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Abstract. In this paper we consider Nash Equilibria for the selfish rout-
ing model proposed in [12], where a set of n users with tasks of different
size try to access m parallel links with different speeds. In this model, a
player can use a mixed strategy (where he uses different links with a posi-
tive probability); then he is indifferent between the different link choices.
This means that the player may well deviate to a different strategy over
time. We propose the concept of evolutionary stable strategies (ESS) as
a criterion for stable Nash Equilibria, i.e. Equilibria where no player is
likely to deviate from his strategy. An ESS is a steady state that can be
reached by a user community via evolutionary processes in which more
successful strategies spread over time. The concept has been used widely
in biology and economics to analyze the dynamics of strategic interac-
tions. We establish that the ESS is uniquely determined for a symmetric
Bayesian parallel links game (when it exists). Thus evolutionary stability
places strong constraints on the assignment of tasks to links.
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1 Introduction

We consider the selfish routing model proposed in [12], where users try to access
a set of parallel links with different speeds. This scenario gives rise to a strategic
interaction between users that combines aspects of both competition, in that
users compete for the fastest links, and coordination, in that users want to avoid
overloaded links. Koutsoupias and Papadimitriou suggest to study the model
in a game-theoretic frame work [12]. They compare the cost of the worst case
Nash equilibrium with the cost of an optimal solution; this ratio was called
price of anarchy. Depending on the cost function that is used to assess the
optimal solution, the ratio between Nash equilibria and optimal solutions can
vary greatly. For example, the cost of the worst case Nash equilibrium can be
similar to the cost of the optimal solution (min-max function considered in [2]),
or the cost for every Nash Equilibrium can be far away from that of the optimal
solution [1].
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It is an elementary fact that if a player plays a mixed Nash strategy, then
he is indifferent between the choices that carry positive probability. So, it is not
easy to see what keeps the players from deviating to a different strategy with
different probabilities. A Nash Equilibrium having a sequence of single-player
strategy changes that do not alter their own payoffs but finally lead to a non-
equilibrium position, is called transient [6]. Games can have several non-stable
and transient Nash Equilibria, and it is unlikely that a system will end up in
one of these. Hence it might be interesting to answer first the question which
Nash Equilibria are stable, and then to compare the cost of stable equilibria to
the cost of the optimal solution (see [6]). Several stability models were suggested
in the literature [18]. One of the most important models is Maynard Smith’s
concept of an evolutionarily stable strategy, abbreviated ESS [14]. The criterion
proposed by Maynard Smith is as follows: An equilibrium E is evolutionarily
stable if there is a threshold ε for the size of deviations such that if the fraction
of deviating players falls below ε, then the players following the equilibrium E
do better than the deviants.

1.1 New Results

In this paper we study evolutionarily stable equilibria for selfish routing in Kout-
soupias and Papadimitriou’s parallel links model [12]. We first define a symmetric
version of a Bayesian parallel links game where every player is not assigned a
task of a fixed size but, instead, is randomly assigned a task drawn from a distri-
bution (Section 2.1). Then we argue that every ESS in this game is a symmetric
Nash Equilibrium, where every player uses the same strategy.

In Section 3 we show that the symmetric Nash Equilibrium is unique for link
groups. By link group uniqueness we mean the following. Assume that all links
with the same speed are grouped together into so-called link groups. Then, in
every symmetric Nash Equilibrium, the total probability that tasks of a certain
size are sent to a link group is unique. This implies that the only flexibility in
a symmetric Nash Equilibrium is the probability distribution over links from
the same link group, not over different link groups. Then we show that in a
symmetric equilibrium two links with different speeds cannot both be used by
two ore more tasks with different weights. In fact, we show an even stronger
result: If link " is used for task w and "′ for w′ != w, then at least one of the
links will not be optimal for the other link’s task. We also show that tasks with
larger weight must be assigned to links with bigger speed.

In Section 4 we characterize ESS for the symmetric Bayesian parallel links
game. We show that every ESS is a Nash Equilibrium, and we show that, to
evaluate evolutionary stability, we have to consider only best replies to the cur-
rent strategy. Then we establish that in an ESS, we not only have link group
uniqueness, but also the probability distribution with which links of the same
group are chosen by tasks has to be unique. In fact, an ESS requires treating two
links with equal speed exactly the same. This result establishes the uniqueness
of ESS. We show that in an ESS even two links with the same speed cannot
both be used by two ore more tasks with different weights. This implies that in



an ESS links acquire niches, meaning that there is minimal overlap in the tasks
served by different links. We call this specialization in the following.

