
Machine Learning manuscript No.
(will be inserted by the editor)

Learning Compact Markov Logic Networks With
Decision Trees

Hassan Khosravi and Oliver Schulte ·
Jianfeng Hu · Tianxiang Gao
{hkhosrav, oschulte, jhfu, tga18}@sfu.ca

Abstract Statistical-relational learning combines logical syntax with probabilis-
tic methods. Markov Logic Networks (MLNs) are a prominent model class that
generalizes both first-order logic and undirected graphical models (Markov net-
works). The qualitative component of an MLN is a set of clauses and the quan-
titative component is a set of clause weights. Generative MLNs model the joint
distribution of relationships and attributes. A state-of-the-art structure learning
method is the moralization approach: learn a set of directed Horn clauses, then
convert them to conjunctions to obtain MLN clauses. The directed clauses are
learned using Bayes net methods. The moralization approach takes advantage of
the high-quality inference algorithms for MLNs and their ability to handle cyclic
dependencies. A weakness of moralization is that it leads to an unnecessarily large
number of clauses. In this paper we show that using decision trees to represent
conditional probabilities in the Bayes net is an effective remedy that leads to much
more compact MLN structures. In experiments on benchmark datasets, the deci-
sion trees reduce the number of clauses in the moralized MLN by a factor of 5-25,
depending on the dataset. The accuracy of predictions is competitive with the
models obtained by standard moralization, and in many cases superior.

1 Introduction: Moralization for Relational Data

As relational data are very common in practice, an important goal is to extend
machine learning techniques for them. Several prominent statistical-relational for-
malisms combine logic programming clauses with the statistical interpretation
of graphical models [1–4]. These generative models represent probabilistic pat-
terns over both links/relationships and attributes. To illustrate the connection
between graphical and logical formalisms for directed graphical models, consider
the conditional probability parameters of a Bayes net (BN), which are of the form
P (child value|parent values) = p. These can be translated into Horn clauses of

School of Computing Science
Simon Fraser University
Vancouver-Burnaby, B.C., Canada



2

the form child value ← parent values; p where the head is the assignment of a
value to a child node, and the body specifies an assignment of values to the parent
nodes. Ngo and Haddawy refer to such clauses as p-sentences [5]. In this view, the
qualitative component of a Bayes net is a set of Horn clauses, and the quantitative
component is a set of conditional probabilities, one for the head of each clause. For
undirected models, the qualitative component of a Markov Logic Network (MLN)
is a set of first-order formulas, and the quantitative component is a set of weights,
one for each clause. Domingos and Richardson show how an MLN can be inter-
preted as a template for a Markov random field whose nodes comprise ground
atoms that instantiate the first-order formulas [4]. MLNs have achieved impressive
performance on a variety of relational learning tasks. An open-source benchmark
system for MLNs is the Alchemy package [6].

Directed SRL models face the cyclicity problem: there may be cyclic dependen-
cies between the properties of individual entities. For example, if there is generally
a correlation between the smoking habits of friends, then we may have a situation
where the smoking of Jane predicts the smoking of Jack, which predicts the smok-
ing of Cecile, which predicts the smoking of Jane, where Jack, Jane, and Cecile are
all friends with each other. In the presence of such cycles, the standard Bayes net
product formula no longer provides a valid basis for probabilistic inference. The
difficulty of the cyclicity problem has led Neville and Jensen to conclude that “the
acyclicity constraints of directed models severely limit their applicability to rela-
tional data” [7, p.241]. Several researchers advocate the use of undirected rather
than directed models because cycles do not arise with the former [4,8].

Structure Learning via Moralization. The recently introduced moralization ap-
proach [9] can be seen as a hybrid method that uses directed models for learning
and undirected models for inference. This method learns a directed first-order
Bayes net model for an input relational database. The Bayes net structure is then
converted to an MLN set of clauses using the moralization method, described by
Domingos and Richardson [4, 12.5.3]. In graphical terms, moralization connects
all co-parents that share a child, then omits edge directions. In logical terms, mor-
alization converts the (probabilistic) Horn clauses defined by a Bayes net to con-
junctions of literals. Converting the Bayes net to an undirected model avoids the
cyclicity problem. The learn-and-join algorithm of Khosravi et al upgrades propo-
sitional Bayes net learning to relational data in a very efficient way [9]. Compared
to predecessor MLN learning algorithms on several benchmark datasets, structure
learning was orders of magnitude faster. Moreover, the predictive performance of
the moralized Bayes net models using MLN inference methods was substantially
more accurate.

Because there are many attributes (predicates) in the databases, and most of
them have three possible values or more, there are many conditional probability
parameters in the Bayes net. A disadvantage of the moralization approach is that
it adds a clause for each conditional probability parameter, which produces a
relatively large number of clauses. While this rich structure captures most of the
relevant correlations in the data, the large number of clauses has several drawbacks.
(i) The resulting MLN is harder for a user to understand. (ii) Parameter learning
is slower. (iii) Inference is slower. (iv) Since each clause requires the estimate of
a separate weight parameter, parameter estimates are less accurate. This paper
presents an extension of the moralization approach that produces significantly
smaller MLN structures without sacrificing statistical power.



3

Decision Trees for Representing Local Independencies. As discussed by Kersting
and deRaedt [2, 10.7]), a key factor for efficiently learning a graphical relational
model is to search for associations between functions or predicates, rather than
for associations between function/predicate values or literals. For instance, an al-
gorithm may search for an association between the GPA of a student and the
difficulty of a course she has taken, rather than an association between the lit-
erals (GPA = high) and (difficulty = high). It is well-known that because Bayes
net graphs represent associations between random variables, rather than between
specific values of these variables, they may fail to capture local or context-sensitive
independencies that hold conditional on specific values of the random variables
[10,11]. In the relational setting, this means that when Bayes net graphs represent
associations between functions/predicates, they may not capture local independen-
cies among literals. Thus while model search in the predicate space has efficiency
advantages, it has the disadvantage of missing context-sensitive independencies. A
common way to represent context-sensitive independencies is by augmenting the
Bayes net with decision trees: instead of keeping a conditional probability table
for each node of the Bayes net, learn a decision tree that predicts the probability
of a child node value given values for its parents [10–12,3]. Such trees are also
called probability estimation trees. The main advantages of decision trees for re-
lational models are as follows. (i) Many methods have been developed for learning
decision trees that produce probability estimates [13–16]. (ii) Each tree branch
corresponds to a conjunction of literals and is straightforwardly converted to an
MLN clause. We refer to this conversion as context-sensitive moralization.
Figure 1 illustrates the system architecture for context-sensitive moralization.

