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Summary. A rational agent changes her beliefs in response to new information;
a widely held idea is that such belief changes should be minimal. This paper
is an overview of the theory of minimal belief revision. I employ a decision-
theoretic framework to compare various principles for minimal belief revision.
The main topics covered include theAGM postulates for belief revision, belief
contraction, Grove’s representation theorem, axioms for conditionals, and the
connections between minimal belief change and questions in formal logic. I
characterize under what conditions belief revision functions are consistent with
the Levi Identity, and under what conditions belief contraction functions are
consistent with the Harper Identity.
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1 Belief revision

Belief change pervades human life. As we interact with our environment, we
continually update our beliefs about it. In such situations, we encounter the
problem of how should an agent change his beliefs in light of new information.
In the last three decades or so, logicians, philosophers and computer scientists
have developed answers to this question under the heading of “belief revision
theory”. Two main features characterize belief revision theory: the formal model

� I am grateful to Mamoru Kaneko for detailed comments on drafts of this paper, and to Hans
Rott for helping me draw on his work on belief revision. Work on this paper was supported by a
grant from the Social Sciences and Humanities Research Council of Canada.
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of belief, and the guiding principle for belief change, namely minimizing the
extent of change.

1.1 Sets of beliefs

A set of assertions is the basic formal structure that represents the epistemic
state of an agent in belief revision theory. The intended interpretation is that
they are the assertions that the agent believes or accepts. Section 2 discusses the
relationship between belief as accepted propositions and probabilistic represen-
tations of belief. Belief revision theorists assume that the beliefs of a rational
agent satisfy the principles of logical reasoning. Thus in belief revision theory,
logic determines the structure of belief sets, and the concepts and techniques of
mathematical logic are as characteristic of belief revision theory as probability
theory is of statistics.

Logically related assertions form a highly abstract and general mathematical
structure. As a result, the formal apparatus and theorems of belief revision theory
lend themselves to applications besides modelling belief changes. For example,
we may identify sets of assertions with records in a database, or with laws in a
legal code. On the first interpretation, belief revision theory becomes a theory of
revising and updating databases given new inputs, and on the second, an account
of revising legal codes given new laws or changes to existing ones. The most
influential interpretation, however, and the one that I shall pursue in this paper,
is that belief revision theory models the belief changes of logical reasoners. The
guiding principle of this theory is that belief changes should beminimal.

1.2 Minimal belief change

The core project of belief revision theory is to answer the question: What is
a minimal belief change? In this paper, I describe several common approaches
to this question. My own is based on decision-theoretic principles, especially
the Pareto principle (applied to choice among objects with multi-dimensional
attributes). I compare the results of this approach with other important analyses
of minimal belief change, notably the Alchourrón-Gärdenfors-Makinson (AGM)
axioms.

An interesting aspect of belief revision is its close connection with condi-
tionals – statements of the form “ifp, thenq”. I describe a formal method for
establishing correspondences between belief revision postulates and conditional
axioms known as the Ramsey Test. It turns out that the conditional axioms corre-
sponding to Pareto-minimal belief revision are part of a widely used conditional
logic.

Finally, in keeping with the theme of this special issue on Logic, I point
out the role that various fundamental facts of Mathematical Logic play in belief
revision theory as we go along.

Unless otherwise noted, proofs of formal results are in Section 12.
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2 Theories, logical consequence and belief

I begin with the representation of an agent’s current beliefs as atheory. By the
term “theory” logicians usually mean a set of assertions that is closed under
logical consequence, in the sense that if a propositionp follows from the state-
ments in a theory, thenp is also part of the theory. There are two main ways to
represent theories, syntactically or semantically. For a syntactic representation,
we assume that some formal languageL has been fixed, and take a theory to be
a deductively closed set of sentences or formulas fromL (more below). On a
semantic approach, we take theories to be propositions, where propositions are
suitable abstract objects such as sets of possible states of affairs, possible worlds,
or sets of points in an “outcome space”. Probability theory employs a form of the
semantic approach: One begins with an abstract set of points, which in statistical
applications are often thought of as “outcomes”. Sets of points are referred to as
“events”. Logical operations such as conjunction (“and”) and disjunction (“or”)
correspond to set-theoretic operations (intersection and union) on the powerset
of the outcome space. In decision theory and game theory, it is more usual to
speak of “possible states of the world” rather than “outcomes”. In philosophically
motivated developments such as modal logic (which includes among others the
logics of belief, knowledge, possibility, and tense) the standard concept is that of
a “possible world”, and sets of possible worlds are referred to as “propositions”
rather than “events”. From the point of view of formal logic, it does not matter
how one labels the basic set of points and sets of these points; I will employ the
logician’s usage of “propositions”.1

For the bulk of this paper, I represent theories syntactically to facilitate com-
parison with the large part of the literature on belief revision that takes a syntactic
approach. Another advantage of the syntactic approach, from the point of view
of computer science, is that a syntactic formulation is indispensable if we want
to apply belief revision theory to computational agents. However, it should be
noted that all of the developments to follow are valid in a purely semantic,
propositional setting as well.

A syntactic representation of belief begins with a set offormulas, which I
denote byL. I denote typical formulas by lower case Roman letters such asp, q
etc. Formulas are strings of symbols, somewhat comparable to the way in which
English sentences are strings of words. We think of formulas being interpretable,
such that a formula expresses a proposition, or state of affairs, again comparable
to the way in which an English sentence expresses a state of affairs. Although
in this paper I do not go into the theory of interpreting formulas – a part of
logic called semantics – the reader’s intuitions will be helped by thinking of

1 Incidentally, John Maynard Keynes came out strongly against the “event” terminology: “With the
term ‘event’, which has taken hitherto so important a place in the phraseology of the subject, I shall
dispense altogether. Writers on Probability have generally dealt with what they term the ‘happening’
of ‘events’. ... But these expressions are now used in a way which is vague and [un]ambiguous; and
it will be more than a verbal improvement to discuss the truth and the probability ofpropositions
instead of the occurrence and the probability ofevents.” (Keynes, 1921, Ch.1.4), emphasis Keynes’s.
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formulas as expressing a proposition and as being either true or false. Kaneko’s
introductory paper gives a precise development of the notion of a formula.

For example, suppose that we want a formal language for describing a very
simple situation: there are three objects and one table. Our language has three
propositional lettersa, b, c. To provide some intuition, we interpreta to mean
“the first object is on the table”,b to mean “the second object is on the ta-
ble”, and c as “the third object is on the table”. This is the kind of exam-
ple discussed by Katsuno and Mendelzon (1991), Chou and Winslett (1994), and
Ginsberg and Smith (1987). I will use the scenario throughout the paper to illus-
trate definitions.

This language allows us to say very little. For example, we cannot express
the proposition “all three objects are on the table”. What we need is a way of
combining the basic statements given by the propositional letters. So we enrich
our language withoperators andconnectives. An operator yields a new formula
from another; a binary connective yields a new formula from two others. I begin
with three connectives that in a propositional setting correspond to the three basic
set-theoretic operations of complementation, intersection and union. All told, we
have the following definition of alanguage.

A language L is a set of formulas satisfying the following conditions.

1. L contains anegation operator ¬ such that ifp is a formula inL, so is¬p.
2. L contains aconjunction connective ∧ such that ifp and q are formulas in

L, so is (p ∧ q).
3. L contains animplication connective → such that ifp andq are formulas in

L, so is (p → q).

The implication connective→ is intended to correspond tomaterial implica-
tion, the kind of “if-then” that is used in mathematical statements. In the presence
of the negation operator, disjunction (“or”) can replace material implication and
vice versa, becausep → q is equivalent to “not p or q” (the only way that “if
p, then q” is false in mathematical statements is forp to be true andq to be
false). For our purposes, it is technically convenient to use material implication
rather than disjunction.

To make formal expressions more readable, I will follow standard practice
and omit parentheses around formulas when the intended reading is clear (e.g.,
write p ∧ q instead of (p ∧ q).)

Logical reasoners derive conclusions from a given set of premises. Formally
this corresponds to aconsequence operation Cn: 2L → 2L, where Cn(Γ ) gives
the set of formulas derivable from the formulas in the setΓ . A set of formulas
Γ entails another set of formulasΓ ′, written Γ � Γ ′, iff Cn(Γ ) ⊇ Γ ′. A set of
formulasΓ entails a formulap, written Γ � p, iff p ∈ Cn(Γ ). ThusΓ � Γ ′ iff
every formulap ∈ Γ ′ is a consequence ofΓ , that is, iff Γ � p for all p ∈ Γ ′.

A theory is a deductively closed set of formulas. That is, a set of formulas
T ⊆ L is a theory iff Cn(T ) = T . I denote the set of all theories byT. As
another piece of terminology, atheorem is a formulap that holds without any
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assumptions; formallyp is a theorem iff∅ � p. It is customary to abbreviate
∅ � p as� p.

I assume that Cn satisfies a number of properties, for all sets of formulas
Γ, Γ ′. The first three do not depend on the structure of our formal language.

Inclusion Γ ⊆ Cn(Γ ).
Montonicity Cn(Γ ) ⊆ Cn(Γ ′) wheneverΓ ⊆ Γ ′.
Iteration Cn(Cn(Γ )) = Cn(Γ ).

These properties are known as theTarskian properties in honour of the great
logician Alfred Tarski. Inclusion expresses the idea that any statementp follows
from itself. The motivation for Monotonicity is that the more premises we are
given, the more conclusions we can derive. Iteration says that if a conclusion
p follows from conclusions of an original set of premises, thenp follows from
the original premises. Clearly these properties hold for mathematical reasoning.
Recently there has been a surge of interest in nonmonotonic logics in which the
addition of information may render previous inferences invalid (Brewka, Dix and
Konolige, 1997) (see Section 10.1).

I further assume that the entailment relation� (and hence the consequence
operation Cn) is related to the propositional connectives as follows.

Modus Ponens IfΓ � p, (p → q), thenΓ � q .
Implication If Γ � q , thenΓ � (p → q).
Deduction Γ ∪ {p} � q iff Γ � (p → q).
Conjunction Γ � (p ∧ q) iff both Γ � p andΓ � q .
Consistency Suppose thatΓ �� p. ThenΓ ∪ {¬p} �� p.
Inconsistency {p ∧ ¬p} � L.
Double NegationΓ � p iff Γ � ¬¬p.

These conditions bring the behaviour of the propositional connectives in line
with their intended interpretation. As Kaneko’s introductory paper shows, the
provability relation� of classical logic as well as those of modal logics satisfies
these requirements.

Belief revision theorists usually assume that the consequence relation Cn is
compact. A consequence relation Cn is compact iff for all formulasp and sets of
formulasΓ , we have thatp ∈ Cn(Γ ) only if p ∈ Cn(Γ ′) for somefinite subset
Γ ′ of Γ . There is a clear analogy with topological compactness, though not more
than an analogy since we are not working in a topological space. Compactness
corresponds to the idea that proofs are finite sequences of finite objects (lines in
the proof). Thus any given proof can make use of at most finitely many premises.
So if we have a proof ofp from premisesΓ , there must be a finite subset ofΓ
that suffices for a proof ofp, namely the set of all assertions mentioned in the
proof of p. Logics that allow infinitely long statements or infinitely long proofs
are generally not compact. When the set of possible worlds (or the “event space”)
is infinite, semantic entailment relations are typically not compact either. None
of the results in this paper require compactness.
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For the remainder of this paper, assume that a languageL and a consequence
relation Cn (and hence an entailment relation�) have been fixed that satisfy
the conditions laid down above. It will help to understand this model of belief
based on logic if we relate it to formal models of belief used in economics. One
connection is that we may interpret the agent’s belief set as hisknowledge, often
modelled with information partitions (Osborne and Rubinstein, 1994, Ch.5).
The set of assertions that an agent knows – that are entailed by his current
information – form a deductively closed set. Another interpretation (consistent
with the first) is that an agent’s belief set represents the assertions to which
the agent assigns a personal probability of 1 (cf. Gärdenfors, 1988, Ch.5). We
can then see belief revision theory as an extension of the Bayesian theory of
belief change through updating, an extension that addresses the case in which
the agent receives new information to which he had assigned probability 0. This
combination of belief revision and Bayesian updating suggests some fruitful
analogies between probabilistic conditionalization and belief revision (see Section
8). For discussion of the concept of belief employed in belief revision theory,
including comparisons with probabilistic conceptions of belief, see for example
Gärdenfors (1988), Levi (1980, 1983), Harper (1975, 1976), van Fraassen (1976),
Spohn (1987).