In general, the problem of calculating an ESS is very hard; it is contained
in ΣP

2 and is both NP-hard and coNP-hard [5]. We expect that our uniqueness
results and the structual properties of ESS for our game will help to develop
algorithms that compute an ESS. We also show that, unfortunately, the spe-
cialisation condition is necessary for an ESS, but not sufficient. We introduce a
sufficient condition called clustering—roughly, links must form disjoint niches—
and show that every clustered Nash equilibrium is an ESS. Unfortunately, we
also show that there exists a game that does not have a clustered ESS, but it
has an unclustered ESS, so clustering is not a necessary condition.

1.2 Known results

The Parallel Links Game was introduced by Koutsoupias and Papadimitriou [12],
who initiated the study of coordination ratios. In the model of [12], the cost of a
collection of strategies is the (expected) maximum load of a link (maximized over
all links). The coordination ratio is defined as the ratio between the maximum
cost (maximized over all Nash equilibria) divided by the cost of the optimal
solution. Koutsoupias and Papadimitriou give bounds on the coordination ratio.
These bounds are improved by Mavronicolas and Spirakis [13], and by Czumaj
and Vöcking [3] who gave an asymptotically tight bound.

In [8] Gairing et al. introduce a Bayesian version of the selfish routing game.
Following Harsanyi’s approach [9], each user can have a set of possible types.
Their paper presents a comprehensive collection of results for the Bayesian rout-
ing game. Note that their model is more general than ours since they allow dif-
ferent types for different users, whereas our users all have the same type space
(possible task assignments). In [7] Fischer and Vöcking adopt an evolutionary
approach to a related routing problem (see [16] for a definition).

The concept of evolutionary stability is fundamental in evolutionary game
theory, which has many applications in theoretical biology and economics. The
seminal presentation of the concept of an ESS is due to Maynard Smith [14].
Since then, the concept has played a central role in evolutionary biology and has
been used in thousands of studies. Economists have also applied the concept to
analyze many economic and social interactions. Kontogiannis and Spirakis pro-
vide an introduction to and motivation for evolutionary analysis from a computer
science perspective [11, Sec.3]. Kearns and Suri examine evolutionary stability
in graphical games [10].

Sandholm proposes a pricing scheme based on evolutionary stability for min-
imizing traffic congestion; he notes the potential applicability of his models to
computer networks [17, Sec.8]. His approach does not apply the concept of evo-
lutionarily stable strategy. To our knowledge, our combination of congestion
game + Bayesian incomplete information + ESS is new in the literature. (Ely
and Sandholm remark that “nearly all work in evolutionary game theory has
considered games of compete information” [4, p.84].)



2 Basic Models and Concepts

We first introduce Bayesian Parallel Links Games and show some simple obser-
vations concerning link load and utilities. We then introduce population games
and define evolutionary stable strategies (ESS).

2.1 Bayesian Parallel Links Games

We examine an extension of the original routing game called Bayesian parallel
links game. Our definition below is a special symmetric case of the definition in
[8]. Harsanyi [9] introduced the notion of a Bayesian game to analyze games with
incomplete information where players are uncertain about some aspect of the
game such as what preferences or options the other players have. Bayesian games
have found many applications in economics; eventually Harsanyi’s work earned
him the Nobel Prize. In a Bayesian parallel links game, the uncertainty among
the players concerns the task size of the opponents. An agent knows the size
of her own message, but not the size of the messages being sent by other users.
The Bayesian game of [8] models this uncertainty by a distribution that specifies
the probability that w is the task of user i. In our symmetric Bayesian routing
model, this distribution is the same for all agents. A natural interpretation of this
assumption is that agents are assigned tasks drawn from a common distribution.

A game is symmetric if (1) all players have the same set of strategy options,
and (2) all that matters is what strategies are chosen, and how often they are
chosen, but not by which player. Our Bayesian version of the game is symmetric,
whereas the parallel links game is symmetric for uniform users only. The formal
definition of a symmetric Bayesian routing model is as follows.

