 0.86
CLL -0.89 -0.89

Mondial Constraint Duplicate
SLtime(s) 8.9 13.1

Rules 739 798
AvgLength 3.98 3.8
AvgAbWt 0.22 0.23

ACC 0.43 0.43
CLL -1.39 -1.39

Table 5 Comparison to study the effects of removing Main Functor Constraints.
Left:University+ dataset. Right: Mondial dataset.

7 Conclusion and Future Work

An effective structure learning approach has been to upgrade propositional Bayes
net learning for relational data. We presented a new method for applying Bayes
net learning for recursive dependencies based on a recent pseudo-likelihood score
and a new normal form theorem. The pseudo-likelihood score quantifies the fit of
a recursive dependency model to relational data, and allows us to apply efficient
model search algorithms. A new normal form eliminates potential redundancies
that arise when predicates are duplicated to capture recursive relationships. In
evaluations our structure learning method was very efficient and found recursive
dependencies that were missed by structure learning methods for undirected mod-
els.

17

In our simulations, we considered recursive dependencies among attributes
only. In future work, we aim to apply our results to learning recursive relation-
ships among links (e.g., Friend(X ,Y) and Friend(Y ,Z) predicts Friend(X ,Z)).
Our theoretical results (Proposition 1 and Theorem 1) apply to link dependen-
cies as well. However, as far as implementation goes, the current version of the
learn-and-join algorithm is restricted to dependencies among attributes only.

8 Proofs

Proof Outline for Proposition 1. The result assumes that no functor node contains
the same variable twice. This assumption does not involve a loss of modelling
power because a functor node with a repeated variable can be rewritten using a
new functor symbol (provided the functor node contains at least one variable).
For instance, a functor node Friend(X ,X) can be replaced by the unary functor
symbol Friend self (X).

(⇐) If B is strictly stratified, then so is the ground graph B, using the same
level mapping. Since each child node is ranked less than its parent, there can be
no cycle in B.

(⇒) Suppose that B is not strictly stratified. Then there are distinct fnodes
f(τ), f(τ �) for the same functor such that f(τ) is an ancestor of f(τ �) in B. Since
they are distinct fnodes, they disagree on at least one variable argument. Without
loss of generality, let f(τ) = f(X, ·) and f(τ �) = f(Y, ·), where X �= Y . Pick
any two distinct members a, b of the common population associated X, Y . First
instantiate f(X, ·) as a ground node f(a, ·) and f(Y, ·) as f(b, ·). Then the ground
graph B contains a directed path

f(a, ·)→ · · ·→ f(b, ·).

Second, instantiate f(X, ·) as f(b, ·) and f(Y, ·) as f(a, ·). Then the ground graph
B contains a directed path

f(b, ·)→ · · ·→ f(a, ·).

Therefore the ground graph contains a directed cycle from f(a, ·) to f(b, ·) and
back again, which establishes the claim.

Proof of Theorem 1. This result assumes that functor nodes do not contain con-
stants, which is true in typical statistical-relational models. Let B be a stratified
Bayes net. Consider the first function symbol f at level 0. Enumerate its associated
functors as f(τ 1), . . . , f(τk), such that for every i, j, if i < j, then f(τ i) is not a
descendant of f(τ j) in B. This is possible since B is acyclic. For instance, if functor
f is unary, we can order the associated functor nodes as f(X1) < f(X2) < · · · .

For every edge g(σ)→ f(τ j), where j < k, change the variables in σ to obtain
a term σj such that the edge g(σ) → f(τ j) has exactly the same instantiations
as the edge g(σj) → f(τk). This is possible because the functors contain neither
constants nor repeated variables. For instance, we change an edge

g(X)→ f(X)

18

to get the edge
g(Y)→ f(Y).

Finally, add all edges of the form g(σj)→ f(τk) to B and eliminate all edges
into f(τ j), for j < k. The resulting graph B0 has the same ground graph as B. It is
in main functor format wrt f since f(τk) is the only functor with function symbol
f that may have parents. To see that B0 is acyclic, note that by stratification
f = g, so all new edges are from functors f(τ j) to f(τk). So a cycle in B0 implies
that f(τk) is an ancestor of f(τ j) in B, for j < k, which is a contradiction.

We now repeat the construction for level 1, 2, etc. The resulting graphs B1, B2, . . .
are acyclic because when an edge g(σj) → f(τk) is added, either g is at a lower
level than f , or g = f , therefore g(σj) is not an ancestor of f(τk). After com-
pleting the construction for the highest stratum, we obtain a graph B� in main
functor form whose grounding is the same as that of B, for any database.