I conclude this section with two simple lemmas regarding consequence rela-
tions. Though we will not need them until later, I state them here to emphasize
that they are a consequence only of our assumptions about consequence relations.

Unless otherwise noted, proofs are in Section 12.

Lemma 1 Let T1, T2 be two theories. Then T1 ∩ T2 is a theory.

We will often have occasion to consider the logical consequences of adding a
formulap to a theory, that is Cn(T ∪{p}). In belief revision theory, this operation
is calledexpansion. Introducing a special symbol for expansion will simplify the
notation in what follows.

Definition 1 For a set of formulas Γ and a formula p define Γ +p = Cn(Γ ∪{p}).

Note that in this notation, the Deduction Principle is expressed asΓ � p → q
iff Γ + p � q .

Another useful fact is that, given our assumptions about the consequence
relation Cn, expansion distributes over the intersection of two theories.

Lemma 2 Let T1, T2 be two theories. For any formula p, (T1 ∩ T2) + p = (T1 +
p) ∩ (T2 + p).

3 Additions and retractions

I now begin the analysis of what a minimal theory change is. An obvious ap-
proach to this question would be to define a metricρ between theories, such that
ρ(T0, T1) is a real number that measures the “distance” between two theories.
If we had such a metricρ at our disposal, we could define a minimal change
from a current theoryT0 to be another “closest” theoryT1, that is, a theoryT1
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such that there is no “closer” theoryT2. In symbols, a theoryT1 is ρ-closest
to T0 if ρ(T0, T1) ≤ ρ(T0, T2) for all theoriesT2. However, so far no generally
satisfactory metric between theories has been designed. An interesting approach
would be to assume that an agent has somesubjective metric among theories,
but different equally rational agents may have different metrics. Then universal,
intersubjective principles of minimal belief revision would be those that hold for
any agent who revises his theories minimally according to his subjective metric.
This approach would be analogous to a subjective approach to probabilistic belief
change, in which agents revise their subjective priors by Bayesian updating. In
Section 8 I describe an account of minimal theory change based on subjective
orderings that is similar in spirit.

Another approach is to aim for less than a metric provides. Note that a metric
ρ between theories defines atotal order ≤ρ

T among possible new theories given
a current theoryT : defineT1 ≤ρ

T T2 iff ρ(T , T1) ≤ ρ(T , T2), where≤ denotes
the standard ordering of the real numbers. My approach is to considerpartial
orders ≺T where we readT1 ≺T T2 as “T1 is a smaller change fromT thanT2

is”. We can think of a given partial order≺ as defining a set of minimal theory
changes, namely the minimal elements in that order. So the minimal changes of
a theoryT according to the≺T -criterion would form the set{T ′ : for all T ∗,
eitherT ′ �T T ∗ or T ∗ andT ′ are not comparable with respect to�T }.

In these terms, the project of the first part of this paper is this: Define naturally
motivated partial orders, and then characterize their minimal elements in terms
of a belief revision operation∗, such that∗ produces a minimal element if and
only if ∗ satisfies certain axioms.

I make use of decision-theoretic principles to define partial orders among
theory changes. Let’s begin by distinguishing two kinds of change: Aretraction
in which the old theory entails a formula that the new theory does not entail, and
an addition, in which the new theory entails a formula that the old theory does
not entail.

Definition 2 Let T , T ′ be two theories.

1. T ′ retractsthe formula p from T ⇐⇒ T � p and T ′ �� p.
2. T ′ addsthe formula p to T ⇐⇒ T �� p and T ′ � p.

For example, consider again our simple setting with three objects and a table
and the language with propositional lettersa, b, c for asserting that a given object
is on the table. LetT = Cn({a, b}) (the first two objects are on the table). Then
T − = Cn({a}) retractsb from T , andT + = Cn({a, b, c}) addsc to T .

Next, I define two partial orders among theory changes by applying the
principle of dominance. The first partial order defines a notion of a theoryT1

“retracting more” from a previous theoryT than another theoryT2, namely ifT1

retracts all the formulas fromT that T2 retracts fromT , andT1 retracts at least
one formula fromT that T2 does not retract. The second partial order defines a
notion of a new theoryT1 “adding more” to a previous theoryT than another
new theoryT2, namely ifT1 adds all the formulas fromT that T2 adds toT , and
T1 adds at least one formula toT that T2 does not add toT .
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Figure 1. Dominance in additions and retractions

Definition 3 Let T , T1, T2 be three theories.

1. T1 retracts moreformulas from T than T2 does ⇐⇒
(a) for all formulas p, if T2 retracts p from T , then T1 retracts p from T , and
(b) for some formula p, T1 retracts p from T but T2 does not retract p from

T .

2. T1 adds moreformulas to T than T2 does ⇐⇒
(a) for all formulas p, if T2 adds p to T , then T1 adds p to T , and
(b) for some formula p, T1 adds p to T but T2 does not add p to T .

ThusT1 retracts more formulas fromT thanT2 iff T − T2 ⊂ T − T1, andT1

adds more formulas toT thanT2 iff T2 −T ⊂ T1 −T , where⊂ stands for proper
set inclusion (recall thatT = Cn(T ) for any theoryT ). Figure 1 illustrates these
definitions.

In the example above, withT = Cn({a, b}), we have thatT − = Cn({a})
retracts more formulas fromT than T + = Cn({a, b, c}) does, and thatT + adds
more formulas toT thanT − does.
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We may think of the addition partial order and the retraction partial order
as defining two distinct dimensions of “cost” in theory revision. If additions
and retractions were linked such that minimizing one minimizes the other, this
distinction would have no interesting consequences for the question of how to
minimize theory change: we would just minimize both additions and retractions
at once. What makes the distinction important is the fact that in general, additions
and retractionstrade off against each other. Typically, avoiding retractions entails
adding more sentences than necessary, and avoiding additions entails retracting
more sentences than necessary.

For an example, suppose again thatT = Cn({a, b}), meaning that the agent
believes that the first two objects are on the table and is uncertain about the third.
Suppose that the agent learns that both the first and on the second are on the
table, that¬(a ∧b) holds. Consider two possible revisions, firstT1 = Cn({a,¬b})
and secondT2 = Cn({¬(a ∧ b)}). In the sense of Definition 3, we have thatT1

adds more toT thanT2 does. For instance,T1 adds the formula¬b to T , whereas
T2 does not (upon learning that either the first or the second object are off the
table, the agent comes to hold a new belief about the second object). Also,T2

retracts more fromT thanT1 does, in the sense of Definition 3. For instance,T2

retractsa from T whereasT1 does not.
This example illustrates the general tension between avoiding additions and

avoiding retractions. The results below characterize the extent of this tension;
essentially, additions and retractions trade off against each other unless the current
theory already entails the new information. When additions and retractions stand
in conflict, how shall we make trade-offs between them? This is the topic of the
next section.

4 Pareto-minimal theory change

When a conflict arises between avoiding additions and avoiding retractions in
belief revision, an agent may strike a subjective balance between them, as in any
case of conflicting aims. She may assign one kind of change more subjective
weight than the other, or favour some beliefs as more “entrenched” than others.
I will come back to this idea in Section 8. But before we resort to subjective
factors, we can look to decision theory for an objective constraint that applies
to all agents seeking to minimize theory change. If avoiding changes is our
aim, then we should avoid revisions that make more additions than necessary
without avoiding retractions, and we should avoid revisions that make more
retractions than necessary without avoiding additions. This is an instance of the
basic principle ofPareto-optimality. For minimal theory change, we can render
it as follows.2

Definition 4 Let T , T1, T2 be three theories. T1 is a greater changefrom T than
T2 is ⇐⇒

2 To obtain the appropriate definition for the propositional setting, replace the word “formulas”
by “propositions” in the following definition.
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1. T1 retracts more formulas from T than T2 does, and for all formulas p, if T2

adds p to T , then T1 adds p to T ; or
2. T1 adds more formulas to T than T2 does, and for all formulas p, if T2 retracts

p from T , then T1 retracts p from T .

An equivalent purely set-theoretic definition is thatT1 is a greater change
from T thanT2 is iff T2 � T ⊂ T1 � T , where⊂ denotes proper inclusion and
� is symmetric difference (A � B = [A − B ] ∪ [B − A]).3

For an example, suppose thatT = Cn({a}) and that the agent learnsb. Let
T1 = Cn({a, b, c}) and letT2 = Cn({a, b}). ThenT1 adds more formulas toT
than T2 does (for example,c) and T1 retracts all the formulas fromT that T2

retracts (which is none). Hence by Clause 2 of Definition 4, it follows thatT1 is
a greater change fromT thanT2 is. To illustrate Clause 1, suppose that the agent
learnsa. Then T3 = Cn({b}) retracts more formulas fromT than T does, and
adds all formulas thatT adds (which is none). SoT3 is a greater change fromT
thanT is.

The principle of Pareto-Optimality defines a partial relation≺T between the-
ories:T2 ≺T T1 iff T1 is a greater change fromT thanT2 is. It seems that we can
now take a minimal change fromT to be a minimal theory in the≺T -ordering.
But on that definition, the only minimal change fromT is T itself! Of course, it
is generally true that the smallest change is no change, on any acceptable notion
of “small change” (cf. Lewi, 1988, p. 52, Condition (1); Lewis, 1981, p. 313).
What we want is a minimal change that satisfiesadditional constraints. In the
case of belief update, the additional constraint is that the minimal theory change
should incorporate the new information. Accordingly, I define a Pareto-minimal
theory change fromT , given new informationp, as a theory that is minimal in
the �T -ordering among the theories that entailp.

Definition 5 Let T , T1 be two theories, and let p be a formula. Then T1 is a
Pareto-minimal changefrom T that incorporates p ⇐⇒
1. T1 � p, and
2. for all theories T2 such that T2 � p, T1 is not a greater change from T than

T2 is.

Now we are ready to give necessary and sufficient conditions for a theory
revision to be a Pareto-minimal change. It is not difficult to see that the following
three conditions are necessary. Let us writeT ∗ p for the revision of theoryT
given new informationp. First, it is our basic constraint that the revisionT ∗ p
must entailp. Second, since the least change of a theoryT is T itself, we don’t
change the current theory at all if it already entails the new informationp; in
symbols,T ∗ p = T . Third, the revisionT ∗ p must follow from the result of
simply adding the new information to the old theory; formally, it must be the

3 Rott considers this set-difference criterion for comparing theory changes (Rott, 2000). Norman
Foo made the observation that Pareto-optimality with respect to additions and retractions is equivalent
to the set-difference criterion.
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case thatT + p � T ∗ p. For suppose that a revisionT ∗ p does not satisfy this
condition. ThenT ∗ p entails a sentenceq that is not entailed byT + p, and
hence not byT . Consider the theoryT ′ that entails a sentencer just in case both
T ∗ p andT + p + ¬q entail r . ClearlyT ′ adds less toT thanT ∗ p does because
T ′ is weaker thanT ∗ p; in particular,T ′ does not addq to T whereasT ∗ p
does. Furthermore,T ′ retracts fromT exactly those sentences thatT ∗ p retracts
from T . For let r be a sentence entailed byT but not byT ′. ThenT + p + ¬q
entailsr and so by the definition ofT ′, it must be the case thatT ∗ p does not
entail r . This argument shows thatT ∗ p is a greater change fromT thanT ′ is.
HenceT ∗ p is not a Pareto-minimal change unlessT + p entailsT ∗ p. The next
theorem shows that the three conditions listed are sufficient as well, that is, any
theory revision that satisfies them is Pareto-minimal. Thus we have the following
characterization of Pareto-minimal theory change that incorporates a given piece
of new information (see Figure 2 in Section 5).

Theorem 1 Let T be a theory and let p be a formula. A theory revision T ∗ p is
a Pareto-minimal change from T that incorporates p ⇐⇒
1. T ∗ p � p, and
2. T + p � T ∗ p, and
3. if T � p, then T ∗ p = T .

The proof is in Schulte (1999).4 The theorem shows that the tension between
additions and retractions arises whenever the agent’s current theory does not
already entail the new information. When this is the case, the revisions that
make Pareto-acceptable trade-offs run in strength from adding the evidence to the
current theory (T + p) to entailing nothing but the evidence and its consequences
Cn({p}).