Definition 1. A symmetric Bayesian routing model is a tuple 〈N,W,µ, L, P 〉
where

1. N = [n] is the set of users
2. W = {w1, w2, . . . , wk} is a finite set of task weights, and µ : W → (0, 1] is

a probability distribution over the weights W . The distribution µ is used to
assign weights i.u.r. to players 1, . . . , n.

3. L = [m] is the set of links. For i ∈ [m], link i has speed ci.
4. An allocation s is a vector in [0, 1]m such that

∑m
j=1 s(j) = 1.

5. A mixed strategy p is a total function W → [0, 1]m, i.e., a strategy assigns
an allocation to every task weight in W . Then P is the set of all strategies.
A strategy profile p1, . . . , pn assigns a strategy pi ∈ P to each player i.

Now fix a routing model with strategy set P . In the following we use pi(j, w)
for the probability that, in strategy pi ∈ P , user i assigns a task with weight
w to link j. As usual, (pi, p−i) denotes a strategy profile where user i follows
strategy pi and the other players’ strategies are given by the vector p−i of length
n− 1. Similarly, (wi, w−i) denotes a weight vector where user i is assigned task
size wi and the other players’ weights are given by the vector w−i of length n−1.
The concept of a mixed strategy in a symmetric Bayesian routing model may be



interpreted as follows. Each player chooses a strategy before the game is played.
Then tasks w1, w2, ..., wn are assigned i.u.r. to players 1 through n according to
the distribution µ. Each player learns their own task but not that of the others.
Next for each player i we ”execute” the strategy pi given task wi, such that
task wi is sent to link j with probability pi(j, w). Thus, strategies have a natural
interpretation as programs that take as input a task w and output a link for w
or a probability distribution over links for w.

Like Koutsoupias and Papadimitriou [12], we assume that the latency of a
link depends linearily on the load of a link. Thus we have the following definition
of the load on a link.

Definition 2. Let B = 〈N,W,µ, L, P 〉 be a symmetric Bayesian routing model.
Let p1, .., pn be a vector of mixed strategies.

1. We define

loadi(p1, .., pn, w1, ..., wn) ≡ 1
ci

n∑

j=1

wj · pj(i, wj)

to be the conditional expected load on link i for fixed w1, w2, .., wn.
2. We define

loadi(p1, .., pn) ≡
∑

w1,...,wn∈W n

loadi(p1, .., pn, w1, ..., wn) ·
n∏

j=1

µ(wj).

to be the expected load on link i.

The next observation shows that the load function is additive in the sense
that the total load on link i due to n users is just the sum of the loads due to
the individual users. The proof can be found in the full version of this paper.

Observation 1 Let B = 〈N,W,µ, L, P 〉 be a symmetric Bayesian routing model.
Let p1, .., pn be a vector of mixed strategies; then for any user j we have loadi(p1, .., pn) =
loadi(p−j) + loadi(pj). Therefore loadi(p1, .., pn) =

∑n
j=1 loadi(pj).

A symmetric Bayesian routing game is a symmetric Bayesian routing model
with utility functions for the players. In a symmetric game, the payoff of each
player depends only on what strategies are chosen, and not on which players
choose particular strategies. Hence for a fixed profile of opponents strategy p
yields the same payoff no matter which player i follows strategy p. This allows
us to simplify our notation and write pj(w) or p"(w) for the probability that
strategy p uses a link j or l for a task with size w.

Definition 3. A symmetric Bayesian routing game B = 〈N,W,µ, L, u, P 〉
is a routing model 〈N,W,µ, L, P 〉 with a utility function u. We write u(p; p1, ..., pn−1)
to denote the payoff of following strategy p when the other players’ strategies are
given by p1, .., pn−1. Then the payoff is defined as

u(p; p1, ..., pn−1) = −
∑

w∈W

∑

"∈L

(w/c" + load"(p1, .., pn−1)) · p"(w) · µ(w).



