
Simple Decision Forests for Multi-Relational

Classification

Bahareh Bina, Oliver Schulte, Branden Crawford, Zhensong Qian, Yi Xiong

School of Computing Science, Simon Fraser University,

Burnaby, B.C., Canada V5A 1S6

Abstract

An important task in multi-relational data mining is link-based classification
which takes advantage of attributes of links and linked entities, to predict
the class label. The relational naive Bayes classifier exploits independence
assumptions to achieve scalability. We introduce a weaker independence
assumption to the e↵ect that information from di↵erent data tables is in-
dependent given the class label. The independence assumption entails a
closed-form formula for combining probabilistic predictions based on deci-
sion trees learned on di↵erent database tables. Logistic regression learns
di↵erent weights for information from di↵erent tables and prunes irrelevant
tables. In experiments, learning was very fast with competitive accuracy.
Keywords: link-based classification, multi-relational Naive Bayes
classifiers, multi-relational decision trees, logistic regression

1. Introduction

Most real-world structured data are stored in the relational format, with
di↵erent types of entities and information about their attributes and links be-
tween the entities. Relational data classification is the problem of predicting
a class label of a target entity given information about features (attributes)
of the entity, of the related entities, and of the links. One of the issues that
makes link-based classification di�cult compared to single-table learning is

Email addresses: bba18@cs.sfu.ca (Bahareh Bina), oschulte@cs.sfu.ca (Oliver
Schulte), bsc7@sfu.ca (Branden Crawford), zqian@sfu.ca (Zhensong Qian),
yi_xiong@sfu.ca (Yi Xiong)

Preprint submitted to Decision Support Systems December 12, 2012

the large number of di↵erent types of dependencies that a model may have
to consider [1, 2]. A principled way to approach the complexity of correla-
tion types is to consider model classes with explicitly stated independence
assumptions. The aim is to make a good trade-o↵ between the expressive
power of the model on the one hand, and the scalability of learning on the
other. Multi-relational Naive Bayes net classifiers (NBCs) are a prominent
example of this approach [3, 4, 5]. Naive Bayes Classifiers incorporate two
di↵erent kinds of independence assumptions: (1) cross-table independence,
roughly that information from di↵erent tables is independent given the tar-
get class label, and (2) within-table independence, that descriptive attributes
from the same table are independent given the target class label. The ap-
proach of this paper is to maintain the first assumption, but to drop the
second one. This allows us to capture and exploit complex dependencies
among the attributes and the class label within each table.

The Classification Model. The target table is the table that contains the class
attribute. Consider the set of tables that can be joined to the target table via
a chain of foreign key links; we refer to the corresponding table joins as join
tables. We define a cross-table Naive Bayes assumption, according to which
di↵erent join tables are independent given the class label, and mathematically
derive from it a novel log-linear classification formula. We extend the log-
linear classification model to allow di↵erent join tables to contribute more
or less strongly to the classification decision, with weights for the relative
contributions learned by a logistic regression algorithm. Zero weights can be
used to prune irrelevant tables.

Simple Decision Forests. We use a decision tree classifier as a base learner
for dependencies within a single table, for the following reasons. (1) Decision
tree learners are very fast. (2) There are well-researched methods for learn-
ing trees that provide class probability estimates in their leaves [6, 7, 8, 9].
Such trees are sometimes called probability estimation trees; in this paper, we
use the simpler term decision tree. (3) Other multi-relational decision tree
classifiers are available for comparison. (4) Decision trees easily handle con-
tinuous and categorical variables. (5) Decision trees support rule learning,
and conversion to logic-based relational models, such as Markov Logic Net-
works [10]. (6) Decision trees are one of the most popular classifiers. Brydon
and Gemino describe applications of decision trees in decision support and
business intelligence [11]. An empirical comparison shows a large run-time

2

advantage and a strong predictive performance, that is better than that of
previous relational decision tree learners, and of a relational Naive Bayes
classifier.

Contributions. The main novel contributions of our work are as follows.

1. Use of naive Bayes assumption across tables but not within tables.

2. Use of logistic regression to assign weights for the contributions from
di↵erent linked tables, including zero weights for pruning.

3. A new method, based on independence assumptions, for upgrading a
single-table decision tree classifier for multi-relational classification.

4. An experimental evaluation on five real life databases, demonstrating
that our method is very fast with good predictive accuracy.