Pareto-minimality appears to be a basic necessary requirement for any min-
imal theory change: it is hard to imagine a context in which a theory change
T ∗ p violates Pareto-minimality and can yet be considered minimal. But in a
given context, we might well require more than Pareto-minimality to accept a
theory change as minimal. For example, Pareto-minimality is consistent with an
agent retracting just about all her beliefs when her current theoryT is consistent
with the new informationp but does not entail it: in that case it follows from
Theorem 1 thatT ∗ p = Cn({p}) is a Pareto-minimal theory change. The reason
why T ∗ p = Cn({p}) is Pareto-minimal is that by retracting beliefs, the agent
avoids adding new ones; we can think of such an agent as viewing additions
to be a higher “cost” than retractions. Katsuno and Mendelson have drawn a
well-known distinction between two different kinds of contexts in which, they
argue, different weightings of additions and retractions are appropriate (Katsuno
and Mendelzon, 1991). If belief revision represents the process of receiving in-
creasing information about astatic world, they recommend avoiding retractions.

4 Theorem 1 entails that when the new informationp is inconsistent with the current theory
T , any theoryT ′ entailing p is a Pareto-minimal revision. Rott observed this part of Theorem 1
independently (Rott, 2000, Observation 1).
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But if the agent’s environment is dynamically changing, they would treat addi-
tions and retractions on a par, as Pareto-minimality does. (I return to Katsuno
and Mendelson’s “update” theory in Section 7.)

In the remainder of the paper, I describe a number of proposals for further
constraints on theory change beyond Pareto-minimality, most of which place
higher weight on avoiding retractions than on avoiding additions.

5 Retraction-minimal theory change and the AGM postulates

The previous section determined the implications of the Pareto principle for mak-
ing the trade-off between additions and retractions in minimal theory change.
Lexicographic ordering is another standard principle for making such trade-offs
without invoking weightings of cost dimensions. There is support among belief
revision theorists for the view that retracting beliefs is to be especially avoided.5

What happens in theory revision if we assign maximum priority to avoiding
retractions? Formally, this means that we chooseretraction-minimal theory re-
visions, which are defined as follows. A revisionT ∗ p of a theoryT on new
informationp is retraction-minimal if (1) T ∗p entailsp, and (2) no other theory
T ′ entailingp is such thatT ∗ p retracts more fromT thanT ′ does (in the sense
of Definition 3). Now it is easy to see that no retraction-minimal revisionT ∗ p
retracts any belief fromT . For if T ∗ p retracts some beliefq , then it retracts
more than the revision (T ∗ p) + q . In the case in which the new informationp is
consistent with the current theoryT , the only revision that is both Pareto-minimal
and retraction-minimal isT +p, which may be a satisfactory result. But when the
current theoryT entails¬p, there is trouble: since no retraction-minimal revision
T ∗ p retracts anything fromT , we have thatT ∗ p entails¬p. But sinceT ∗ p
entails the new informationp as well,T ∗p is inconsistent. In other words, when
the new information contradicts the current theory, the only retraction-minimal
revision is the inconsistent theory.

One possible remedy is to look for aconsistent retraction-minimal theory
revision. But it turns out that whenT is inconsistent with the new information
p, every consistent retraction-minimal revisionT ∗ p is a complete theory, in the
sense that for every formulaq , eitherT ∗ p entailsq or ¬q . The proof of this
result is in (Alchourŕon and Makinson, 1982, Observation 3.2). Intuitively, the
reason is this: IfT � ¬p, then by Deduction and Inconsistency, for every formula
q , it is the case thatT � p → q and T � p → ¬q . To makeT consistent with
p, one of these implications must be removed. But retraction-minimality forces
us to keep at least one of them, sayT ∗ p � p → q . Thus by Modus Ponens,
T ∗ p � q . Sinceq is an arbitrary formula, any retraction-minimal revisionT ∗ p
is complete.

5 “The next postulate for expansions can be justified by the ‘economic’ side of rationality. The
key idea is that, when we change our beliefs, we want to retain as much as possible of our old beliefs
– information is in general not gratuitous, and unnecessary losses of information are therefore to be
avoided. This heuristic criterion is called the criterion ofinformation economy” (Gärdenfors, 1988,
p. 49); emphasis is G̈ardenfors’.
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For example, takeT = Cn({a, b}). ThenT � ¬a → c and T � ¬a → ¬c,
becauseT � ¬p → q wheneverT � p (by Deduction and Inconsistency). Now
if the agent learns¬a, minimizing retractions does not allow him to give up
both ¬a → c and ¬a → ¬c, or else he could retract less by keeping one of
the implications among his beliefs. If the agent does not retract¬a → c, then
retraction-minimality implies that his revised theory isT ′ = Cn({¬a, b, c}), and
if the agent keeps¬a → ¬c, retraction-minimality implies that his revised theory
is T ′ = Cn({¬a, b,¬c}). The same is true for the other basic sentencesa and
b, and so the agent has complete beliefs about all three objects in our example
scenario.

More details on retraction-minimal revisions (known as “maxichoice revi-
sions” in the belief revision literature) are in (Schulte, 1999), (Gärdenfors, 1988,
Ch. 4), (Alchourrŕon and Makinson 1982).

Another approach to minimal belief change, indeed the most common one,
is to investigate various belief revision axioms directly without relating them to
decision-theoretic principles. A standard set of axioms has emerged from these
investigations known as theAGM axioms (after their originators, Alchourrón,
Gärdenfors, and Makinson). In my notation, theAGM axioms for theory revision
are the following, for a theoryT and sentencesp, q (Gärdenfors, 1988, Ch. 3.3).

K*1 T ∗ p is a theory.
K*2 T ∗ p � p.
K*3 T + p � T ∗ p.
K*4 If T + p is consistent, thenT ∗ p � T + p.
K*5 T ∗ p is inconsistent just in casep is inconsistent.
K*6 If p andq are logically equivalent, thenT ∗ p = T ∗ q .
K*7 (T ∗ p) + q � T ∗ (p ∧ q).
K*8 If ( T ∗ p) + q is consistent, thenT ∗ (p ∧ q) � (T ∗ p) + q .

I will discuss the justification for these axioms in Sections 7 and 8; see also
Gärdenfors (1988, Ch.3). For comparison with Pareto-minimal and retraction-
minimal theory change, the relevant axioms are K*1–K*4. From the decision-
theoretic standpoint that I have adopted so far, these axioms are a mixture
of Pareto-minimality and retraction-minimality. K*3 expresses the characteristic
property of Pareto-minimal revisions. K*4 expresses the characteristic property
of retraction-minimal revisions, but its application is restricted to the case in
which the current theory is consistent with the new information, because as we
have seen retraction-minimality leads us to inconsistent or at least complete be-
liefs when the current theory is inconsistent with the new information. Because
K*4 requires an agent to preserve all her beliefs when the new information is
consistent with her current beliefs, the postulate is often called thepreservation
principle.

Figure 2 compares the three theories of minimal theory change outlined so
far.
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Figure 2. The behaviour of Pareto-minimal, retraction-minimal and AGM belief revision functions

6 Belief revision functions and belief contraction functions

A major part of the theory of minimal belief change is the analysis of belief
contraction. Roughly speaking, contracting beliefsT with respect to a formula
p means withdrawing beliefs fromT so thatT does not entailp. The idea is to
develop the analysis of belief contraction independently of the analysis of belief
revision. We can then relate the two accounts in ways described below. If we
find that two independently motivated theories support each other, this provides
an argument in favour of each.

We first need the notions of belief revision and belief contraction functions.
So far we have considered a single theory change of a theoryT in light of some
specific new informationp; a belief revision function specifies a new revised
theory for every new piece of informationp. Extending the previous notation, I
write T ∗ p for the result of applying a revision function∗ for T to a formulap.

Definition 6 A belief revision function for a theory T is a function ∗ : L → T
such that for all formulas p, T ∗ p � p.

Definition 6 makes it part of the notion of a belief revision function that the
result of applying the function is a theory entailing the new information. In other
words, the result of applying the function satisfies the AGM axioms K*1 and
K*2. This definition simplifies the theorems below. However, in a more general
setting we may wish to investigate theory changes that do not satisfy K*1 and
K*2 (see Schulte, 1999, Sect. 7; Levi, 1996).
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As we will see presently, in the context of belief contraction there is special
motivation to pay attention to belief revision functions that avoid the inconsistent
belief set. If the new informationp is a theorem – that is, if� ¬p – then any
revision onp leads to an inconsistent theory. But we may require that in all
other cases, the revision produces a consistent theory. This leads to the following
definition.

Definition 7 A belief revision function ∗ for a theory T is consistentif for all
formulas p, T ∗ p = L ⇐⇒ � ¬p.

In other words, a belief revision function is consistent if it satisfies the AGM
postulate K*5. The consistency requirement is more complex than it may seem
at first. Conceptually, the goal of achieving consistent beliefs is distinct from the
goal of minimizing belief change. This is especially clear in the case in which
the current theoryT is inconsistent. SinceT is inconsistent, it entails any new
information. And since the smallest change is clearly no change (cf. Sect. 4),
the minimal revision of an inconsistent theoryT that entails the new information
is to stay with the inconsistent theory. A technical point is that requiring the
minimal revision of the inconsistent theory to be consistent causes difficulties in
relating belief revision postulates to conditional logics (Arló-Costa, 1990) (see
Sect. 10.2).

In general, we will avoid confusion if we distinguish clearly between belief
revision principles that serve the aim of minimizing the extent of belief change,
and belief revision principles that express other constraints, such as principles of
rational belief. Without any further conditions, the smallest belief change is no be-
lief change. In Sections 4 and 5 we considered the consequences of the constraint
that a belief revision has to entail the new information. We may also examine the
consequences of another constraint, namely the consistency requirement K*5. In
all these cases, we can apply the principle of Pareto-minimality to find principles
of minimal belief change for a given set of constraints. Decision-theoretically,
a set of constraints on the possible revisions limits the range of available al-
ternatives. Since an option is Pareto-optimal iff it is not Pareto-dominated by
anotheravailable option, limiting the range of available alternatives can and typ-
ically does change the set of Pareto-optimal outcomes – in our setting, the set of
Pareto-minimal theories. (Schulte gives a general definition of Pareto-minimality
in terms of arbitrary constraints on acceptable revisions (Schulte, 1999, Sect.7).)

Next, I introduce a requirement on belief contraction functions that corre-
sponds to the consistency requirement K*5. First define a belief contraction
function as follows.

Definition 8 A belief contraction function −̇ for a theory T is a function −̇ : L →
T such that for all formulas p, T � T −̇p.

In the terms of Section 3, a belief contraction only retracts, but does not add.
Usually belief revision theorists require that a belief contraction on a formulap
yields a theory that is consistent with the negation ofp. Clearly this is possible
if and only if p is not a theorem. Thus we have the following definition.
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Definition 9 A belief contraction function −̇ for a theory T is consistentif for all
formulas p, T −̇p � p ⇐⇒ � p.

For example, we might have Cn({a,¬b})−̇¬b = Cn({a}) for a consistent
belief contraction function−̇. In words, this belief contraction withdraws the
belief to contract on, and nothing else.

Let’s compare Definition 8 with G̈ardenfors’ postulates for belief contraction,
which in my notation are the following.

K−1 T −̇p is a theory.
K−2 T � T −̇p.
K−3 If T �� p, thenT −̇p = T .
K−4 If �� p, thenT −̇p �� p.
K−5 If T � p, then (T −̇p) + p � T .
K−6 If p andq are logically equivalent, thenT −̇p = T −̇q .
K−7 T −̇(p ∧ q) � T −̇p ∩ T −̇q .
K−8 If T −̇(p ∧ q) �� p, thenT −̇p � T −̇(p ∧ q).

In my usage, G̈ardenfors’ postulates K−1 and K−2 define a belief contraction
function, and adding K−4 yields a consistent belief revision function. Sometimes
in the literature the term “belief contraction” is used to refer to what I call
consistent belief contraction, and sometimes it is used to refer to a function that
satisfies all of G̈ardenfors’ postulates.

6.1 Mappings between belief revision and belief contraction functions:
the Levi and Harper Identities

One of the early ideas about belief revision was Levi’s proposal that a theory
change fromT on new informationp ought to proceed in two stages (Levi,
1980, Ch. 3). First, we may contract the theoryT on the assertion¬p. If the
contraction is consistent, this yields a theoryT ′ that does not entail¬p, and
hence is consistent withp. Then we add the new informationp to T ′, which is
guaranteed to yield a consistent theory. Thus using consistent belief contractions
to define belief revision via Levi’s two-step process guarantees that revisions
satisfy the consistency postulate K*5. This is the sense in which it is a consistency
requirement to stipulate that a belief contraction onp should not entailp.