Fix a symmetric Bayesian routing game B with n players. A strategy profile
(p1, ..., pn) is a Nash equilibrium if no player can improve their payoff unilaterally
by changing their strategy pi. To simplify notation for games in which several
players follow the same strategy, we write pk for a vector (p, p, ..., p) with p
repeated k times. Then the mixed strategy p is a best reply to pn−1 if for all
mixed strategies p′ we have u(p; pn−1) ≥ u(p′; pn−1). If all players in a symmetric
game follow the same strategy, then pn is the resulting mixed strategy profile.
The strategy profile pn is a (symmetric) Nash equilibrium if p is a best reply
to pn−1. Hence, a symmetric Nash equilibrium for a symmetric Bayesian routing
game with n players is a Nash equilibrium (p, p, , .., p) in which each player follows
the same strategy. It follows from Nash’s existence proof [15] that a symmetric
game, such as a symmetric Bayesian Routing Game, has a symmetric Nash
equilibrium.

2.2 Population Games and Evolutionary Stability for the Parallel
Links Game

We give a brief introduction to population games and evolutionary stability. A
more extended introduction from a computer science point of view is provided in
[11, Sec.3]. The standard population game model considers a very large popula-
tion A of agents [19, 14]. The agents play a symmetric game like our symmetric
Bayesian routing game. Every agent in the population follows a strategy p fixed
before the game is played. A match is a particular instance of the base game that
results when we match n i.u.r. (independent and uniformly at random) chosen
agents together to play the base game. Since strategies occur with a certain fre-
quency in the population, there is a fixed probability with which a task with a
given size is assigned to a link. Hence, with a population A we can associate a
mixed strategy that we denote by pA.

Consider now the expected payoff that an agent using strategy p receives
in a match given a fixed population A. This is equivalent to playing strategy p
against n− 1 opponents whose choices are determined by the same distribution,
the population distribution pA. In other words, the expected payoff is given
by u(p; (pA)n−1), namely the payoff of using strategy p when the other n − 1
players follow mixed strategy pA. A population is in equilibrium if no agent
benefits from changing her strategy unilaterally given the state of the population.
Formally, a population A with associated mixed strategy pA is in equilibrium
if every mixed strategy p that occurs with frequency greater than zero in the
population is a best reply to (pA)n−1. It is easy to see that this is the case
if and only if the symmetric strategy profile (p, p, .., p) is a Nash equilibrium.
So population equilibria correspond exactly to symmetric Nash equilibria. While
restricting attention to symmetric Nash equilibria may seem like an artificial
restriction for non-population models, in large population models symmetric
Nash equilibria characterize the natural equilibrium concept for a population.

The main idea in evolutionary game theory is Maynard Smith’s concept of
stability against mutations. Intuitively, a population is evolutionarily stable if a
small group of mutants cannot invade the population. Consider a population A



that encounters a group AM of mutants. Then the mixed population is A∪AM .
Suppose that in this mixed population the proportion of mutants is ε. The dis-
tribution for the mixed population is the probabilistic mixture (1−ε)pA +εpAM .
We may view a mutation AM as successful if the average payoff for invaders in
the mixed population is at least as great as the average payoff for nonmutants in
the mixed population. The expected payoff for a strategy p in the mixed pop-
ulation A ∪ AM is given by u(p; [(1 − ε)pA + εpAM ]n−1). So the average payoff
for the non-mutants is u(pA; [(1 − ε)pA + εpAM ]n−1) and for the mutants it is
u(pAM ; [(1− ε)pA + εpAM ]n−1).

Definition 4 (ESS). Let B be a symmetric Bayesian routing game with n play-
ers. A mixed strategy p∗ is an evolutionarily stable strategy (ESS) ⇐⇒
there is an ε > 0 such that for all 0 < ε < ε and mixed strategies p != p∗ we have
u(p∗; [εp + (1− ε)p∗]n−1) > u(p; [εp + (1− ε)p∗]n−1).

3 Link Group Uniqueness of Symmetric Nash Equilibria

This section investigates the structure of symmetric Nash equilibria and estab-
lishes that symmetric equilibria are uniquely determined up to the distribution
of tasks within link groups. A link group L in a symmetric Bayesian routing
game B is a maximal set of links with the same speed, that is, c" = c"′ for
all ", "′ ∈ L. Then, for any mixed strategy p, the probability that p sends task
w to a link in link group L is given by pL(w) ≡

∑
"∈L p"(w). The main result

of this section is that in any symmetric Bayesian routing game the aggregate
distribution over groups of links with the same speed is uniquely determined for
symmetric Nash equilibria. In other words, the probabilities pL are uniquely de-
termined in a symmetric Nash equilibrium; if pn and (p′)n are Nash equilibria
in a routing game B, then for every link group L and every task weight w we
have pL(w) = p′L(w).