Fig. 1 System Architecture for context-sensitive moralization: learning a compact Markov
Logic Network from an input relational database.

Learning Decision Trees for Local Independencies. Given a fixed Bayes net struc-
ture, the conditional distribution of a child node v given a value assignment to its
parent nodes can be learned from local statistics that involve only the family of v,
which comprises v together with its parents. Our approach is to apply a standard
propositional decision tree learner, which can be chosen by the user, to a data table
that represents the local family statistics from the input observed database. Since
propositional decision tree learners are applied “as is”, our approach leverages the
speed of propositional decision tree learning to achieve fast relational learning. The
data table is formed by a relational join that involves only links and attributes that
appear in the child node or its parents. In logical terms, the table is constructed
from the tuples (groundings) that satisfy an assignment of values to the family of
v. The resulting decision tree compactly models the conditional frequency, in the
input database, of a child node value given an assignment of values to its parents.



4

Evaluation. We compared our learning algorithms with several state-of-the-art
methods using public domain datasets (MovieLens, Mutagenesis, Mondial, Hep-
atitis). Decision tree pruning is fast and very effective in reducing the number of
MLN clauses, by a factor of 5-25 depending on the dataset. The comparison with
the unpruned moralized models and with LSM [17] and LHL [18],state-of-the-art
MLN structure learning methods, indicates that predictive accuracy with decision
trees is competitive and in many cases superior.

Limitations. We outline limitations of our current system. These limitations are
not fundamental to context-sensitive moralization; we leave extensions that ad-
dress them for future work. The main limitation of our current algorithm is that
it does not find associations between links, for instance that if a professor advises
a student, then they are likely to be coauthors. In the terminology of Probabilistic
Relational Models [1], our model addresses attribute uncertainty, but not exis-
tence uncertainty (concerning the existence of links). A related limitation is that
the algorithm does not consider associations between attributes conditional on the
absence of a relationship.

Another limitation is that we do not propose a new weight learning method,
so we use standard Markov Logic Network methods for parameter learning after
the structure has been learned. While these methods find good parameter settings,
they are slow.

In this paper we first learn a Bayes net structure and then use decision tree
learning to obtain a more compact parametrization of the fixed net structure.
Friedman and Goldszmidt [11] provide evidence that integrating decision tree
learning with the Bayes net graph search leads to more accurate Bayes net models
than applying decision tree learning after model search.

Contributions. The main contribution of the paper is to show that decision tree
learning algorithms can be combined with Bayes nets to learn a compact set of
clauses for relational data. The method is compared to other Markov Logic Net-
work structure learning methods on 4 benchmark databases.

Paper Organization. We review related work, then background and notation. We
show how the learn-and-join moralization algorithm can be combined with proba-
bility estimation trees. Different structure learning algorithms are compared with
and without decision tree pruning on four relational databases, in terms of pro-
cessing speed, model complexity, and model accuracy.

2 Additional Related Work

Bayes nets and Decision Trees. For nonrelational data, the use of decision trees has
been long established to reduce the number of parameters after a Bayes net struc-
ture has been learned [10], [11, Sec.1]. Friedman and Goldszmidt use minimum
description length as an objective function for Bayes net+decision tree learning
[11,19], which is motivated by the goal of obtaining a compact representation of
conditional probabilities. In their work on propositional data, as in ours on rela-
tional data, the important feature of decision trees is their capacity for information
compression, rather than their discriminatory power for classification.



5

We use Parametrized Bayes Nets [20] as a relatively straightforward exten-
sion of Bayes nets for relational data. While the combination of Parametrized
Bayes nets with decision trees appears to be new, several previous statistical-
relational formalisms use decision trees for compact representation of conditional
probabilities. Getoor, Taskar and Koller used decision trees to augment Statistical-
Relational Models [12]. The join-based syntax and semantics of Statistical-Relational
Models are different from the logic-based syntax and template grounding semantics
of Parametrized Bayes nets and MLNs. Logical Bayesian Networks [3] use decision
trees to represent conditional probability parameters. The main difference with
our use of decision trees is that the decision tree branches are interpreted as exis-
tentially quantified conjunctions of literals as in Tilde [21], which is different from
the grounding semantics of MLN formulas.

Relational Dependency Networks. Dependency Networks (DNs) were intro-
duced by Heckerman et al. as a graphical model that combines aspects of both
Bayes nets and Markov nets [22]. Dependency networks approximate a joint dis-
tribution as the product of conditional probabilities of each node given its Markov
blanket (which renders the node conditionally independent of all others). In con-
trast to DNs, the parameters of Bayes nets are conditional probabilities for a node
given its parents, which do not render a node independent of all others (except
for nodes without children). Another difference between BNs and DNs is that
the acyclicity constraint of BNs implies the existence of a topological ordering of
the nodes, whereas nodes in a DN are unordered. For further discussion of the
relationships between BNs, MNs and DNs see [22].

As a solution to the cyclicity problem, Neville and Jensen proposed upgrading
Dependency Networks for relational data [23]. The differences between BNs and
DNs in the propositional case carry over to Parametrized Bayes nets and Relational
Dependency Networks [24]. As a consequence, propositional Bayes net learning
algorithms cannot be applied for learning Relational Dependency Networks. In-
stead, learning algorithms for Relational Dependency Networks have been based on
learning independent conditional probability models for each node. In particular,
Neville and Jensen use relational probability trees for learning conditional prob-
abilities in Relational Dependency Networks [23]; these decision trees require the
specification of aggregate functions. Natarajan et al. propose the use of functional
gradient boosting to learn such trees [25]. Functional gradient boosting has also
been used to learn relational regression trees that are converted to MLN clauses
[26], similar to our moralization approach. We compare relational regression tree
learning with Bayes net+decision tree learning in Section 5.3 below, after we have
presented the details of our algorithm.

Kok and Domingos [17] emphasize the importance of learning long clauses for
relational models. In principle, the moralization approach can learn arbitrarily
long clauses. In our simulations, the moralization method produces substantially
longer clauses than the MLN comparison learners.

3 Background Concepts

Our work combines concepts from relational databases, graphical models, and
Markov Logic networks. As much as possible, we use standard notation from these



6

different areas. We begin with logical and relational concepts, then add terminology
from graphical models.