Another way to think about Levi’s proposal is that it provides a recipe for
constructing a belief revision function from a belief contraction function. That
is, Levi’s proposal maps contraction functions to belief revision functions (see
Fig. 3). G̈ardenfors refers to this mapping as the “Levi Identity”; his formal
definition is as follows.

Definition 10 (The Levi Identity)Let −̇ be a belief contraction function for a
theory T . The belief revision function ∗ associated with −̇ is defined by T ∗ p =
T −̇¬p + p.
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Figure 3. The Levi and Harper identity

I write levi(−̇) to denote the belief revision function associated with−̇. To il-
lustrate the Levi Identity, consider again the belief contraction Cn({a,¬b})−̇¬b =
Cn({a}). The associated belief revision is Cn({a,¬b})∗b = ( Cn({a,¬b})−̇¬b)+
b, which is Cn({a}) + b = Cn({a, b}). In words, we can think of the revision as
first withdrawing nothing but the negation of the new informationb, and then
adding the new beliefb.

It is easy to see that the Levi Identity yields a belief revision function for a
given belief contraction function, and that it yields a consistent belief revision
function for a consistent belief contraction function.

Lemma 3 Let −̇ be a belief contraction function for a theory T , and let ∗ be the
function associated with −̇ . Then

1. ∗ is a belief revision function for T , and
2. if −̇ is consistent, then ∗ is consistent. (In other words, if −̇ satisfies K−4, then

∗ satisfies K*5).

How should we define a belief contraction function given a revision function∗
for a theoryT ? Harper made the following proposal (translated into our syntactic
framework) (Harper 1975). Consider the revisionT ∗ ¬p. If T ∗ ¬p is a minimal
revision ofT on ¬p, then the difference betweenT ∗ ¬p andT is minimal, and
soT ∗¬p has as much in common withT as is possible given the requirement of
accommodating¬p. Thus the overlapT ∩T ∗¬p ought to be as large as it can be
while conforming with¬p. This means thatT ∩ T ∗ ¬p is a plausible candidate
for a minimal retraction ofT that makes room for¬p, that is, a contraction of
T on p. Hence the following definition.

Definition 11 (The Harper Identity) Let ∗ be a belief revision function for T .
The contraction function associated with ∗ is defined by T −̇p = T ∩ T ∗ ¬p.

As the Levi Identity yields a contraction function given a revision function,
the Harper Identity defines a revision function from a contraction function; see
Figure 3. I write harper(∗) to denote the belief contraction function associated
with ∗.

To illustrate the Harper identity, consider again the revision Cn({a,¬b})∗b =
Cn({a, b}) from before. (The agent initially believes that the first object is on the
table and the second is not. On learning that the second is on the table, her new be-
liefs are that the first two objects are on the table.) Assume that the revision func-
tion treatsb and¬¬b identically, such that Cn({a,¬b})∗¬¬b = Cn({a, b}). The
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associated belief contraction is Cn({a,¬b})−̇¬b = Cn({a,¬b})∩ (Cn({a,¬b})∗
¬¬b), which is Cn({a,¬b})∩ Cn({a,¬b}) ∗ b = Cn({a,¬b})∩ Cn({a, b}). It
is possible to show that Cn({a,¬b})∩Cn({a, b}) = Cn({a}). All told, we have
that Cn({a,¬b})−̇¬b = Cn({a}).

Note that in this case, the Levi and Harper Identities invert each other. If we
start with the revision Cn({a,¬b}) ∗ b = Cn({a, b}), the Harper Identity yields
the contraction Cn({a,¬b})−̇¬b = Cn({a}). And as we saw above, applying the
Levi Identity to the contraction Cn({a,¬b})−̇¬b = Cn({a}) yields the revision
Cn({a,¬b}) ∗ b = Cn({a, b}).

It is easy to see that the Harper Identity yields a belief contraction function for
a given belief revision function, and that it yields a consistent belief contraction
function for a consistent belief revision function.

Lemma 4 Let ∗ be a belief revision function for a theory T , and let −̇ be the
function associated with ∗. Then

1. −̇ is a belief contraction function for T , and
2. if ∗ is consistent, then −̇ is consistent. (In other words, if ∗ satisfies K*5, then

−̇ satisfies K−4).

6.2 The content of the Levi and Harper Identities

The Levi Identity stipulates a constraint on revision functions for minimal belief
change by connecting them to belief contraction. What is the content of this
constraint? That is, what properties must belief revision functions satisfy if they
follow the Levi Identity? The answer is that the Levi Identity picks out those
revision functions that satisfy K*3 – the requirement that the expansionT + p
must be at least as strong as the revisionT ∗ p. Thus the Levi Identity and
Pareto-minimality turn out to characterize a very similar class of belief revision
functions; the only difference is that Pareto-minimality does not allow any change
when the evidence is entailed by the agent’s current theory, whereas the Levi
Identity does.

Let us say that a function∗ satisfies the Levi Identity, or is generated by the
Levi Identity, if there is a belief contraction functioṅ− such that∗ is the function
associated with−̇ (i.e., ∗ = levi(−̇)). It is easy to see that if a belief revision
function satisfies the Levi Identity, then it also satisfies K*3, the characteristic
property of Pareto-minimal revisions.

Lemma 5 Let −̇ be a belief contraction function for a theory T with associated
belief revision function ∗. Then for all formulas p, T + p � T ∗ p.

To illustrate the lemma, let us consider an example of a revision that does
not satisfy the Levi Identity. For example, letT = Cn({a}) and consider the
revisionT ∗b = Cn({a, b, c}) (from the belief that the first object is on the table,
and the information that the second is on the table, infer that the third one is as
well). Consider any contractionT − = Cn({a})−̇¬b. By Definition 8, we have
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thatT � T −, soT − is consistent withb and¬b as well asc and¬c (T − entails
nothing about the whereabouts of the second and third object). Thus any revision
T ′ defined byT ∗ b = T − + b is consistent withc as well as¬c. Therefore the
revision Cn({a}) ∗ b = Cn({a, b, c}) does not satisfy the Levi Identity.

What about the converse of Lemma 5? The converse requires us to show
that if a belief revision function∗ satisfies K*3, then there is some contraction
function−̇ that generates∗ via the Levi Identity. The obvious candidate for such
a contraction function is the function harper(∗) that the Harper Identity associates
with the revision operator. It turns out that indeed, applying the Levi Identity
to harper(∗) yields the original belief revision function∗; in other words, the
Levi Identity inverts the Harper Identity, but only with some provisos. The first
proviso is that∗ must satisfy K*3, as Lemma 5 requires. The second is that∗
must treat doubly negated formulas like unnegated formulas. Thus I say that a
belief revision function∗ for T respects double negation if for all formulas p,
we have thatT ∗ p = T ∗¬¬p. Respect for double negation is much weaker than
the AGM postulate K*6 which requires that the respective results of revising
on logically equivalent formulas be the same. With these conditions in place,
the postulate K*3 is a necessary and sufficient condition for the Levi Identity to
invert the Harper Identity.

Proposition 1 Let ∗ be a belief revision function for T that respects double nega-
tion. Then the Levi Identity inverts the Harper Identity applied to ∗ ⇐⇒ for all
formulas p, T + p � T ∗ p.

Proposition 1 immediately yields a characterization of the belief revision
functions that are consistent with the Levi Identity.

Corollary 1 A belief revision function ∗ for a theory T that respects double nega-
tion can be generated by the Levi Identity ⇐⇒ for all formulas p, T +p � T ∗p.

Next, I investigate the content of the Harper Identity. Let us say that a function
−̇ satisfies the Harper Identity, or is generated by the Harper Identity, if there is
a belief revision function∗ such that−̇ is the function associated with∗ (i.e.,
−̇ = harper(∗)). It is not hard to prove that the following condition is necessary
for a belief contraction function to be generated by the Harper Identity.

Lemma 6 Suppose that ∗ is a belief revision function for a theory T , and that −̇
is the contraction function associated with ∗. Then for all formulas p, T −̇p + p =
T + p.

To illustrate the lemma, let us consider an example of a contraction that does
not satisfy the Harper Identity. For example, letT = Cn({a, b}), and suppose
that T −̇a = Cn(∅) (to withdraw the belief that the first object is on the table,
contract to being uncertain about all three objects). ThenT −̇a + b = Cn({b}),
which is different fromT + b = Cn({a, b}). Hence Lemma 6 entails thatT −̇a
does not satisfy the Harper Identity.6

6 To verify this fact directly, consider any revisionT ∗¬a and apply Lemma 2 to (T ∩T ∗¬a)+a.
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In the case in whichT � p, the condition thatT −̇p + p = T + p is essentially
equivalent to G̈ardenfors’ postulate K−5, viz. T −̇p + p � T . SinceT + p = T
if T � p, the condition of Lemma 6 entails K−5. And sinceT � T −̇p for any
contraction function−̇, it is immediate thatT + p � T −̇p + p.

In the case in whichT �� p, Gärdenfors’ postulate K−3 stipulates thatT −̇p =
T , which clearly entails the condition of Lemma 6. However, the requirement
thatT −̇p +p = T +p does not entail K−3 because for exampleT −̇p might retract
a statementq from T provided that it does not retractp → q .

The postulate K−5 is often referred to as arecovery postulate because it
asserts that after first contracting onp and then addingp “back in”, the agent
recovers all of the beliefs in her original theoryT . The intuition behind the
recovery principle is this. To contract beliefs onp means to “give¬p a hearing”,
or to entertain the possibility thatp may be false. If the agent gives¬p a hearing,
but then finds thatp is correct after all, the agent should restore confidence in
any propositionq that he may have believed but called into doubt along with
q . The condition of Lemma 6 is a formulation of the recovery principle. As we
will see, the recovery postulate characterizes contraction functions that satisfy
the Harper Identity.

Before establishing a converse to Lemma 6, I ask under what circumstances
the Harper Identity inverts the Levi Identity, as before in the case of the Levi
Identity. The recovery postulate turns out to be sufficient as well as necessary,
provided that the consequence relation satisfies two more conditions.

First, as with belief revision functions, I say that a belief contraction function
for a theory T respects double negation if for all formulas p, it is the case
that T −̇¬¬p = T −̇p. Respect for double negation is an instance of Gärdenfors’
postulate K−6. Second, a consequence relation Cnsatisfies disjunctive syllogism
if for all sets of formulasΓ it is the case that ifΓ � p → q andΓ � ¬p → q ,
thenΓ � q . If a consequence relation satisfies disjunctive syllogism, it licenses
arguments of the form “Ifp, thenq . And if ¬p, thenq . Thereforeq .” Clearly
the standard logic of mathematical practice satisfies this principle. With these
conditions in place, the recovery principle is a necessary and sufficient condition
for the Harper Identity to invert the Levi Identity.

Proposition 2 Assume that the consequence relation Cn satisfies disjunctive syl-
logism, and let −̇ be a belief contraction function for a theory T that respects
double negation. Then the Harper Identity inverts the Levi Identity applied to
−̇ ⇐⇒ for all formulas p, T −̇p + p = T + p.

Proposition 2 immediately yields a characterization of the belief revision
functions that are consistent with the Harper Identity.

Corollary 2 If the consequence relation Cn satisfies disjunctive syllogism, a be-
lief contraction function −̇ for a theory T that respects double negation can be
generated by the Harper Identity ⇐⇒ for all formulas p, T −̇p + p = T + p.
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7 In search of contraction functions

The Levi Identity suggests that we construct belief revision functions from con-
traction functions. Corollary 1 shows that Pareto-minimal belief revision func-
tions can be so constructed. And conversely, if a contraction function generates a
belief revision function, the belief revision function is Pareto-minimal provided
that it makes no change to the current theory when the current theory is con-
sistent with the evidence. Thus Pareto-minimality and the Levi Identity together
strongly support basing minimal belief change on belief contraction.