References

1. Neville, J., Jensen, D.: Relational dependency networks. [19] chapter 8
2. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational

learning. In: ICML. (2002)
3. Chen, H., Liu, H., Han, J., Yin, X.: Exploring optimization of semantic relationship graph

for multi-relational Bayesian classification. Decision Support Systems 48:1 (July 2009)
112–121

4. Poole, D.: First-order probabilistic inference. In: IJCAI. (2003) 985–991
5. Getoor, L.G., Friedman, N., Taskar, B.: Learning probabilistic models of relational struc-

ture. In: ICML, Morgan Kaufmann (2001) 170–177
6. Kersting, K., de Raedt, L.: Bayesian logic programming: Theory and tool. [19] chapter 10

291–318
7. Ramon, J., Croonenborghs, T., Fierens, D., Blockeel, H., Bruynooghe, M.: Generalized

ordering-search for learning directed probabilistic logical models. Machine Learning 70(2-
3) (2008) 169–188

8. Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational
learning. [19]

9. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data.
In: UAI. (2002) 485–492

10. Schulte, O.: A tractable pseudo-likelihood function for Bayes nets applied to relational
data. In: SIAM SDM. (2011) 462–473

11. Khosravi, H., Schulte, O., Man, T., Xu, X., Bina, B.: Structure learning for Markov logic
networks with many descriptive attributes. In: AAAI. (2010) 487–493

12. Fierens, D., Ramon, J., Bruynooghe, M., Blockeel, H.: Learning directed probabilistic
logical models: Ordering-search versus structure-search. In: ECML. (2007) 567–574

13. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models.
In: In IJCAI, Springer-Verlag (1999) 1300–1309

14. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput. 9(3/4) (1991) 335–364
15. Fierens, D.: On the relationship between logical bayesian networks and probabilistic logic

programming based on the distribution semantics. In: ILP. (2009) 17–24
16. Getoor, L., Grant, J.: Prl: A probabilistic relational language. Machine Learning 62(1-2)

(2006) 7–31
17. Klug, A.C.: Equivalence of relational algebra and relational calculus query languages

having aggregate functions. J. ACM 29(3) (1982) 699–717
18. Ullman, J.D.: Principles of database systems. 2. Computer Science Press (1982)
19. Getoor, L., Tasker, B.: Introduction to statistical relational learning. MIT Press (2007)
20. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge

bases. Theor. Comput. Sci. 171(1-2) (1997) 147–177
21. Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: IJCAI. (1997)

1316–1323

19

22. Wellman, M., Breese, J., Goldman, R.: From knowledge bases to decision models. Knowl-
edge Engineering Review 7 (1992) 35–53

23. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, PRMs, and
plate models. [19]

24. Lifschitz, V.: Foundations of logic programming. Principles of Knowledge Representation,
CSLI Publications (1996)

25. Khosravi, H., Man, T., Hu, J., Gao, E., Schulte, O.: Learn and join algorithm code. URL
= http://www.cs.sfu.ca/~oschulte/jbn/.

26. Chickering, D.: Optimal structure identification with greedy search. Journal of Machine
Learning Research 3 (2003) 507–554

27. The Tetrad Group: The Tetrad project (2008) http://www.phil.cmu.edu/projects/tetrad/.
28. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In: PKDD.

(2007) 200–211
29. Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domingos,

P.: The Alchemy system for statistical relational AI. Technical report, University of
Washington. (2009) Version 30.

30. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic
dependencies. In: AAAI. (2006)

31. Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph lifting.
In: ICML. (2009) 64–71

32. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs. In: ICML.
(2010) 551–558

33. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.W.: Learning markov logic networks via
functional gradient boosting. In: ICDM. (2011) 320–329

34. Mihalkova, L., Mooney, R.J.: Bottom-up learning of Markov logic network structure. In:
ICML, ACM (2007) 625–632

35. May, W.: Information extraction and integration: The mondial case study. Technical
report, Universität Freiburg, Institut für Informatik (1999)

36. She, R., Wang, K., Xu, Y.: Pushing feature selection ahead of join. In: SIAM SDM. (2005)
37. Yin, X., Han, J., Yang, J., Yu, P.S.: Crossmine: Efficient classification across multiple

database relations. In: Constraint-Based Mining and Inductive Databases. (2004) 172–195