3.1 Functors and Relational Schemas

A functor is a function symbol or a predicate symbol. Each functor has a set of
values (constants) called the range of the functor. A functor whose range is {T ,F}
is a predicate, usually written with uppercase letters like P, R. A parametrized
random variable is of the form f(τ1, . . . , τk) where f is a functor and each term
τi is a first-order variable or a constant. We also refer to parametrized random
variables as functor nodes, or for short fnodes.1 Unless the functor structure
matters, we refer to a functor node simply as a node. An assignment of the form
f(τ1, . . . , τk) = a, where a is a constant in the range of f , is a literal [28]. In
predicate notation a literal is written as f(τ1, . . . , τk, a). A formula is formed by
Boolean combinations of literals; we refer to a conjunction of literals simply as a
conjunction. Thus conjunctions are equivalent to assignments of values to functor
nodes. We follow the notation of Prolog and of statistics and write l1, l2, . . . , ln for
the conjunction l1 ∧ l2 ∧ · · · ∧ ln of literals.

A population is a set of individuals, corresponding to a domain or type in
logic. Each first-order variable X is associated with a population. An instantia-
tion or grounding for a set of variables X1, . . . , Xk assigns a constant ci from
the population of Xi to each variable Xi. The database frequency of a for-
mula in a relational database D is the number of instantiations of the population
variables in the functor nodes that satisfy the assignment in the database, di-
vided by the number of all possible instantiations. We denote this empirical joint
distribution by PD. The conditional frequency PD(φ1|φ2), where φ1, φ2 are for-
mulas, is defined in terms of joint conjunction frequencies in the usual way as
PD(φ1|φ2) ≡ PD(φ1 ∧ φ2)/PD(φ2) [29].

Getoor and Grant discuss the applications of function concepts for statistical-
relational modelling in detail [30]. The functor formalism is rich enough to rep-
resent the constraints of an entity-relationship (ER) schema [31] via the follow-
ing translation: Entity sets correspond to populations, descriptive attributes to
functions, relationship tables to predicates, and foreign key constraints to type
constraints on the arguments of relationship predicates. A table join of two or
more tables contains the rows in the Cartesian products of the tables whose values
match on common fields. A table join corresponds to a conjunction [31].

3.2 Graphical Models for Relational Data: Parametrized Bayes Nets and Markov
Logic Networks.

A Bayes net structure [32] is a directed acyclic graph G, whose nodes comprise
a set of random variables denoted by V . The family of a node in a Bayes net com-
prises the node together with its parents. In this paper we consider only discrete
finite random variables. When discussing a Bayes net, we refer interchangeably

1 The term “functor” is used as in Prolog [27]. Functor nodes go by different names in
different contexts: In Prolog, the equivalent of a functor node is called a “structure”, in Bayes
Logic Programs, a “Bayesian atom” [2], and simply “atom” by Chiang and Poole [28].



7

to its nodes or its variables. A Bayes net (Bayes net) is a pair �G, θG� where θG

is a set of parameter values that specify the probability distributions of children
conditional on assignments of values to their parents. Often the conditional prob-
abilities are specified in a conditional probability table. Parametrized Bayes
Nets form a basic SRL model class introduced by Poole [20]. A Parametrized
Bayes Net (PBN) is a Bayes net whose nodes are functor nodes.

The qualitative component or structure of a Markov Logic Network (MLN)
is a finite set of first-order formulas or clauses {φi}, and its quantitative component
is a set of weights {wi}, one for each clause [4]. Below we follow the Alchemy system
and write MLN formulas using predicate notation rather than functor notation.
MLN inference uses a log-linear model to assign a probability to each possible
database (interpretation). The log-likelihood of a database is the weighted sum of
the number of satisfying groundings for each clause, plus a database-independent
normalization constant.

Moralization converts a directed acyclic graph into an undirected model. To
convert a PBN into an MLN using moralization, add a clause to the MLN for each
assignment of values to a child and its parents [4, Sec. 12.5.3]. The MLN for a
moralized Bayes net B thus contains a clause for each conditional probability in
B [4].

3.3 Examples

Table 1 shows a university relational schema. Figure 2 shows a small relational
database instance for this schema for illustration.

Student(Name, intelligence, ranking)
Course(Number , difficulty, rating)
Professor (Name, teaching ability, popularity)
Registration (S .name, C .number , grade, satisfaction)
RA (S .name, P .name, salary, capability)

Table 1 A relational schema for a university domain. Key fields are underlined.

In the schema of Table 1 the attribute ranking of the Student table can be
represented as a functor node ranking(S) where S is a first-order variable ranging
over the population of students. The range of this functor node comprises 3 values,
1, 2, 3 that represent different ranking levels. The Registration relationship can
be represented as a Boolean functor node, or predicate, Registered(S ,C ), whose
range is is {T ,F}. The functor node grade(S ,C ) represents the grade of a student
in a course, which is a descriptive attribute associated with a registration link.
Table 2 shows the database frequencies of various conjunctions. An example of a
database conditional probability is

PD(ranking(S) = 1 |RA(S ,P) = T , popularity(P) = 3 ) =
2/9
2/9

= 1 .



8

!"#$%&'#!
()*&! +'#&,,+-&'.&! /)'0+'-!
1).0! 2! 3!
4+*! 5! 3!
6)$,! 3! 5!

!7&-+8#/)9:'!

";')*&! <;'$*=&/! -/)%&! 8)98>).9:'!
1).0! 3?3! @! 3!
1).0! 3?5! A! 5!
4+*! 3?5! @! 3!
4+*! 3?2! @! 3!
6)$,! 3?3! A! 3!
6)$,! 3?5! <! 5!

6/:>&88:/!!

()*&! B:B$,)/+#C!
#&).D+'-!
@=+,+#C!

E,+F&/! 2! 3!
1+*! 5! 3!

!<:$/8&!
($*=&/!! 6/:>! /)9'-! %+G.$,#C!
3?3! E,+F&/! 2! 3!
3?5! H)F+%! 5! 5!
3?2! E,+F&/! 2! 5!

7@!

";()*&! 6;()*&! 8),)/C! .)B)=+,+#C!!

1).0! E,+F&/! I+-D! I+-D!

4+*!! E,+F&/! J&%! J&%!

4+*! 1+*! K:L! J&%!

Fig. 2 A simple relational database instance for the relational schema of Table 1.

Table 2 To illustrate the computation of the frequency of a conjunction formula in the
database example of Figure 2.

Formula #groundings Frequency PD
ranking(S) = 1 2 2/3

ranking(S) = 1 , intelligence(S) = 2 1 1/3
RA(S ,P) = T 3 3/(3 · 3)

RA(S ,P) = T , popularity(P) = 3 2 2/9

Figure 3 shows a Parametrized Bayes net for the schema of Table 1, where
each descriptive attribute and each relationship table (link type) is represented
as a functor node. The Bayes net was learned from an expanded version of the
database in Figure 2 using the learn-and-join algorithm [9] (see Section 5.1). Fig-
ure 4 illustrates the moralization process.