So to find further constraints on minimal belief revision, we may look first
for further constraints on belief contraction. An obvious idea is to require that a
belief contraction functioṅ− should be such that it satisfies the Harper Identity.
By Corollary 2, this amounts to requiring that the belief contraction function−̇
should satisfy the recovery principle:T −̇p + p = T + p for all theoriesT and
formulasp. Unfortunately, whereas the recovery principles does constrain belief
contraction, combining it with the Levi Identity does not yield any constraints
on belief revision. Makinson discusses this issue in detail (Makinson, 1987; see
also G̈ardenfors 1988, Ch.3.6). Basically, the reason is this. Suppose we stipulate
that a revision function∗ ought to be generated by a contraction function−̇ that
satisfies the Harper Identity. From Proposition 1, we know that a contraction
function that generates∗ is given byT −̇p = T ∩ T ∗ ¬p (if one exists at all).
By Proposition 2, we have thatT −̇p satisfies the Harper Identity if and only if
T −̇p + p = T + p. So for−̇ to satisfy the Harper Identity, the required constraint
on the associated revision function∗ is that (T ∩ T ∗ ¬p) + p = T + p. Now by
Lemma 2, (T ∩ T ∗ ¬p) + p = (T + p) ∩ (T ∗ ¬p + p), which isT + p ∩ L = T + p
sinceT ∗ ¬p � ¬p and soT ∗ ¬p is inconsistent withp. This requires only that
T ∗ ¬p � ¬p, which is the case for any revision function. Thus if a revision
function ∗ is generated by any contraction function−̇, then ∗ is generated by
a contraction function that satisfies the Harper Identity. Therefore the Harper
Identity does not yield constraints on belief revision.

Another suggestion is to choose retraction-minimal contraction functions. A
contractionT −̇p is retraction-minimal just in case there is no other contraction
T ′ of T such thatT ′ retracts less fromT than T −̇p does (in the sense of
Definition 3). Clearly the only retraction-minimal contraction on a theoryT
retracts nothing, that is,T −̇p � T . Then by the Levi Identity, it follows that
T ∗ p = T −̇¬p + p = T + p. Thus if belief contraction minimizes retractions,
then belief revision is just belief expansion: adopting the logical consequences
of adding the new information to the current beliefs. And we saw that in terms
of our decision-theoretic approach to belief revision, the expansion function +
is the only Pareto-minimal belief revision function that minimizes retractions.
Although there are thus several considerations pointing towards expansion as
minimal belief change, there is one big problem: when the new information is
inconsistent with the current theory, just adding the new information leads to
inconsistent beliefs.
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The obvious remedy is to require that contraction functions should becon-
sistent and retraction-minimal. Recall from Lemma 6 that if a belief contraction
function −̇ is consistent, then the belief revision function∗ associated with−̇
produces consistent beliefs (provided that the new informationp itself is con-
sistent). A belief contractionT −̇p is consistent and retraction-minimal just in
case (1)T −̇p is consistent in the sense of Definition 9, and (2) there is no
other consistent retractionT ′ of T on p such thatT ′ retracts less fromT than
T −̇p does. However, it turns out that applying the Levi Identity to consistent
retraction-minimal contractions leads to a complete theoryT ∗ p whenever the
current theoryT contradicts the new informationp. We saw the basic reason for
this in Section 5: IfT � ¬p, then by Implication,T � p → q andT � p → ¬q ,
for any formulaq . If the contractionT −̇¬p is consistent and retraction-minimal,
it will retract one of these implications but not both. Thus eitherT −̇¬p +p � q or
T −̇¬p +p � ¬q for any formulaq ; in other words, the revisionT ∗p = T −̇¬p +p
produces a complete theory.

As a claim about minimal belief change, it intuitively seems false that when-
ever an agent’s current beliefs are inconsistent with new information, all minimal
revisions of her beliefs should lead her to have a definite opinion about every pos-
sible fact. Thus belief revision theorists do not require contraction functions to be
retraction-minimal [“maxichoice” (G̈ardenfors, 1988, Ch.4.2)] (see Gärdenfors,
1988, pp.58–59; Levi, 1996, p.22). Much of belief revision literature has the aim
of developing constraints on belief contraction that do not lead an agent into
complete theories whenever the new information contradicts her current beliefs.
There is no space here to review all proposals comprehensively, but I will briefly
describe three of the main approaches that are still subject of current research.
The first employs so-called belief bases, the second “update” approach essentially
abandons the idea that contraction functions should avoid retractions above all
additions, and the third project is the standardAGM axiomatization.

Belief Bases. A belief base is just a set of formulas (Nebel, 1989, 1994; Schulte,
1999). Hence a belief base is not necessarily closed under logical consequence.
What does a belief base represent? An interesting interpretation of belief bases
is that they capture thefundamental or basic beliefs of an agent. A rational agent
will also have other beliefs, but these we may view as “mere consequences” of
the basic beliefs. An interesting nonepistemic interpretation of what a belief base
represents is to view a database as a belief base by identifying data records with
formulas. Clearly the records in a database entail all sorts of facts that are not
themselves part of the database (e.g., “there is only one employee who smokes”).

Now we may define Pareto-minimal revision of belief bases much as we
did for theories, by considering only changes in the basic beliefs, not in the
consequences of basic beliefs. [For more details, see Schulte (1999, Sect. 6).] A
Pareto-minimal revision ofB on new informationp is just B ∪{p}. This returns
us to the problem that revising a belief base on information inconsistent with
it yields an inconsistent set of beliefs. As in the case of theories, the obvious
remedy is to restrict attention to consistent Pareto-minimal revisions of belief
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bases. One might think that this will again lead to a complete set of beliefs, as in
the case of theories, but as Alchourrón and Makinson observed in an important
paper, this undesirable result does not obtain for belief bases (Alchourrón and
Makinson, 1982). For the simplest possible example, consider the belief base
B = {¬a} (the first object is not on the table). Note thatB entails the “irrelevant
implications” a → b and a → ¬b (for example), butB does notcontain these
implications. Given new informationa, the consistent Pareto-minimal revision
of B is just B ∗ a = {a}. This revisionB ∗ a no longer entails the implication
a → b (for example), but that implication was not abasic belief. The only basic
belief thatB ∗ a retracts fromB is ¬a, which any consistent revision ofB on p
must retract. HenceB ∗ p is retraction-minimal with respect to basic beliefs. But
clearly B ∗ p is not a complete theory.

Schulte proves that the Levi identity applied to retraction-minimal base con-
tractions characterizes the Pareto-minimal base revisions (Schulte, 1999, Th. 14).
More precisely, say that a belief baseB ′ is a consistent contraction ofB on p
if B−̇p ⊆ B and B−̇p �� p. A belief baseB ′ is a consistent retraction-minimal
contraction ofB on p if (1) B ′ is a consistent contraction ofB on p and (2) no
other consistent contractionB∗ of B on p retracts less fromB thanB ′ does. Then
we have the following result: A consistent revisionB ∗ p is a Pareto-minimal
contraction ⇐⇒ there is a consistent retraction-minimal contractionB−̇¬p
such thatB ∗ p = B−̇¬p ∪ {p}.

Thus the Levi Identity, applied to retraction-minimal contractions, gives ex-
actly the necessary and sufficient conditions for Pareto-minimal base revisions.
And unlike in the case of theories, consistent retraction-minimal contractions do
not lead to a definite belief about every possible assertion. A sample of papers
on base revision with further references is Nebel (1994, 1989), Hansson (1993,
1998), and Meyer (1999).

Update: abandoning retraction-minimality. Let us return to modelling the agent’s
beliefs by logically closed theories. In that case the aim of minimizing retractions
causes the difficulty that it leads to complete beliefs, at least when formulated
as the directive to choose retraction-minimal theories. If we abandon this aim,
the difficulty disappears. In general, we may allow any Pareto-minimal trade-off
between additions and retractions, with no special weight given to avoiding re-
tractions. In some influential papers, Katsuno and Mendelzon argued that treating
additions and retractions on a par is appropriate when the agent receives infor-
mation about changes in the world (“update”) rather than new information about
a static world (Katsuno and Mendelzon, 1991). The result is a theory of minimal
change that discards the preservation principle K*4, but otherwise is generally
compatible with theAGM postulates. Specifically, Katsuno and Mendelzon in-
troduce an update function� such thatT �p is a set of sentences. Their postulates
for update functions� are as follows.7

7 For ease of comparison, I have adapted Katsuno and Mendelzon’s notation to the one used in
this paper. Also, they consider finite belief bases rather than deductively closed theories.
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U1 T � p � p.
U2 If T � p, thenT � p = T .
U3 If T andp are each consistent, thenT � p is consistent.
U4 If p andq are logically equivalent, thenT � p = T � q .
U5 (T � p) + q � T � (p ∧ q).
U6 If (T � p) � q and (T � q) � p, thenT � p = T � q .
U7 If T is complete, then (T � p) ∪ (T � q) � T � (p ∧ q).
U8 (T ∩ T ′) � p = (T � p) ∩ (T ′ � p).

The AGM Axiomatic Approach. The most wide-spread approach has been to
follow the preservation principle so long as it “works”, that is, to restricts its
application to the case in which the current theoryT is consistent with the new
evidencep. In that case, theAGM theory chooses the logically strongest Pareto-
minimal revision, namelyT + p. In terms of contraction functions, this amounts
to choosingT −̇p = T wheneverT �� p, which is G̈ardenfors’ postulate K−3. For
the case in which the new information is inconsistent with the current beliefs, we
may seek a supplementary account of minimal contraction, which need not be
reflected in axioms (cf. (G̈ardenfors 1988, Ch.4)). This approach has advantages
and disadvantages. I will briefly review a few considerations; more discussion,
especially pertaining to the preservation principle may be found in Gärdenfors
(1988, Ch.7.4), Schulte (1999, Sect. 7), and Levi (1988).

One disadvantage is that from our decision-theoretic perspective, the AGM
axioms are perched between retraction-minimality and Pareto-minimality. When
the new information is consistent with the current theory, the AGM axioms give
lexicographic preference to avoiding retractions rather than avoiding additions.
When the new information is inconsistent with the current theory, the AGM
axioms allow any Pareto-minimal trade-off whatsoever. It seems that there ought
to be a principled reason why the extent of belief change should be assessed so
differently in the two situations.

Another disadvantage is that, as it turns out, the preservation principle K*4
makes it difficult to connect axioms for minimal belief change with axioms for
reasoning about conditionals (statements of the form “ifp, thenq”). I will come
back to this issue in Section 10.

On the other hand, many theorists find K*4 and its concomitant, K−3 intu-
itively plausible, certainly plausible enough to pursue a theory that incorporates
these principles.

Perhaps the most influential reason for accepting theAGM axioms is that
they define axiomatically what many researchers view as a natural and plausible
model of belief change. This is the content of the importantGrove Representation
Theorem which I describe in the next section.

8 The Grove representation theorem

As its name suggests, the Grove Representation Theorem is analogous to other
representation theorems such as Savage’s for maximizing expected utility (Sav-
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age, 1954). A comparison might be helpful to clarify the import of Grove’s
theorem. Let us think of maximizing expected utility as a plausible and natural
model for how a rational agent chooses. Savage’s theorem shows that we can
think of an agent as choosing in this way just in case her binary choices between
options (which reveal her preference ordering among these options) satisfy a cer-
tain set of axioms. Grove’s approach also begins with a natural model of theory
choice, and then proves that we can think of an agent as revising her theories in
this way just in case her choice of a new theory (her belief revision function)
satisfies certain axioms (Grove, 1988).

It is easiest to describe Grove’s model of belief change in terms of possi-
ble worlds. Aside from formal convenience, this approach will also provide an
opportunity to illustrate a technique for passing from a syntactic to a semantic
setting that is often useful in formal logic.

In the dominant philosophical tradition, part of the notion of a possible world
is that every meaningful statementp is either true or false in a given possible
world. In standard logical notation, we writew � p if the statementp is true at
a world w. If w is a possible world, no contradiction is true inw, and we thus
expect that the set of all statements true atw (i.e.,{p : w � p}) forms a consistent
set. Thus the set of statements true atw forms amaximal consistent set: First,
{p : w � p} � L, and second, ifq /∈ {p : w � p}, then{p : w � p} ∪ {q} � L.
Now, since the possible worlds (“possible states of the world”, “outcome space”)
are generally just uninterpreted points, nothing prevents us from taking maximal
consistent sets of formulas to be possible worlds. Thus for a languageL and
consequence relation�, there is a natural set of possible worldsW�, namely
W� = {T : T is a maximal consistent theory}. Whenw is a maximal consistent
set, we clearly have thatw � p ⇐⇒ p ∈ w.