In the following we say that link " is optimal for task w given pn−1 iff "
minimizes the function w/c"+(n−1)·load"(p). In this case we write w ∈ opt"(p).
A mixed strategy p uses link " for task w if p"(w) > 0; we write w ∈ support"(p).
The next proposition asserts that a best reply p′ to a strategy profile pn−1 uses
a link for a task only if the link is optimal for the task given pn−1. This is a
variant of the standard characterization of Nash equilibrium according to which
all pure strategies in the support of an equilibrium strategy are best replies. The
proof can be done similar to the proof of the standard Nash characterization
and is omitted.

Proposition 1. Let B be a symmetric Bayesian routing game with n players,
and let p be a mixed strategy. A strategy p′ is a best reply to pn−1 ⇐⇒ for all
tasks w, links ", if p′"(w) > 0, then " is an optimal link for w given pn−1. That
is, support"(p′) ⊆ opt"(p).

The next Lemma gives a clear picture of what a symmetric Nash equilibrium
looks like. Intuitively, this picture is the following. (1) Tasks with bigger weights
are placed on faster links. (2) Faster links have a bigger load. (3-5) For every link



" there is an “interval” of task weights {wi, ..., wl} such that " is optimal for all
and only these weights. (6) Any pair of links with different speeds are optimal
for at most one common task weight.

Lemma 1. Let B be a symmetric Bayesian routing game with n players and a
symmetric Nash equilibrium pn. Fix any two links " and "′.

1. If c" > c"′ , strategy p uses " for task w, and p uses "′ for w′, then w ≥ w′.
2. If c" > c"′ , then load"(pn) > load"′(pn), or load"(pn) = load"′(pn) = 0. And

if c" = c"′ , then load"(pn) = load"′(pn).
3. If c" > c"′ , then there cannot exist tasks w > w′ with w,w′ ∈ support"(p)

and w,w′ ∈ support"′(p).
4. If w1 ≥ w2 ≥ w3 and w1 ∈ opt"(p) and w3 ∈ opt"(p), then w2 ∈ opt"(p).
5. If c"1 ≥ c"2 ≥ c"3 and w ∈ opt"1(p) and w ∈ opt"3(p), then opt"2(p) = {w}.
6. If c" > c"′ , then |opt"(p) ∩ opt"′(p)| ≤ 1.

Proof. The proof can be found in the full version.

We note that Lemma 1 holds for Nash equilibria in general, not just sym-
metric ones. Specifically, let p′ be a Nash equilibrium for a symmetric Bayesian
routing game, and fix any player i such that p′ = (p′i, p′−i). Then Lemma 1 holds
if we replace a mixed strategy p with p′i, and pn−1 with p′−i, and pn with (p′i, p′−i).

We extend our notation for links to link groups L such that cL denotes the
speed of all links in group L. We also define

loadL(pn) ≡
∑

"∈L
load"(pn).

The next theorem is the main result of this section. It states that for a user
population in equilibrium (corresponding to a symmetric Nash equilibrium), the
distribution of tasks to link groups is uniquely determined. Thus the only way
in which population equilibria can differ is by how tasks are allocated within a
link group. This result is the first key step for establishing the uniqueness of an
ESS for a symmetric Bayesian routing game.

Theorem 1 (Link Group Uniqueness). Let B be a symmetric Bayesian
routing game with n players and two symmetric Nash equilibria pn and (p′)n.
Then we have pL(w) = p′L(w) and loadL(pn) = loadL((p′)n) for all task sizes w
and link groups L of B.

The proof is in the full version.
The next section investigates the structure of evolutionarily stable equilibria

and proves that an ESS is uniquely determined when it exists.

4 Characterization of Evolutionary Stability

In this section we prove a necessary and sufficient condition for a mixed strategy
p∗ to be an ESS. In the following let p"(W ) =

∑
w∈W p"(w) · µ(w). The next

proposition shows that for sufficiently small sizes of mutations, only best replies



to the incumbent distribution p∗ have the potential to do better than the in-
cumbent. The proposition also implies that an ESS corresponds to a symmetric
Nash equilibrium (Corollary 1).