Fig. 3 A Parametrized Bayes net graph for the relational schema of Table 1.



9

Fig. 4 The figure on the left shows a conditional probability table for the functor node
ranking(S) in the Parametrized Bayes net of Figure 3. We use obvious abbreviations for
functors. The range of popularity, intelligence, ranking is {1, 2, 3} and the range of RA =
{True,False}. A tabular representation therefore requires a total of 3× 3× 2× 3 = 54 condi-
tional probability parameters. The figure on the right illustrates the corresponding 54 clauses,
one for each row in the conditional probability table.

4 Augmenting Bayes Nets with Decision Trees

We first discuss decision trees for representing conditional probabilities in Parametrized
Bayes nets, then how to convert the decision tree branches to Markov Logic Net-
work clauses.

4.1 Decision Trees for Conditional Probabilities.

Local or context-sensitive independencies are a well-known phenomenon that
can be exploited to reduce the number of parameters required in a Bayes net.
Suppose that a node X has three binary parents U, V, W . It may be the case that
P (x|u, V, W ) is equal to some constant p1 regardless of the values taken by V and
W. Then the Bayes net requires only 5 parameters rather than 8 as in a tabular
representation. A decision tree can take advantage of local independencies to
compactly represent conditional probabilities [10]. The nodes in a decision tree for
a Parametrized random variable class are parametrized random variables. An edge
that originates in a PRV f(t1, . . . , tk) is labelled with one of the possible values in
the range of f . The leaves are labelled with probabilities for the different possible
values of the class variable. Figure 5 shows a tree with class = ranking(S). In
decision tree research, it is common to term such trees probability estimation trees
to distinguish them from classification trees that select a definite class label at the
leaves. In this paper, we follow the usage in Bayes net research and statistical-
relational learning and refer to probability estimation trees simply as decision
trees.

4.2 Context-sensitive Moralization: Converting Decision Trees to MLN Clauses

A Parametrized Bayes net structure with decision trees can be converted to an
MLN by adding a clause for each complete branch in the tree that is the con-
junction of the literals along the branch. Figure 5 illustrates a decision tree rep-
resentation of the conditional probabilities for the child node ranking(S) and the



10

!"#$%%!&$"'$()*+

,+
-+

.+

/0"1!"&+2+,++34+
/0"1!"&+2-+++,54+
/0"1!"&2.++654+

78(9:)*+

;0%<$+=/>$+

?@?>%0/!#A(9*+ /0"1!"&+2+,++34+
/0"1!"&+2-+++B34+
/0"1!"&2.++C34+

/0"1!"&+2+,++,334+
/0"1!"&+2-+++34+
/0"1!"&2.++34+

,:-+ .+

/0"1!"&+2+,++34+
/0"1!"&+2-+++,334+
/0"1!"&2.++34+

/0"1!"&+2+,++D34+
/0"1!"&+2-+++.34+
/0"1!"&2.++34+

E,++++++++F"#():,*:+70"1()*():,*+
E-++++++++F"#():,*:+70"1()*+():-*+
E.++++++++F"#():,*:+70"1()*+():.*+
EB++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:,*:+70"1()*+():,*+
E5++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:,*:+70"1()*+():-*+
EC++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:,*:+70"1()*+():.*+
ED++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:-*:+70"1()*+():,*+
E6++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:-*:+70"1()*+():-*+
EG++++++++F"#():-*:+78(9:):=/>$*:+9@?(9:-*:+70"1()*+():.*+
E,3+++++++F"#():-*:+78(9:):=/>$*:+9@?(9:.*:+70"1()*+():,*+
E,,+++++++F"#():-*:+78(9:):=/>$*:+9@?(9:.*:+70"1()*+():-*+
E,-+++++++F"#():-*:+78(9:):=/>$*:+9@?(9:.*:+70"1()*+():.*+
E,.+++++++F"#():-*:+78(9:):;0%<$*:+70"1():,*+
E,B+++++++F"#():-*:+78(9:):;0%<$*:+70"1():-*+
E,5++++++F"#():-*:+78(9:):;0%<$*:+70"1():.*+
E,C++++++F"#():.*:+70"1():,*++
E,D++++++F"#():.*:+70"1():-*++++++++++
E,6++++++F"#():.*:+70"1():.*+

Fig. 5 A decision tree that specifies conditional probabilities for the ranking(S) node in
Figure 3 and the corresponding MLN clauses generated from the decision tree . The number
of clauses has been reduced from 54 to 18

clauses corresponding to the complete branches. Comparing Figure 5 with Fig-
ure 4 illustrates how the decision tree representation of the conditional probability
parameters produces fewer clauses than standard moralization shown. In terms
of MLN clauses, pruning decision tree nodes corresponds to merging clauses. A
decision tree model may have branches of different sizes, so the clauses that are
extracted for one child node may vary in the number of predicates.

5 Learning Decision Trees for a Bayes Net Structure

We discuss how the decision tree representation can be combined with a directed
model relational learning method. First we briefly review the learn-and-join algo-
rithm from previous work [9]. The learn-and-join algorithm is the state-of-the-art
structure learning algorithm for Parametrized Bayes nets. We use it to find an ini-
tial Bayes net structure from a relational database. The Bayes net structure is then
augmented with decision trees. The approach of this paper works with any struc-
ture learning algorithm for Parametrized Bayes nets, not just the learn-and-join
algorithm.

5.1 Bayes Net Structure Learning Review: The Learn-and-Join Algorithm

Khosravi et al. present the learn-and-join structure learning algorithm. The algo-
rithm upgrades a single-table Bayes net learner for relational learning. It learns
dependencies among descriptive attributes conditional on the existence of a rela-
tionship, or a chain of relationships, between them. For details and pseudocode
please see [9]. The key idea of the algorithm can be explained in terms of the lat-
tice of relationship table joins. The learn-and-join algorithm builds a Parametrized
Bayes net for the entire database D by level-wise search through the relationship
join lattice. The user chooses a single-table Bayes net learner. The learner is applied



11

to entity tables that involve 0 relationships. Then the learner is applied to relation-
ship joins that involve s = 1, 2, . . . relationship tables linked by foreign key pointers
(matching types). The learned edges from smaller join tables are propagated to
larger join tables. In the example database of Figure 2, the Bayes net learner is ap-
plied to the entity tables Student , Professor ,Course. Then the Bayes net learner
is applied to the Registration table (joined with attribute information from the
Student and Course tables), to the RA table (joined with attribute information
from the Student and Professor tables), and finally to the join of Registration and
RA (joined with attribute information from the Student ,Course,Professor tables).
Schulte [24] provides a theoretical foundation: the learn-and-join algorithm opti-
mizes a pseudo-likelihood function that measures the fit of a Parametrized Bayes
Nets to a given input database. The measure is the expected log-likelihood of a
random instantiation of the first-order variables in the Parameterized Bayes Net.