In our example scenario with three objects, a maximal consistent set of for-
mulas contains eithera or ¬a, and eitherb or ¬b, and eitherc or ¬c. Thus
there is a one-to-one mapping between maximal consistent sets of formulas
and the 23 = 8 sets{a, b, c}, {a, b,¬c}, {a,¬b, c}, {a,¬b,¬c}, {¬a, b, c},
{¬a, b,¬c}, {¬a,¬b, c}, {¬a,¬b,¬c}. For purposes of illustration, let us take
these sets as possible worlds. Then we may write, for example, that{a, b, c} � a.

Note that we may identify any consistent theoryT , for example one modelling
an agent’s beliefs, with a set of possible worlds: the set of possible worlds in
which all assertions inT are true. Formally, we may write [T ] = {w : for all
p ∈ T , it is the case thatw � p}. For example, if the agent’s belief isT =
Cn({a, b}), then [T ] = {{a, b, c}, {a, b,¬c}}. Conversely, for a set of possible
worldsP , the set of all sentences true at all worlds inP is a theory, which I denote
by 〈P〉. For example, ifP = {{a, b, c}, {a,¬b, c}}, then〈P〉 = Cn({a, b, c})∩
Cn({a,¬b, c}), which is equal to Cn({a, c}).

Now consider an agent who ranks possible worlds according to a pre-
wellorder ≤. This means that the ordering≤ is total, reflexive and transitive;
furthermore, the equivalence classes defined byw ∼ w′ ⇐⇒ w ≤ w′ and
w′ ≤ w, are well-ordered. Thus in every non-empty set of equivalence classes,
there is a minimal element. The intuitive interpretation of the≤ ordering is that it
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Figure 4. A grove sphere system centered on [T ] = {{a, b, c}}

represents something like the plausibility rank that an agent assigns to a possible
world. The minimal worlds at the bottom of the ordering are the most plausible
worlds, which correspond to the agent’s current beliefs. Worlds at higher levels
of the ordering represent possibilities that the agent does not believe to obtain
but which he is nonetheless able to rank by plausibility.

For an intuitive representation of the pre-wellorder≤, imagine a system of
nested “spheres” where each sphere contains an equivalence class of possible
worlds as well as all the preceding equivalence classes. Figure 4 illustrates such
a system, albeit with “boxes” rather than the customary spheres for the sake
of readability. A system of spheres derived from a pre-wellorder satisfies the
following conditions.

Definition 12 Let W be a set of possible worlds. A collection S of subsets of W
(i.e., S ⊆ 2W ) is a Grove sphere system centered on [T ] ⇐⇒
1. S is totally ordered by ⊆ (i.e., if S and S ′ are in S, then S ⊆ S ′ or S ′ ⊆ S ).
2. [T ] is the ⊆-minimum of S (i.e., [T ] ∈ S and for all S ∈ S, [T ] ⊆ S ).
3. W is in S.
4. If p is a formula and there is some sphere S ∈ S intersecting [p] (i.e., S ∩[p] /=

∅), then there is a smallest sphere in S intersecting [p].

To illustrate, suppose that the agent currently believes that all three ob-
jects are on the table; takeT = Cn({a, b, c}). Let us measure the “distance”
dist between two possible worlds by the number of propositional letters on
which they disagree. Thus for exampledist({a, b, c}, {¬a, b, c}) = 1, and
dist({a, b, c}, {¬a,¬b,¬c}) = 3 (this is the Hamming distance, a commonly
used metric; cf. (Chou and Winslett 1994)). Then we can rank possible worlds
according to their distance from the agent’s current beliefs; formally, I define
w < w′ ⇐⇒ dist({a, b, c}, w) < dist({a, b, c}, w′). Figure 4 shows the result-
ing Grove sphere system.

If a formula p is consistent, then there is a smallest sphereSp that inter-
sects [p]. Thus for any consistent formulap, the setC (p) = Sp ∩ [p] con-
tains the “most plausible” or “closest” worlds in whichp is true. If p is
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inconsistent, we letC (p) = ∅. For example, letp = ¬a ∧ b. Then [p] =
{{¬a, b, c}, {¬a, b,¬c}}. Thus the smallest sphere intersecting [p] is Sp =
{{a, b, c}, {¬a, b, c}, {a,¬b, c}{a, b,¬c}}. SoC (p) = Sp ∩ [p] = {{¬a, b, c}}.
In our interpretation, given that the agent believes that all three objects are on
the table, upon learning that the first is not and the second is on the table, the
closest scenario to his current beliefs, according to Hamming distance, is that the
first object is off the table, the second is on and the third is off.

Given a Grove sphere system centered on [T ], Grove’s method for revising
a theoryT on new informationp is simply to let the new theory contain all and
only the formulas true at the most plausible worlds consistent withp; formally,
we have thatT ∗ p = 〈C (p)〉. In the example above,T ∗ p = Cn({¬a, b, c}).

The following theorem shows that this model of theory change exactly rep-
resentsAGM theory revision.

Theorem 2 (Grove, 1988) Let language L and consequence relation �, and
hence W�, be given. Suppose that ∗ is a belief revision function for theory T .
Then ∗ satisfies the AGM axioms K ∗1 through K ∗8 ⇐⇒ there is a Grove sphere
system centered on [T ] such that for all formulas p, T ∗ p = 〈C (p)〉.

The power of Grove’s approach stems from enriching the representation of an
agent’s epistemic state. Modelling an agent’s epistemic state by a theoryT allows
us to say whether an agent believes or disbelieves an assertion, or is undecided
about it. An ordering≤ over possible worlds provides more information, since it
tells us how the agent ranks possibilities that she believes do not obtain. Grove’s
representation shows that we can interpret K*7 and K*8 as ensuring that the
agent’s ranking of alternative revisions, or worlds in which his current beliefs
are false, form a pre-wellorder. We may also connect the pre-wellorder≤ over
possible worlds with a ranking of formulas in the language (see Grove, 1988,
Sect. 3; G̈ardenfors, 1988, Ch.4.8); in that case belief revision theorists often
interpret the ordering as representing something like “epistemic entrenchment”,
the degree to which an agent is committed to various assertions.

In what sense is Grove belief revision minimal belief change? (A question
considered in some detail by Rott (Rott, 2000, Sect.III.B).) One answer is that
a Grove revision minimizes the change in the pre-wellorder≤ associated with
a Grove sphere system. Consider the ranking on possible worlds defined by
w ≤S w′ ⇐⇒ Sw ⊆ Sw′ . Given a formulap, there are many ways to form a
revised Grove systemS∗p. But as long as (1) the minimum ofS∗p entailsp, and
(2) for any two worldsw, w′ consistent withp, it is the case thatw ≤S w′ ⇐⇒
w ≤S∗p w′, we will have that the minimum ofS ∗ p is Sp ∩ [p]. This observation
suggests an analogy with changing degrees of belief by Bayesian conditioning:
In Bayesian updating, the ratioP (w)/P (w′) remains constant for any two worlds
w, w′ consistent with the new information (i.e.,P (w|p)/P (w′|p) = P (w)/P (w′)
wheneverw, w′ |= p; recall thatP (p|w) = P (p|w′) = 1 if w, w′ � p). Thus we
may compare a Grove update to Bayesian updating, in which (ordinal) “degrees
of plausibility” play the role of (real-valued) “degrees of belief” (Spohn, 1987).
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It is clear that the principle of keeping constant the relative ranking of possible
worlds that are consistent with the new information leads to the preservation
principle, K*4. For retracting beliefs corresponds to adding worlds. But if any
world w is not among the most plausible ones to begin with (i.e.,w is not
in the minimum sphere), then a Grove update can includew among the most
plausible worlds only if the new informationp is inconsistent with all worlds
in the minimum sphere, which corresponds to the agent’s current theoryT .
In other words, retracting beliefs is possible only if the new informationp is
inconsistent with the current theoryT , just as K*4 says. In light of our previous
discussion, this shows that minimizing change of an agent’s plausibility ranking
≤ and minimizing change in his actual beliefs is not the same thing: When the
new information is consistent with the agent’s current beliefs, a Grove update
induces essentially no change in the plausibility ranking, but may lead the agent
to entertain many new beliefs (cf. Schulte, 1999, Sect. 6; Rott, 2000, p.513).

On the view of belief change suggested by the Grove representation theorem,
a theory of belief change amounts to a theory of plausibility rankings. In specific
applications, it may be possible to provide more constraints on such rankings. For
example, Stalnaker has shown how to incorporate plausibility rankings into game-
theoretic models of decision-making (Stalnaker, 1996). This allows us to express
a principle such as this (sometimes associated with forward induction (Stalnaker,
1996, Sect. 6; Battigalli, 1996, p.179): player 1 believes that player 2 is rational
and hence that player 2 will make a certain movem. But of the two possibilities,
(1) player 2 deviates fromm by mistake, and (2) player 2 deviates fromm because
she is irrational, player 1 should consider possibility (1) the more plausible one.
Thus if player 1 were to revise her beliefs given the information that 2 did not
play m, then by the Grove representation theorem player 1 would come to believe
that 2 deviated fromm by mistake. Moreover, it could be common knowledge
among the players that each considers mistakes more plausible than irrationality;
in other words, various aspects of their plausibility rankings – and hence, belief
revision functions – could be part of common knowledge among the players.

9 Iterated belief change

At the level of general belief revision theory, much of the work that departs from
Grove’s theorem has been concerned with iterated belief revision: modelling
situations in which an agent first revises her beliefs onp, then on some other
formulaq , etc. After a revisionT ∗p has taken place, what belief revision function
∗′ should guide the next revision? Since we have now identified a belief revision
function∗ for a given theoryT with a Grove sphere system centered on [T ], the
issue becomes updating an entire sphere system, rather than just finding the next
set of beliefs. Even though Grove’s representation theorem determines the next
theoryT ∗ p given a sphere systemS, it leaves some freedom in what the next
sphere systemS∗p should be. There are various proposals for rules for updating
plausibility rankings, some of them with axiomatic characterizations (several are
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presented in Kelly’s paper (Kelly, 1999), such as Darwiche and Pearle (1997),
Nayak (1994), and Boutilier (1996)).

Once we have iterated belief change in view, it is natural to ask what the
long-run behaviour of methods for iterated belief change is. This is a familiar
question for Bayesians: results that show long-run convergence to correct beliefs
via conditioning have long since been part of Bayesian statistics (Savage, 1954,
Ch.3.6; Halmos, 1974, Sect. 49, Th.B). Roughly speaking, it can be shown that
given a countably additive probability measureµ over a set of possible worlds,
and a propositionp, then as the agent revises her beliefs by conditioningµ on
the evidence, withµ-probability 1 the agent’s updated degrees of belief converge
to 1 if p is true and to 0 ifp is false (assuming that the total body of evidence
is such that it entails eitherp or not p). In short, the agent is sure that he will
eventually arrive at correct beliefs via Bayesian updating. Is there any counterpart
to the Bayesian convergence result for iterated minimal belief change?

At first glance, minimal belief change looks bad for arriving at correct beliefs.
Consider an infinitely iterated Prisoner’s Dilemma. Suppose that player 1 initially
believes the assertionp =“if I always cooperate, player 2 will eventually start
cooperating too”. Given this belief, he might continue to cooperate waiting for
player 2 to start cooperating. Butp may be false without ever being falsified by
the evidence, for example if player 2 always defects while player 1 cooperates.
Since the new informationqn = “player 2 has defected for the lastn rounds”
is logically consistent withp, the proposition that 2 will eventually cooperate,
by the preservation principle K*4 player 1 will never retract his belief inp no
matter how many rounds player 2 defects. Thus if in fact player 2 defects as long
as player 1 cooperates, player 1 will forever hold a false belief to the effect that
his opponent will eventually cooperate – not to mention that player 1’s payoffs
will be miserable! The general difficulty is that mere logical consistency with
the evidence is a very weak test for the correctness of an empirical hypothesis.
It is possible for a hypothesis to have much evidence against it without being
logically proven false by the evidence (any statistical hypothesis test illustrates
this), and it is possible for a hypothesis to be false without ever beingproven
false by the evidence. But AGM belief change is stubborn in the sense that it will
not retract a belief until the belief is proven false (Kelly, Schulte, and Hendricks,
1995).