Proposition 2. Let B be a symmetric Bayesian routing game with n players,
and let p∗ be a mixed strategy. Then there is a threshold ε such that for all ε
with 0 < ε < ε, for all mixed strategies p:

1. If u(p∗; (p∗)n−1) > u(p; (p∗)n−1), then u(p∗; [εp+(1− ε)p∗]n−1) > u(p; [εp+
(1− ε)p∗]n−1).

2. If u(p∗; (p∗)n−1) < u(p; (p∗)n−1), then u(p∗; [εp+(1− ε)p∗]n−1) < u(p; [εp+
(1− ε)p∗]n−1).

Proof. The proof requires only standard techniques from evolutionary game the-
ory [19] and is omitted for reasons of space. Intuitively, the result holds because
we can choose our threshold ε small enough (as a function of B and p∗) so that
any difference in the case in which the mutant and incumbent face 0 mutants
outweighs the differences in their payofffs when they face one or more mutants.

Corollary 1. Let B be a symmetric Bayesian routing game with n players, and
let p∗ be an ESS. Then (p∗)n is also a Nash Equilibrium.

Proof. (sketch) If p∗ is not a best reply to (p∗)n−1, then there is a mutant p
such that u(p; (p∗)n−1) > u(p∗; (p∗)n−1). Proposition 2(2) then implies that p is
a successful mutation no matter how low we choose the positive threshold ε.

The next lemma 2 provides a necessary and sufficient condition for when a
best reply is a successful mutation, which is key for our analysis of evolutionarily
stable strategies in a given network game.

Lemma 2. Let B be a symmetric Bayesian routing game with n players. Let
(p∗)n be a Nash equilibrium, and consider any best reply p to (p∗)n−1. Define
∆"(p, p∗) =

∑
"∈L[load"(p∗) − load"(p)] · [p∗" (W ) − p"(W )]. Then for all ε with

0 < ε < 1, if

1. ∆"(p, p∗) < 0, then u(p∗; [εp + (1− ε)p∗]n−1) < u(p; [εp + (1− ε)p∗]n−1).
2. ∆"(p, p∗) = 0, then u(p∗; [εp + (1− ε)p∗]n−1) = u(p; [εp + (1− ε)p∗]n−1).
3. ∆"(p, p∗) > 0, then u(p∗; [εp + (1− ε)p∗]n−1) > u(p; [εp + (1− ε)p∗]n−1).

The proof of Lemma 2 can be found in the full version. It shows that a best
reply p to (p∗)n−1 that has a negative quantity

∑
"∈L[load"(p∗) − load"(p)] ·

[p∗" (W ) − p"(W )] is successful in the strong sense that it yields a better payoff
than the incumbent strategy p∗ no matter what its size. It will be convenient to
say that a mutation p defeats the incumbent strategy p∗ if

∑
"∈L[load"(p∗) −

load"(p)] · [p∗" (W ) − p"(W )] < 0 . Similarly, we say that a mutation p equals
an incumbent p∗ if

∑
"∈L[load"(p∗) − load"(p)] · [p∗" (W ) − p"(W )] = 0. In this

terminology our results so far yield the following characterization of evolutionary
stability. The proof directly follows from Proposition 2 and Lemma 2.



Corollary 2. Let B be a symmetric Bayesian routing game with n players. A
mixed strategy p∗ is an ESS for B ⇐⇒ the strategy profile (p∗)n is a Nash
equilibrium, and no best reply p != p∗ to (p∗)n−1 defeats or equals p∗.

Lemma 1 clarified the structure of user populations in equilibrium. The next
section applies the criterion from Corollary 2 to establish additional properties
of populations in an evolutionarily stable equilibrium. In fact, these properties
imply that an evolutionarily stable equilibrium is unique when it exists.