5.2 Learning Decision Trees for Conditional Probabilities.

For a fixed Parametrized Bayes net structure, we learn a set of decision trees that
represent the conditional probabilities of each node given an assignment of values
to its parents. Our system design is modular and can use any propositional decision
tree learner that estimates class probabilities at the leaves. As the learn-and-join
algorithm applies a Bayes net learner to join tables, we apply the decision tree
learner to the same type of join tables as follows, for each node v in the Bayes net.

1. Form a family join table that combines all functor nodes in its family. This
table is constructed from the set of all groundings that satisfy all literals that
can be formed from the functor nodes in the family, that is, all possible assign-
ments of values to nodes in the family.

2. Omit the ids of entities from the family join table, and apply the decision
tree learner to the remaining columns. The result is a tree that represents, for
each possible assignment of values to the parents of node v, a corresponding
conditional probability in its leaf.

In a generic data table T , the conditional probability PT (child = value|parents =
pa) is the number of rows with child = value and parents = pa, divided by the
number of rows with parents = pa. The family join table is constructed such
that the conditional probability in the table is the number of groundings in the
database that satisfy child = value and parents = pa, divided by the number
of groundings that satisfy parents = pa. Therefore a decision tree learner ap-
plied to the family data table learns a model of the conditional probabilities
PD(child = value|parents = pa) defined by the database distribution PD.

After augmenting the Bayes net structure with decision trees, we convert the
decision tree branches to Markov Logic Network clauses to obtain an MLN struc-
ture. Algorithm 1 summarizes the MLN structure learning algorithm in pseudo
code.

Example. The family join table for the node ranking(S) is the join of the tables
RA,Student ,Professor , followed by projecting (selecting) the attributes ranking ,intelligence,
and popularity . Figure 6 illustrates the join data table for the example database



12

Algorithm 1: Pseudocode for compact MLN structure learning using the
learn-and-join structure learning algorithm with decision trees.

Input: Database instance D
Output: MLN for D
Calls: LearnAndJoin(D): Outputs a DAG G for an input database D.
Calls: Join(V ): Takes in a set of nodes from D and outputs the data join table for the
nodes in V .
Calls: DecisionTree(T , child): A Decision Tree learner that outputs conditional class
probabilities for child given data table T .

1: G = LearnAndJoin(D)
2: for all nodes v in G do
3: vfamily = v + Parents(v)
4: T = Join(vfamily )
5: Treev = DecisionTree(T , v)
6: for all leaf node entries of Treev do
7: Add to MLN M the conjunction that corresponds to the decision tree branch of the

leaf node.
8: end for
9: end for

10: Return MLN M

of Figure 2. This data table provides the satisfying groundings for all literals that
involve the four functor nodes in the family of ranking(S), conditional on the
existence of an RA relationship, that is conditional on RA(S ,P) = T .

!"#$%&'!() *"#$%&'*() +$#,-#.'!() -#/&00-.&#1&'!() 23240$+-/5'*()

!"#$% &'()*+% ,% -% -%

.(/%% &'()*+% 0% -% -%

.(/% !(/% 0% -% 0%

Fig. 6 The join data table for learning a decision tree that represents the conditional
probabilities of ranking(S) given its parents intelligence(S), popularity(P),RA(S ,P), where
RA(S ,P) = T . The tuples shown are the ones from the RA table, joined with the applicable
information from the Professor and Student tables. The last three columns are given as input
data to a propositional decision tree learner, with ranking(S) designated as the class label.

A decision tree learner applied to such a data table might produce the decision
tree shown in Figure 7(left). Since the popularity of a random professor is inde-
pendent of that of a random student, the association between the functor nodes
popularity(P) and ranking(S) depends on the existence of an RA link between
them (i.e., the popularity of a professor predicts the ranking of a student only
if the student is an RA for the professor). To indicate this dependence, we add
the functor node RA(S ,P) as a parent of popularity(P) in the decision tree for
ranking(S). Like most statistical-relational systems [1,33], and like the learn-and-
join algorithm, we consider associations between attributes of two entities only
conditional of the existence of a link between the entities. Therefore there is no



13

branch corresponding to RA(S ,P) = F in the decision tree of Figure 7(right). We
leave as a project for future work learning associations conditional on the absence
of a link between two entities (e.g., an association between the ranking of a stu-
dent and the popularity of a professor given that the student is not an RA for the
professor).

Fig. 7 Left: A decision tree learner applied to an input table like that shown in Figure 6 may
produce this decision tree. Right: The split on the node popularity(P) depends implicitly on
the existence of an RA link between a professor and a student. The output of the decision tree
learner is augmented with a functor node RA(S ,P) to indicate this dependence.

5.3 Discussion.

Two bodies of related work are relevant: how to learn probability estimation trees
for a single table, and how to upgrade a propositional decision tree learner for
relational data. Most work on upgrading decision tree learning for relational data
has been on learning classifiers rather than probability estimation trees.

Learning Probability Estimation Trees. In a seminal paper, Provost and Domingos
observed that algorithms that build decision tree classifiers may not lead to good
class probability estimates, mainly because trees for classification may be too small
[13]. A number of improvements for probability estimation have been suggested,
including the use of local probability models at the leaves of a tree [13–16]. Our
focus in this paper is on whether the decision tree representation is sufficient in
principle to produce more compact Markov Logic Networks; we leave exploring
different tree learners for future work.

Upgrading Propositional Tree Learners. The tree learning approach in this paper
can be viewed as a form of lifted learning, in analogy to lifted probabilistic inference
[20]. Lifted inference uses as much as possible frequency information defined at
the class level in terms of first-order variables, rather than facts about specific
individuals. Likewise, our approach uses frequency information defined in terms of
first-order variables, namely the number of satisfying groundings of a first-order



14

formula, which is provided by the family join table. Applying a propositional
learner to the family join table can be justified theoretically using the random
instantiation pseudo-likelihood measure [24]. Some ILP systems for discriminative
learning, such as FOIL and Linus [34], are also based on the number of groundings
of various clauses, which is similar to the join tables constructed by our algorithm.

Propositionalization approaches use aggregate functions to “flatten” relational
data into a single table. Inductive Logic Programming (ILP) systems learn clauses
that classify an example as positive by logical entailment [34,21]. Typically this
involves the use of existential quantification as an aggregation mechanism. Re-
lational probability trees employ a range of aggregate functions as features for
predicting class probabilities [23]. While Markov Logic networks can be extended
with aggregate functions, the basic log-linear prediction model of MLNs is different
from approaches that use aggregate features for classification.