However, the issue warrants a second look. Notice that in the infinitely it-
erated Prisoner’s Dilemma, if player 1 had started out believing that player 2
will always defect, then that belief would be eventually falsified by the evidence
if it is false, because if it is false there will be some stage at which player 2
cooperates. This observation suggests that minimal belief change might lead to
correct beliefs after all provided westart with the right sort of initial beliefs, and
update them in the right way when they are logically falsified by the evidence.
Indeed, it is possible to prove the following learning-theoretic completeness re-
sult for AGM belief revision (stated roughly): Suppose that there is any belief
revision method at all that is guaranteed to converge to correct beliefs about a
given set of questions, or hypotheses. Then there is a belief revision method that
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is guaranteed to converge to correct beliefs in the same senseand satisfies the
AGM axioms.

What does this completeness result tell us aboutAGM belief revision? The
negative conclusion is that we cannot rely in general on AGM belief revision to
lead us to correct beliefs, the way that the Bayesian convergence theorems suggest
that we can rely on Bayesian updating. The positive view is that theAGM axioms
provide only weak guidance as to what an agent should believe, and one might
welcome a source of principled constraints on what the agent’s initial beliefs and
future belief revisions ought to be. The learning-theoretic completeness theorem
shows that we can derive such constraints from the precept that belief revision
methods ought to be as powerful learners as possible, a principle that a rational
agent may well endorse. Kelly has shown how learning-theoretic analysis yields
similar constraints on iterated belief revision (Kelly, 1988). It turns out that
many of the standard proposals for updating plausibility rankings differ in their
ability to lead the agent to correct beliefs and predictions, and for many of these
updating methods their learning power depends on subtle specifications on their
parameters, in ways that Kelly describes precisely.

The formal and computational learning theory involved in analyzing belief
revision methods is quite substantive, and further details are beyond the scope of
this paper. Kelly et al. discuss various interpretations of iterated belief revision as
learning, and give a completeness result forAGM belief revision in a somewhat
limited but fairly simple setting (Kelly, Schulte, and Hendricks, 1995). Martin and
Osherson prove another completeness theorem that is more general (and more
complicated) (Martin and Osherson, 1998). Schulte provides a brief, informal
summary of their work (Schulte, 2000). Osherson and Martin’s book treats many
aspects of AGM revision operators guaranteed to converge to correct beliefs
(Martin and Osherson, 1998).

10 Conditionals

One of the major insights of contemporary logic is that various forms of nonde-
ductive, nonprobabilistic reasoning are closely related, especially belief revision,
nonmonotonic reasoning and conditional logic. A conditional is a statement of
the form “if p, thenq”. Arguably conditionals are closely connected with causal-
ity (Gibbard and Harper, 1981). Conditionals are also important for strategic
thinking (Stalnaker, 1996): In game theory, agents must think about what would
happen if they were to make certain moves. In this section I consider some
of the characteristics of conditionals and their relationship with nonmonotonic
reasoning and belief revision.

10.1 Conditionals and defeasibility

Some of the main properties of conditionals come out clearly when we contrast
them with material implication. In material implication – in a mathematical the-
orem – a statement of the form “ifp, thenq”, or p → q in my formal notation,
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is false just in casep is true andq is false, and otherwise true. Ifp is false,
thenp → q is vacuously true, but true nonetheless. Thus the truth or falsehood
of a material implicationp → q is determined if we know whetherp andq are
true or false. With the other standard logical connectives, it is also the case that
the truth values of their compounds (p, q) determine the truth value of the com-
pound; for example,p ∧ q is true iff bothp andq are true. Logicians call such
connectivestruth-functional. Conditionals are not truth-functional. That is, if we
write p > q for “if p, then q”, the truth values ofp and q do not necessarily
determine the truth value ofp > q . For example, the conditional “if I were the
pope, then 2>4” is false. And the conditional “if Dole had defeated Clinton in
the presidential election, he would not be advertising Viagra” is true. However,
in each example both antecedent and consequent are false.

Another very important property that distinguishes conditionals from material
implication is their defeasibility. For material implication, it is the case that
wheneverp → q , then (p ∧ r) → q . But it is not always, or even typically, the
case that wheneverp > q , then (p ∧ r) > q . To use Nelson Goodman’s example,
I can consistently assert that “if I strike the match, it will light” along with “if I
strike the match and it is wet, it will not light”.

The essence of defeasibility is that knowing more facts undoes conclusions
that are warranted in the light of fewer facts. In other words, the set of correct
conclusions does not grow monotonically with the set of premises. One approach
to capturing defeasibility is therefore to consider consequence relations that do
not satisfy the monotonicity property. The field of nonmonotonic reasoning has
received extensive development (a good overview is Brewka, Dix, and Kono-
lige, 1997). In the remainder of this paper, I consider the logic of defeasible
conditionals with a consequence relation that is monotonic.

As we have seen, the truth values ofp and q by themselves do not deter-
mine the truth value ofp > q . What more information is needed to settle the
truth or falsehood ofp > q? Let’s consider again our example. Suppose that
Nelson is about to strike an apparently dry match, and asserts that “if I strike
this match, it will light”. If Mary challenges his assertion by noting that if the
match were wet, it wouldn’t light, Nelson would reasonably reply that he meant
that the match would light assuming that things generally stay as they are now.
So one might say that conditionals implicitly assume an “other things equal”
condition: p > q holds if, wheneverp is true and “all other circumstances re-
main the same”, thenq is true. This condition is too strict, however, because it
is impossible for one fact to change and for others to remain exactly the same.
For example, if the match is struck, someone has expended energy, the match is
subject to a new force, etc. Arguably, the correct analysis is thatp > q holds if,
wheneverp is true and all other circumstances are as similar as possible, thenq
is true. The challenge, then, is to analyze the notion of one set of circumstances
being “similar” to another, at least with enough precision to give a foundation
for a formal logic of conditionals. This is the project of Lewis’ and Stalnaker’s
famous work on conditionals (Lewis, 1981; Stalnaker, 1981). The result of their
work is a formal logic of conditionals, which is demonstrably sound and com-
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plete with respect to the interpretation of conditionals that I have sketched, and
whose mathematical properties have been studied in considerable detail. For ex-
ample, the computational complexity of Lewis-Stalnaker conditional logics is
well understood, as is their relationship to nonmonotonic reasoning and belief
revision principles (see for example Arló-Costa, 1995). It turns out that various
axiom systems for conditionals are characterized by properties of Lewis sphere
systems, which are much like Grove sphere systems. If we interpret the ranking
specified by a sphere system as representing similarity, the sphere system de-
fines truth conditions for conditionals along the lines sketched above. Similarly,
systems of nonmonotonic logic can be characterized by various kinds of rank-
ings of possible worlds, such as pre-wellorders and metrics. Kraus, Lehmann and
Magidor provide a careful examination of various relationships between possi-
ble worlds that supply an interpretation for nonmonotonic consequence relations
(Kraus, Lehmann, and Magidor, 1990). Rott examines the connection between
nonmonotonic reasoning and belief revision in light of constraints on selection
functions familiar from rational choice theory (Rott, 1998). To see the general
idea, consider a nonmonotonic relationInf: L → T that yields for each sentence
p its nonmonotonic, or “default” consequencesInf(p). With each theoryT and
belief revision function∗ we may associate such an inference relation by setting
Inf(p) = T ∗p. With this definition, it is possible to prove that various belief revi-
sion postulates correspond to well-known principles of nonmonotonic reasoning,
in the sense that a belief revision function∗ for a theoryT satisfies the belief
revision postulate iff the nonmonotonic consequence relationInf associated with
∗ and T satisfies the reasoning principle in question (cf. Rott, 1998, Sect. 3;
Maksinon and G̈ardenfors, 1991). There is a similar connection between belief
revision functions and conditionals, which I consider in some detail in the next
subsection.

10.2 Conditionals and belief revision: the Ramsey test

Instead of asking when a conditionalp > q is true, we might ask a different
question: when should an agent accept a conditionalp > q? Along the lines
developed above, we may argue that the acceptance conditions forp > q are as
follows: Given the agent’s current beliefs about the world, the agent should ask
herself whetherq would obtain ifp were true and other circumstances were as
much as possible the way that she now believes them to be. In other words, the
agent should – for the sake of the argument – incorporate the antecedentp into
her beliefs but otherwise change her beliefs as little as possible. If we introduce
a belief revision function∗ to represent minimal belief change, we can state the
acceptance condition for a conditionalp > q as follows: An agent should accept
p > q given her current theoryT just in caseT ∗ p � q .

Since the agent’s current theoryT contains exactly the set of assertions that
the agent currently accepts – including conditionals – this means thatT � p >
q ⇐⇒ T ∗p � q . The proposal to analyze acceptance conditions for conditionals
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Figure 5. The Ramsey test:T � p > q just in caseT ∗ p � q

in terms of belief revision originated with G̈ardenfors, who credited the basic idea
to the logician and philosopher Frank Ramsey. For that reason, belief revision
theorists refer to the condition thatT � p > q ⇐⇒ T ∗ p � q as theRamsey
test for the acceptability of a conditional. Figure 5 illustrates the Ramsey Test.

For example, letm stand for “the match is struck”, and letl stand for “the
match lights”. Suppose that an agent believes that “if the match is struck, it will
light”; formally, T � m > l . Then the Ramsey test says that if the agent were
to add the informationm to his stock of beliefs, then the agent would believel ;
formally, T ∗ m � l , where∗ denotes the operation of including the information
m as a new belief in a minimal way. Conversely, suppose that upon including
the informationm, the agent believesl ; formally, suppose thatT ∗ m � l . Then
the Ramsey test requires that the agent accept the conditionalm > l , so that
T � m > l .

Recall that the Deduction Principle for material implication asserts thatT �
p → q ⇐⇒ T + p � q . Thus the Ramsey test is a kind of Deduction Principle
for the conditional> where the belief revision function∗ plays the role that
the expansion function does for material implication. Note also the similarity
between the Ramsey test and associating a nonmonotonic consequence relation
with a theory and a belief revision operator. We can complete the circle of
translations between belief revision, nonmonotonic reasoning and conditionals
by connecting conditionals with nonmonotonic consequence via the principle
p > q ⇐⇒ q ∈ Inf(p).

We will require an extended formulation of the Ramsey test that applies it
not just to one given theoryT , but to a range of theories that might represent
the agent’s epistemic state. For that we need a belief revision function that is
defined for a range of theories that might represent an agent’s belief state, rather
than a specific one. Hence the following definition.

Definition 13 (Gärdenfors)A belief revision systemK = 〈K, ∗〉 is a set of
theories K in a language L with conditionals and a belief revision function ∗ :
K × L → K such that K is closed under expansions. That is, if T ∈ K and p ∈ L,
then T + p ∈ K.
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Extending the previous notation, I writeT ∗ p for the result of applying a
belief revision function∗ to a theoryT and a formulap. Now we are ready to
define the connection between the conditionals that an agent accepts with how
she revises her beliefs postulated by the Ramsey test.

Definition 14 (Gärdenfors)A belief revision system K = 〈K, ∗〉 satisfies the
Ramsey testiff T � p > q ⇐⇒ T ∗ p � q, for all theories T ∈ K, and formulas
p, q ∈ L.

This last definition requires that our basic languageL is closed under the
conditional connective, that is, if two formulasp, q are in L, then so is the
formula p > q . In the remainder of this paper, I always assume that the basic
languageL is closed under the conditional connective.

Consider a belief revision system〈K, ∗〉 that satisfies the Ramsey test. Sup-
pose we place constraints on the belief revision operator∗. Then we can ask
whether there are axioms governing the conditional> that are valid in〈K, ∗〉 in
the sense that all theories in the system entail them. For example, if the belief
revision function∗ satisfies K*2, then for all theoriesT ∈ T and formulasp, we
have thatT ∗ p � p, and so by the Ramsey testT � p > p. Thus in any belief
revision system satisfying the Ramsey test and K*2, the basic conditional axiom
p > p is accepted in every belief state. And conversely, ifp > p is accepted
for every formulap and theoryT in a belief revision system〈K, ∗〉 satisfying
the Ramsey test, then∗ satisfies K*2. In this sense the conditional axiomp > p
corresponds to the belief revision postulate K*2.

What conditional axioms characterize Pareto-minimal revision functions? Be-
fore I give the answer with the next theorem, let’s state the exact definition of
what it is for a formula to be valid in a belief revision system.8

Definition 15 A formula p is valid in a belief revision systemK = 〈K, ∗〉 ⇐⇒
all theories T ∈ K entail p.

Now we are ready to establish which conditional axioms exactly characterize
Pareto-minimal theory change.