5 Uniqueness and Structure of Evolutionary Stable
Strategies

We analyze the structure of evolutionary equilibria and show the uniqueness of
ESS. For the first point, our focus is on the allocation of tasks to links that are
consistent with evolutionary stability. Such results tell us how the structure of the
network shapes evolutionary dynamics. They can be helpful for the development
of algorithms calculating an ESS for a given system. The next theorem shows
that in an evolutionary equilibrium there is minimal overlap in the tasks served
by different links, in that two distinct links (even with the same speed) may not
be used by tasks with different weights. In fact the result is stronger in that if
link " is used for task w and "′ for w′ != w, then at least one of the links must not
be optimal for the other link’s task. This specialization result can be regarded
as a stronger version of Lemma 1(6), where " and "′ can have the same speed.
Unfortunately, the specialization condition of the Theorem is necessary but not
sufficient, as Observation 2 will show.

The idea of the proof of the next theorem is that if two distinct links " and
"′ are used with a probability > 0 by users with different tasks, it is possible
to create a “better” mutant distribution. The mutant distribution increases the
load on one of the two links, say " (by putting the task with the bigger weight
with a larger probability onto ", and, in turn, by putting the smaller task with
smaller probability onto "), but uses the link overall with a smaller probability.
Note that this strategy is only possible if we have different task weights.

Theorem 2 (Specialization). Let B be a symmetric Bayesian routing game
with mixed strategy p∗. Assume w != w′, " != "′ with c" ≥ c"′ , and suppose the
following conditions are fulfilled.

1. w ∈ support"(p∗) and w′ ∈ support"′(p∗),
2. w,w′ ∈ opt"(p∗), and w,w′ ∈ opt"′(p∗).

Then there is a mutation p that defeats p∗, and hence p∗ is not evolutionarily
stable.

The next observation gives a counterexample showing that the specialization
condition from Theorem 2 is necessary but unfortunately not sufficient for an
ESS.



Observation 2 There exists a symmetric Bayesian routing game B with a strat-
egy p such that p meets the specialization condition of Theorem 2 for any w != w′

and " != "′, but p is not an ESS.

Proof. Assume three resources "1, "2, "3 with speeds c"1 = 6, c"2 = 4, and c"3 = 2.
We have two users and two task sizes w = 21 and w′ = 1. We define µ(21) =
2/3 and µ(1) = 1/3. The strategy p with p"1(21) = 19/21, p"2(21) = 2/21,
p"2(1) = 1/3, and p"3(1) = 2/3 defines a symmetric Nash equilibrium fulfilling
the conditions of Theorem 2. But strategy p′ with p′"1(21) = 19/21 − 0.001,
p′"2(21) = 2/21+0.001, p′"2(1) = 1/3−0.008, and p′"3(1) = 2/3+0.008 constitutes
a successful mutation.

Theorem 2 is the last result required to establish the uniqueness of an ESS
for symmetric Bayesian routing games.

Theorem 3 (Uniqueness). Let B be a symmetric Bayesian routing game with
ESS p∗.

1. Fix any two links " != "′ with the same speed, i.e. c" = c"′ . Then for all task
weights w we have p∗" (w) = p∗"′(w) and |support"(p∗)| ≤ 1.

2. The ESS p∗ is the unique ESS for B.

Now we give a structural condition that is sufficient for an ESS. It can be used
to construct an ESS in a wide variety of models where the ESS exists. Theorem
2 shows that an ESS requires links to ”specialize” in tasks where distinct links
do not share two distinct tasks. A stronger condition is to require that if a link
is optimal for two distinct tasks, then no other link is optimal for either of the
tasks. We call such a distribution clustered.

Definition 5. In an n-player symmetric Bayesian routing game B, a symmetric
strategy profile pn is clustered if for any two distinct tasks w,w′ and any link
", if " is optimal for both w and w′, then no other link is optimal for w or w′.

The next theorem establishes that every clustered symmetric Nash equilib-
rium is an ESS. The proof can be found in the full version.

Theorem 4 (Clustering). Every clustered Nash equilibrium is an ESS, but
not vice versa. More precisely:

1. Let B be a symmetric Bayesian routing game. If (p∗)n is a clustered Nash
equilibrium in B, then p∗ is an ESS in B.

2. There is a symmetric Bayesian routing game B that has a non-clustered ESS
and no clustered ESS.

Acknowledgements: We thank Funda Ergun for helpful discussions and Tom
Friedetzky for the example in Observation 2. We also thank the anonymous
reviewer who simplified the proof of Theorem 1.
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