Gradient Boosting for Relational Regression Trees. A recent method for learning
Markov Logic Networks, developed independently of our work on decision trees,
is functional gradient boosting of regression trees [26]. The basic similarity is that
paths in the regression tree are converted to MLN formulas in a similar manner
to our moralization method. The main differences to our Bayes net approach are
as follows.

Model Class. (i) The leaves of a relational regression tree contain general
weights for the MLN clauses. Hence the tree cannot be interpreted as specify-
ing a conditional probability. (ii) Boosting produces an ensemble of trees for each
node (target predicate), rather than a single tree as in our system.

Learning. (i) Two-class boosting is used, so the learning method can be applied
to Boolean predicates (e.g., relationship literals), but not immediately to multi-
valued attributes, which are the focus of our evaluation.2 (ii) Gradient boosting
performs simultaneously MLN structure and parameter learning, because the re-
gression trees specify both the Markov blanket of a node and the weights of clauses.
In contrast, we apply decision tree learning only to obtain a more compact struc-
ture, and we apply it only to the parents of a target node, not to its entire Markov
blanket (which in a Bayes net includes children and co-parents). This means that
decision trees for different nodes are learned independently of each other. By con-
trast, in the gradient boosting approach, trees learned for one node v produce
clauses that are applied to learning trees for other nodes (namely, those in the
Markov blanket of v).

Since functional gradient boosting is a powerful and very general framework
for regression, a promising topic for future work is to apply gradient boosting for
augmenting a Bayes net with decision trees, by learning a set of decision trees for
a target node v conditional on its parents. While the learned set of decision trees
may not be as easy to interpret as a single one [25, Sec.3.5], the Markov Logic
Network that results from converting the trees is a set of clauses in either case.

2 It is possible to change the data representation so that all attributes are binary, see [35,9,
25].



15

6 Experimental Design

We first discuss the datasets used, then the systems compared, finally the com-
parison metrics.

Datasets. We used 4 benchmark real-world databases. For more details please see
the references in [9] and on-line sources such as [36].

MovieLens Database. This is a standard dataset from the UC Irvine machine
learning repository.

Mutagenesis Database. This dataset is widely used in ILP research. It con-
tains information on Atoms, Molecules, and Bonds between them. We use the
discretization of [9].

Hepatitis Database. This data is a modified version of the PKDD02 Discovery
Challenge database. The database contains information on the laboratory exami-
nations of hepatitis B and C infected patients.

Mondial Database. This dataset contains data from multiple geographical web
data sources. We followed the modification of [37], and used a subset of the tables
and features for fast inference.

Table 3 lists the resulting full database sizes in terms of total number of tuples
and number of ground atoms, which is the input format for Alchemy. We also show
the average values for the functor nodes in the database.

Dataset #tuples #Ground atoms #Values (Average)
Movielens 82623 170143 2.7
Mutagenesis 15218 35973 3.9
Hepatitis 12447 71597 4.4
Mondial 814 3366 4.3

Table 3 Size of full datasets in total number of table tuples and ground atoms. Each de-
scriptive attribute is represented as a separate function, so the number of ground atoms is
larger than that of tuples. The average number of values of the descriptive attributes in each
database is shown. Binary descriptive attributes (e.g., gender) are rare.

Comparison Systems. All simulations were done on a QUAD CPU Q6700 with
a 2.66GHz CPU and 8GB of RAM. Our code and datasets are available on the
world-wide web [36]. We made use of the following existing implementations.

Single Table Bayes Net Search GES search [38] with the BDeu score as imple-
mented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; [39]).

Single Table Decision Tree Learning The J48 program of the Weka package [40],
which implements the C4.5 decision tree algorithm. We used the probability
estimation setting, which turns off pruning and applies the Laplace correction,
as recommended by Provost and Domingos [13].

MLN Parameter Learning The default weight training procedure [41] of the Alchemy
package [6], Version 30.



16

MLN Inference The MC-SAT inference algorithm [42] to compute a probability
estimate for each possible value of a descriptive attribute for a given object or
tuple of objects.

We use the Alchemy parameter learning and the state-of-the art MC-SAT in-
ference method for compatibility with previous studies [43,18,17]. We also carried
out simulations with an exact evaluation of the MLN classification formula given
by Domingos and Richardson [4]. The relative improvement of context-sensitive
vs. standard moralization is similar, but the absolute accuracies are lower, which
is consistent with the findings of previous studies of MLN inference.

Algorithms. We compared four MLN structure learning algorithms.

MBN The structure is learned using the learn-and-join algorithm (Section 5.1).
The weights of clauses are learned using Alchemy. This method is called MBN
for “Moralized Bayes Net” by Khosravi et al. [9]. The learn-and-join algorithm
produces clauses with positive relationship literals only.

MBN + DT The structure is first learned using the learn-and-join algorithm and
then augmented with decision trees using Algorithm 1. As illustrated in Fig-
ure 5, this algorithm produces clauses with positive relationship literals only.
The weights of clauses are learned using Alchemy.

LHL Lifted Hypergraph Learning [18] uses relational path finding to induce a more
compact representation of data, in the form of a hypergraph over clusters of
constants. Clauses represent associations among the clusters.

LSM Learning Structural Motifs [17] uses random walks to identify densely con-
nected objects in data, and groups them and their associated relations into a
motif.

The first two methods compare variants of the moralization method, whereas
the last two are reference methods. We chose LSM and LHL because they are
the most recent MLN structure learning methods that are based on the Alchemy
system.

Performance Metrics. We use 4 performance metrics: Number of Clauses or Pa-
rameters, learning time, Accuracy (ACC), and Conditional log likelihood (CLL).
ACC and CLL have been used in previous studies of MLN learning [18]. The CLL
of a ground atom in a database given an MLN is its log-probability given the MLN
and the information in the database. Accuracy is evaluated using the most likely
value for a ground atom. For ACC and CLL the values we report are averages
over all predicates that represent descriptive attributes. We do not use Area under
Curve (AUC), as it mainly applies to binary values, and most of the attributes in
our dataset are nonbinary. We evaluate the learning methods using two different
schemes.

5-fold cross-validation. We formed 5 subdatabases for each using standard sub-
graph subsampling [44,9], which selects entities from each entity table uni-
formly at random and restricts the relationship tuples in each subdatabase to
those that involve only the selected entities. The models were trained on 4 of
the 5 subdatabases, then tested on the remaining fold. We report the average
over the 5 runs, one for each fold.