Theorem 3 Let K = 〈K,∗〉 be a belief revision system satisfying the Ramsey
test. Then ∗ is a Pareto-minimal belief revision operator ⇐⇒ K validates

1. p > p, and
2. (p > q) → (p → q), and
3. (p ∧ q) → (p > q)

for all formulas p, q , r .

The proof is in Schulte (1999).
It is worth noting that there is no similar characterization of theAGM pos-

tulates in terms of conditional axioms. One problem is that K*2, the postulate

8 My definition of validity is equivalent to G̈ardenfors’ (see Schulte, 1999, Sect. 9).
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that T ∗ p = L ⇐⇒ � ¬p is inconsistent with the Ramsey test, as Arló-
Costa has shown (Arló-Costa, 1990). The source of the problem is that K*2
requires a revision of the inconsistent theory to be consistent. If we amend K*2
to readT ∗ p = L ⇐⇒ T = L or � ¬p, there is no longer a problem with
the Ramsey test. But more fundamentally, in a certain sense made precise by
Gärdenfors, the Ramsey test is inconsistent with K*4, the preservation princi-
ple Gärdenfors (1988), Ch.7; interestingly, we saw that K*4 is also the main
difference between Pareto-minimal andAGM theory revision. [For more dis-
cussion of G̈ardenfors’ result and the Ramsey test, see Gärdenfors (1988, Ch.7),
Levi (1988), Arĺo-Costa (1995), and the references in these papers.]

11 Conclusion

The theory of minimal belief change considers a number of formal models of
belief and processes for belief change. A decision-theoretic framework in which
we weigh adding and retracting beliefs against each other suggests several natu-
ral, precise senses in which a belief change is minimal. Pareto-minimal change
appears to be a core constraint on minimal belief change in the sense that belief
revisions that are not Pareto-minimal should hardly count as minimal. The main
requirement for Pareto-minimality is theAGM postulate K*3 – the revision of a
theoryT should not be logically stronger than the conjunction ofT with the new
information. We obtain stronger notions of minimal theory change by adding
the preservation principle – do not retract beliefs unless they are inconsistent
with the new information – which corresponds to lexicographically giving first
priority to avoiding retractions over avoiding additions, or by accepting the full
set of AGM postulates. Grove’s representation theorem for theAGM postu-
lates shows that they correspond precisely to a rich and plausible model of belief
change. The theorem illustrates the interest in formal representations of belief
other than identifying beliefs with a logically closed set of sentences, such as
ordinal rankings of possible states of affairs. Belief bases – sets of sentences that
need not be closed under logical consequence – are another interesting example
of an alternative model of belief.

I considered in some detail the process of belief contraction, and the rela-
tionships between contraction and revision established by the Levi and Harper
identities. I provided necessary and sufficient conditions for when a revision
function can be defined via the Levi identity, and for when a contraction func-
tion can be defined via the Harper identity. For the Levi identity, the condition is
essentially that the revision function must satisfy K*3, which also characterizes
Pareto-minimal belief change.

Belief revision theory takes a highly abstract and general perspective. As a
result, it potentially applies to a wide range of situations in addition to revising
beliefs, such as revising legal codes, and updating knowledge and data bases.
The drawback of this generality is that it is difficult to find strong principles that
are correct in all potential domains of application, and so the constraints offered
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by the theory, even the full set ofAGM postulates, are far from determining
specific belief revision procedures. More guidance may come from considering
specific rankings or metrics for possible worlds (e.g., Chou and Winslett, 1994),
from examining the learning power of revision operators (Kelly, 1998; Martin
and Osherson, 1998), or from knowledge of particular domains, for example
rationality assumptions in game theory (Stalnaker, 1996).

A major research topic in modern logic is the close relationship between be-
lief revision and other logical formalisms, such as nonmonotonic reasoning and
the logic of conditionals (statements of the form “ifp, then q”). The Ramsey
test establishes a connection between belief revision postulates and axioms for
reasoning about conditionals that allows us to prove exact correspondences be-
tween them. It turns out that Pareto-minimal belief revision corresponds exactly
to a group of well-known conditional axioms.

Belief revision theory, together with nonmonotonic and conditional logics, is
a highly developed and fruitful area of modern logic. Even though we do not yet
have a well-developed application in economics, the combination of these logical
tools with the methods of economics promises to expand our understanding of
belief change in strategic interactions. It was the aim of this paper to put in place
some of the main concepts and techniques of belief revision theory for future
applications.

12 Proofs

Lemma 1 Let T1, T2 be two theories. Then T1 ∩ T2 is a theory.

Proof. Let q be a formula in Cn(T1∩T2). By Monotonicity we have that Cn(T1∩
T2) ⊆ Cn(T1) and that Cn(T1 ∩ T2) ⊆ Cn(T2), so it follows thatq ∈ Cn(T1) and
q ∈Cn(T2). Since T1 and T2 are theories, we have thatq ∈ T1 ∩ T2. Hence
Cn(T1 ∩ T2) ⊆ T1 ∩ T2, and thus Monotonicity applied toT1 ∩ T2 establishes that
Cn(T1 ∩ T2) = T1 ∩ T2.�

Lemma 2 Let T1, T2 be two theories. For any formula p, (T1 ∩ T2) + p = (T1 +
p) ∩ (T2 + p).

Proof. (⊆) Let q be a formula in (T1 ∩ T2) + p. Then by DeductionT1 ∩ T2 �
p → q , and so by Lemma 1,p → q ∈ (T1 ∩ T2). Hencep → q is in T1 and in
T2, and so by Modus Ponens,q ∈ T1 + p andq ∈ T2 + p, as required.

(⊇) Let q be a formula inT1 +p ∩T2 +p. Then by DeductionT1 � p → q and
T2 � p → q . SinceT1 and T2 are theories, this entails thatp → q ∈ (T1 ∩ T2).
Hence by Modus Ponens,q ∈ (T1 ∩ T2) + p, as required.�

Lemma 3 Let −̇ be a belief contraction function for a theory T , and let ∗ be the
function associated with −̇ . Then

1. ∗ is a belief revision function for T , and
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2. if −̇ is consistent, then ∗ is consistent. (In other words, if −̇ satisfies K−4, then
∗ satisfies K*5).

Proof. Let a formulap be given. Part 1 is immediate sinceT −̇¬p is a theory,
and henceT −̇¬p + p is well-defined and also denotes a theory. Also,T ′ + p � p
for any theoryT ′, and hence in particular forT ′ = T −̇¬p. For part 2, we must
show thatT ∗ p = L ⇐⇒ � ¬p given that−̇ is consistent. If� ¬p, it follows
from Part 1 thatT ∗p � p ∧¬p, and thus by Inconsistency,T ∗p = L. Conversely,
suppose that�� ¬p. Then since−̇ is consistent, it follows thatT −̇¬p �� ¬p. So
by Consistency,T −̇¬p + p /= L.�

Lemma 4 Let ∗ be a belief revision function for a theory T , and let −̇ be the
function associated with ∗. Then

1. −̇ is a belief contraction function for T , and
2. if ∗ is consistent, then −̇ is consistent. (In other words, if ∗ satisfies T*5, then

−̇ satisfies K−4).

Proof. Let a theoryT and a formulap be given. For part 1, note thatT ∗¬p is
a theory, and hence by Lemma 1, so isT ∩ T ∗¬p, which by definition isT −̇p.
Also, by MonotonicityT � T ∩ T ∗ ¬p = T −̇p. For part 2, we must show that
T −̇p � p ⇐⇒ � p. Again by Monotonicity, we have thatT −̇p � p if � p.
Conversely, suppose thatT −̇p � p. Since∗ is a belief revision operator, we have
that T ∗ ¬p � ¬p. By Monotonicity, T ∗ ¬p � T −̇p. SinceT −̇p � p, we have
that T ∗ ¬p � p ∧ ¬p. HenceT ∗ ¬p = L, and since∗ is consistent, it follows
that � ¬¬p, which by Double Negation implies that� p. So −̇ is a consistent
belief contraction function.�

Lemma 5 Let −̇ be a belief contraction function for a theory T with associated
belief revision function ∗. Then for all formulas p, T + p � T ∗ p.

Proof. By the definition of∗, we have thatT ∗p = T −̇¬p +p. SinceT � T −̇¬p,
it follows by Monotonicity thatT + p � T −̇¬p + p = T ∗ p.�

Proposition 1 Let ∗ be a belief revision function for T that respects double nega-
tion. Then the Levi Identity inverts the Harper Identity applied to ∗ ⇐⇒ for all
formulas p, T + p � T ∗ p.

Proof. Let −̇ be the belief contraction function harper(∗) defined byT −̇p =
T ∩ T∗¬p. First we have that (a)T −̇¬p + p = (T ∩ T∗¬¬p) + p = (T ∩ T∗p) + p
by the assumption thatT∗¬¬p = T∗p. By Lemma 2 we have that (T ∩ T∗p) +
p = T + p ∩ T∗p + p, which is equal toT + p ∩ T∗p since T∗p is a theory
entailingp. Together with (a), this shows that (b)T −̇¬p +p = T +p ∩T∗p. Thus
T −̇¬p + p = T∗p if and only if T + p ⊇ T∗p; in other words, if and only if
T + p � T∗p.�
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Corollary 1 A belief revision function ∗ for a theory T that respects double nega-
tion can be generated by the Levi Identity ⇐⇒ for all formulas p, T +p � T ∗p.

Proof. It follows from Lemma 5 that if a belief revision function∗ can be
generated by contraction, thenT + p � T ∗ p. Conversely, if for all formulasp, it
is the case thatT +p � T ∗p, then by Proposition 1, applying the Harper Identity
to ∗ yields a contraction functioṅ− that generates∗.�

Lemma 6 Suppose that ∗ is a belief revision function for a theory T , and that −̇
is the contraction function associated with ∗. Then for all formulas p, T −̇p + p =
T + p.

Proof. By the Harper Identity,T −̇p +p = (T ∩T∗¬p)+p, which by Lemma 2 is
equal toT +p∩(T∗¬p +p). SinceT∗¬p entails¬p, by ConsistencyT∗¬p +p = L
and soT + p ∩ (T∗¬p + p) = T + p.�

Proposition 2 Assume that the consequence relation Cn satisfies disjunctive syl-
logism, and let −̇ be a belief contraction function for a theory T that respects
double negation. Then the Harper Identity inverts the Levi Identity applied to
−̇ ⇐⇒ for all formulas p, T −̇p + p = T + p.

Proof. Let ∗ be the belief revision function levi(−̇) defined byT ∗p = T −̇¬p +p.
(⇒) If −̇ is the result of applying the Harper Identity to the belief revision

function ∗, it follows from Lemma 6 that for all formulasp, it is the case that
T −̇p + p = T + p.

(⇐) Suppose that it is the case thatT −̇p + p = T + p. We want to show
that T −̇p = T ∩ T ∗ ¬p. By the definition of∗, we must show thatT −̇p =
T∩(T −̇¬¬p+¬p), which is equal toT∩(T −̇p+¬p) if −̇ respects double negation.
It is easy to see thatT −̇p ⊆ T ∩ (T −̇p +¬p). For if q is a formula inT −̇p, then
q ∈ T sinceT −̇p ⊆ T , and by MonotonicityT −̇p + ¬p � q . For the converse,
let q be a formula inT ∩ (T −̇p + ¬p). Thenq ∈ T + p, and so by hypothesis
q ∈ T −̇p + p. Thus by Deduction,T −̇p � p → q . Also T −̇p � ¬p → q since
q ∈ T −̇p + ¬p. So if Cn satisfies disjunctive syllogism, thenq ∈ T −̇p; sinceq
is an arbitrary formula, this establishes thatT −̇p = T ∩ (T −̇p + ¬p) and hence
that T −̇p = T ∩ T ∗ ¬p. Since this holds for any formulap, the Harper Identity
inverts the Levi Identity for the belief contraction functioṅ−, which was to be
shown.�

Corollary 2 If the consequence relation Cn satisfies disjunctive syllogism, a be-
lief contraction function −̇ for a theory T that respects double negation can be
generated by the Harper Identity ⇐⇒ for all formulas p, T −̇p + p = T + p.

Proof. It follows from Lemma 6 that if a belief revision functioṅ− can be
generated by revision, thenT −̇p +p = T +p. Conversely, if for all formulasp, it
is the case thatT + p � T ∗ p, then by Proposition 2, applying the Levi Identity
to −̇ yields a revision function∗ that generateṡ−.�
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