17

MBN + DT MBN LSM LHL
MovieLens 39 327 10 NT

Mondial 102 2470 20 25
Mutagen 50 880 13 NT
Hepatitis 120 793 23 27

Table 4 5-fold cross-validation estimate of the number of parameters in learned model.

Learning Curve. To study the learning behavior at different sample sizes, we per-
formed a set of experiments that train the model on N% of the data, where
N ranges from 10 to 100 in step sizes of 10. Results for each sample size are
averages over 10 runs.

7 Evaluation Results

As our aim is to learn more compact structures, we first examine the number of
parameters or clauses learned. Our results indicate that the decision tree represen-
tation leads to substantially more compact models. Learning time measurements
show a significant speed-up in weight learning with the smaller models. Predic-
tive performance is competitive with standard moralization based on conditional
probability tables, in many cases even superior.

7.1 Number of Parameters/Clauses

Table 4 shows the average number of clauses produced by the MLN models using
5-fold cross-validation (so the average is over 5 different measurements). Adding
decision trees to the learn-and-join algorithm leads to much more compact models,
with improvement ratios in the range of 5-25. The LSM algorithm and the LHL
algorithm learn a very small number of clauses most of which are unit or short
clauses. Figure 8 shows the number of parameters learned respectively by LSM,
LHL, and MBN + DT using a Learning Curve scheme. MBN + DT exploits
increasing data to learn a more complex model. LSM and LHL learn almost the
same very small number of clauses independent of the data size. Inspection of
the learned clauses by LSM and LHL shows that the rules are mostly just the
unit clauses that model marginal probabilities (e.g., intelligence(S , I )) [4]. This
indicates underfitting the data, as our measurements of ACC and CLL confirm
(Tables 6, 7 below).

7.2 Learning times

Table 5 shows average times for learning using 5-fold cross-validation. LHL fails to
terminate on two of the datasets and is very slow on the other two datasets. The
learn-and-join structure learning method scales well, even with decision tree learn-
ing added. The computational bottleneck for the two moralization methods is the
weight optimization that uses the relatively slow Alchemy routines. Since decision



18

Fig. 8 MBN + DT learns more clauses when more data is available. LSM and LHL produce a
very small number of clauses that is essentially independent of the data size. The experiments
train the model on N% of the data, where N ranges from 10 to 100 in step sizes of 10.

MBN + DT MBN LSM LHL
MovieLens 22 + 345 15 + 3401 34.03 NT

Mondial 9 + 18 4+ 1168 29.0 11524
Mutagen 18 + 274 12 + 4425 26.47 NT
Hepatitis 21 + 813 15 + 6219 10.94 72452

Table 5 5-fold cross-validation estimate for Average learning times in seconds. Learning times
for the moralization methods are given as (structure learning time + weight learning time).

trees reduce the number of model parameters, they speed up weight optimization by
a factor of about 10. So a small increase in the complexity of structure learning
achieves a very significant decrease in the complexity of parameter learning.

To further examine the scalability of the moralization algorithms, we use a
Learning Curve design. Figure 9 indicates that the weight learning time for MBN
increases exponentially with the size of the dataset, but adding decision trees leads
to much better scaling. The LSM method (not shown) is very fast for all dataset
sizes, because it produces a small set of short rules that is essentially independent
of the dataset size. This is mostly due to under-fitting as indicated by the number
of parameters in LSM models, and by the predictive accuracy results, which we
report next.

7.3 Predictive Performance

We first discuss accuracy, then conditional log-likelihood.

Accuracy. The average accuracy of the two learn-and-join methods is quite similar,
and about 10-15% higher than that of LSM and LHL. The accuracy numbers are



19

Fig. 9 While structure learning is fast using the learn-and-join algorithm, the weight learning
time for standard moralization method MBN increases exponentially with the size of the
database. Context-sensitive moralization with decision trees scales much better (MBN+DT).
The experiments train the model on N% of the data, where N ranges from 10 to 100 in step
sizes of 10.

MBN + DT MBN LSM LHL

MovieLens 0.55 ± 0.04 0.56 ± 0.04 0.39 ± 0.04 NT
Mondial 0.41 ± 0.054 0.41 ± 0.055 0.26 ± 0.018 0.25± 0.03
Mutagen 0.58 ± 0.064 0.54 ± 0.074 0.45 ± 0.043 NT
Hepatitis 0.51 ± 0.04 0.51 ± 0.01 0.3 ±0.01 0.37 ± 0.052

Table 6 5-fold cross-validation estimate for the accuracy of predicting the true values of
descriptive attributes, averaged over all descriptive attribute instances. Observed standard
deviations are shown.

fairly low overall because many of the descriptive attributes have many possible
values (e.g. 9 for Lumo in Mutagenesis); see Table 3. The LSM accuracy variance
is low, which together with poor average accuracy is consistent with the hypothesis
that LSM underfits the data.

The moralization method performs generative learning over all attributes, a
significantly more difficult task than discriminative learning. While it is usual in
Markov Logic Network evaluation to report an average over all predicates in a
database, we observed that there is considerable variance among the predictive
accuracies for different predicates. For example in the Mutagenesis dataset, the
accuracy of the learned MBN model for predicting positive mutagenicity is 87%
on 10-fold cross-validation, which is in the 86%−88% range of accuracies reported
for discriminative methods [45–47].

Conditional Log-likelihood. This measure is especially sensitive to the quality of the
parameter estimates. Without decision trees, the MBN method performs clearly
worse on 3 of the 4 datasets, both in terms of average CLL and variance. The
CLL performance of LSM is acceptable on average. The parameter estimates are



20

biased towards uniform values, which leads to predictions whose magnitudes are
not extreme. Because the average accuracy is low, this means that when mistaken
predictions are made, they are not made with great confidence.

MBN + DT MBN LSM LHL
MovieLens -0.8 ± 0.25 -0.79 ± 0.12 -0.65 ± 0.10 NT

Mondial -1.36 ± 0.12 −1.76± 0.37 -1.43 ± 0.027 -1.98 ± 0.035
Mutagen -0.97 ± 0.0134 -1.31 ± 0.197 -1.01± 0.065 NT
Hepatitis -1.16 ±0.04 -1.74 ± 0.08 -1.36 ±0.03 -2.13 ± 0.011

Table 7 5-fold cross-validation estimate for the conditional log-likelihood assigned to the true
values of descriptive attributes, averaged over all descriptive attribute instances. Observed
standard deviations are shown.

8 Conclusion and Future Work

Augmenting Bayes net learning with decision tree learning leads to a compact
set of Horn clauses that represent generative statistical patterns in a relational
database. In our simulations on four benchmark relational databases, decision trees
significantly reduced the number of Bayes net parameters, by factors ranging from
5-25. The pattern of average predictive performance and its variance is consistent
with the hypothesis that the decision tree method strikes an attractive balance:
It avoids the overfitting tendencies of the basic Bayes net moralization algorithm,
and it avoids the underfitting tendencies of the Markov Logic learners (LSM and
LHL). After converting the Bayes net Horn clauses to Markov Logic Networks,
MLN inference can be used to evaluate the predictive accuracy of the resulting
models. In our empirical evaluation, the predictive performance of the pruned
models is competitive with or superior to the unpruned models.

A limitation of our system is that we used generic Markov Logic Network al-
gorithms for parameter estimation implemented in the Alchemy package. While
the parameter estimation routines of Alchemy run much faster than the structure
learning routines, on some datasets we found that parameter estimation can still
take a long time. As Markov Logic Networks obtained by moralization have a spe-
cial structure, it may be possible to design fast parameter estimation routines for
them. Domingos and Richardson suggest using the log-conditional probability of
a parent-child configuration as the weight for the corresponding MLN clause [4,
12.5.3]; this method is also recommended by the Alchemy Group [48]. In future
work, we plan to investigate log-conditional probabilities and other weight learn-
ing techniques for context-sensitive moralization. Another important project is an
empirical comparison of Markov network learning via the moralization approach
with functional gradient boosting [26].

Acknowledgments

The anonymous referees for the ILP conference and the Machine Learning Journal
provided helpful comments and pointers to related literature, especially on learning



21

probability estimation trees. This research was supported by a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational mod-
els. [49] chapter 5 129–173

2. Kersting, K., de Raedt, L.: Bayesian logic programming: Theory and tool. [49] chapter 10
291–318

3. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical bayesian networks and their
relation to other probabilistic logical models. In: ILP. (2005) 121–135

4. Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational
learning. [49]

5. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge
bases. Theor. Comput. Sci. 171(1-2) (1997) 147–177

6. Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domingos,
P.: The Alchemy system for statistical relational AI. Technical report, University of
Washington. (2009) Version 30.

7. Neville, J., Jensen, D.: Relational dependency networks. [49] chapter 8
8. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data.

In: UAI. (2002) 485–492
9. Khosravi, H., Schulte, O., Man, T., Xu, X., Bina, B.: Structure learning for Markov logic

networks with many descriptive attributes. In: AAAI. (2010) 487–493
10. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in

bayesian networks. In: UAI. (1996) 115–123
11. Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In:

NATO ASI on Learning in graphical models. (1998) 421–459
12. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. ACM

SIGMOD Record 30(2) (2001) 461–472
13. Provost, F.J., Domingos, P.: Tree induction for probability-based ranking. Machine Learn-

ing 52(3) (2003) 199–215
14. Fierens, D., Ramon, J., Blockeel, H., Bruynooghe, M.: A comparison of pruning criteria

for probability trees. Machine Learning 78(1-2) (2010) 251–285
15. Zhang, H., Su, J.: Conditional independence trees. In: ECML, Springer (2004) 513–524
16. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In:

KDD. (1996) 202–207
17. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs. In: ICML.

(2010) 551–558
18. Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph lifting.

In: ICML. (2009) 64–71
19. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description length

principle. Inf. Comput. 80(3) (1989) 227–248
20. Poole, D.: First-order probabilistic inference. In: IJCAI. (2003) 985–991
21. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artificial

Intelligence 101(1-2) (1998) 285–297
22. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C., Kaelbling, P.:

Dependency networks for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research 1 (2000) 49–75

23. Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine Learning
Research 8 (2007) 653–692

24. Schulte, O.: A tractable pseudo-likelihood function for bayes nets applied to relational
data. In: SIAM SDM. (2011) 462–473

25. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.W.: Gradient-based boost-
ing for statistical relational learning: The relational dependency network case. Machine
Learning 86(1) (2012) 25–56

26. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.W.: Learning markov logic networks via
functional gradient boosting. In: ICDM. (2011) 320–329

27. Bratko, I.: Prolog (3rd ed.): programming for artificial intelligence. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2001)



22

28. Chiang, M., Poole, D.: Reference classes and relational learning. Int. J. Approx. Reasoning
53(3) (2012) 326–346

29. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46(3)
(1990) 311–350

30. Getoor, L., Grant, J.: Prl: A probabilistic relational language. Machine Learning 62(1-2)
(2006) 7–31

31. Ullman, J.D.: Principles of database systems. 2. Computer Science Press (1982)
32. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
33. Chen, H., Liu, H., Han, J., Yin, X.: Exploring optimization of semantic relationship graph

for multi-relational Bayesian classification. Decision Support Systems 48:1 (July 2009)
112–121

34. Dzeroski, S.: Inductive logic programming in a nutshell. [49]
35. Kok, S., Domingos, P.: Statistical predicate invention. In: ICML, ACM (2007) 433–440
36. Khosravi, H., Man, T., Hu, J., Gao, E., Schulte, O.: Learn and join algorithm code. URL

= http://www.cs.sfu.ca/~oschulte/jbn/.
37. She, R., Wang, K., Xu, Y.: Pushing feature selection ahead of join. In: SIAM SDM. (2005)
38. Chickering, D.: Optimal structure identification with greedy search. Journal of Machine

Learning Research 3 (2003) 507–554
39. The Tetrad Group: The Tetrad project (2008) http://www.phil.cmu.edu/projects/tetrad/.
40. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka

data mining software: an update. SIGKDD Explorations 11(1) (2009) 10–18
41. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In: PKDD.

(2007) 200–211
42. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic

dependencies. In: AAAI. (2006)
43. Mihalkova, L., Mooney, R.J.: Bottom-up learning of Markov logic network structure. In:

ICML, ACM (2007) 625–632
44. Frank, O.: Estimation of graph totals. Scandinavian Journal of Statistics 4:2 (1977) 81–89
45. Srinivasan, A., Muggleton, S., Sternberg, M., King, R.: Theories for mutagenicity: A study

in first-order and feature-based induction. Artificial Intelligence 85(1-2) (1996) 277–299
46. Quinlan, J.: Boosting first-order learning. In: Algorithmic Learning Theory, Springer

(1996) 143–155
47. Sebag, M., Rouveirol, C.: Tractable induction and classification in first order logic via

stochastic matching. In: IJCAI. (1997) 888–893
48. Alchemy Group: Frequently asked questions URL = http://alchemy.cs.washington.

edu/.
49. Getoor, L., Tasker, B.: Introduction to statistical relational learning. MIT Press (2007)