Paper Organization. We first describe related work, review background ma-
terial and define our notation. Then we formalize the independence assump-
tions for multi-relational learning and derive the classification formula. We
describe the simple forest induction, use of logistic regression, and classifica-
tion algorithms. The final section evaluates the classification performance of
the di↵erent models on three benchmark datasets.

2. Related Work

We selectively describe relevant multi-relational classification approaches.

Feature Generation. Most of the work on relational upgrades of single-table
classifiers uses a mechanism for relational feature generation. Feature gen-
eration is done by using aggregate functions to summarize the information
in links [12, 13, 14, 15, 16]. Inductive Logic Programming (ILP) approaches
use existentially quantified logical rules [17, 18]. Several recent systems com-
bine both aggregation and logical conditions (e.g., [12, 15]). Treeliker is
a recent propositionalization system that uses monotonicity properties to
generate non-redundant conjunctive features, with state-of-the-art e�ciency
performance [16]. The generated features can be used by any propositional
learner. The predictors in our model are not derived features, but the de-
scriptive attributes as defined in the relational database schema. Relational
feature generation is by far the most computationally demanding part of such
approaches. (For an example, generating 100,000 features on the CiteSeer
dataset, which is smaller than the databases we consider in this paper, can

3

take several CPU days [15, Ch.16.1.2]). Models that use independence as-
sumptions rather than generated features to combine the information from
di↵erent tables are orders of magnitude faster to learn, as our experiments
confirm. At the end of the paper we discuss how our approach can be ex-
tended to support aggregate feature generation.

Relational Decision Trees. To our knowledge, all previous work on relational
decision trees has followed the propositionalization/aggregation paradigm
(e.g., [12, 19, 14]). We do not utilize aggregate functions or existential quan-
tification (which may be viewed as an aggregation mechanism). Instead, we
consider each link independently and utilize all the information from them.
Using aggregation/quantification implies loss of information [4]. FORF (First
Order Random Forest) learns an ensemble of di↵erent decision trees, each
of which is constructed using a random subset of the schema features [12].
Nodes of the trees are first-order logic queries. First order random forests
can be categorized according to di↵erent levels of aggregation. FORF-NA is
the simplest one with no aggregation function. FORF-SA uses simple aggre-
gation, and FORF-RA employs refinements of aggregate queries. The final
decision is made by averaging the results of trees. In contrast, in our model
we learn di↵erent trees using all attributes of each table. Attributes within
a table are typically more correlated than attributes from di↵erent tables,
so it is advantageous to learn trees from each table’s attributes jointly than
on random subsets of features. We combine the results using the weights
learned by logistic regression rather than plain averaging.

TILDE (Top-down induction of first-order logical decision tree) is a
prominent relational decision tree within the Inductive Logic Programming
framework [19]. The nodes in TILDE trees test first-order conditions. The
trees are learned with a divide and conquer algorithm similar to C4.5 [20].
The main di↵erence with our model is that Tilde uses the existential quan-
tifier to build rules. Runtime e�ciency is a challenge in Tilde, because it
potentially generates many rules to find the best ones.

MRDT (Multi Relational Decision Tree) constructs the decision tree by
using selection graphs as the nodes of the tree [21]. A selection graph is a
directed graph which imposes a set of constraints on incorporating informa-
tion from several tables. MRDT use the existential quantifier to aggregate
information from di↵erent links. Guo et al in [22] speed up the MRDT al-
gorithm by using id propagation to implement a virtual join operation that
avoids the cost of physical joins.

4

Independence Assumptions. There are various proposals to apply Naive Bayes
(NB) Assumptions and logistic regression (LR) to relational data. Logistic
regression can be viewed as a discriminative version of the generative Naive
Bayes Classifier model [23]. For single-table classification, the advantages
of logistic regression over simple Naive Bayes Classifier have been studied in
detail [23], and similar results have been reported for single-relation classifica-
tion [24]. Popescul and Unger combine logistic regression with an expressive
feature generation language based on SQL queries [15].

Much of the work on relational Naive Bayes Classifiers combines first-
order features defined by logical rules [25, 26, 17]. The nFOIL system uti-
lizes the Naive Bayes assumption to learn existentially quantified first-order
features. Neville et al. [3] investigate di↵erent functions for aggregating
the influence of linked objects. Chen et al. discuss the pros and cons of
using aggregation vs. independence assumptions, and argue that for a rela-
tional Naive Bayes Classifier, the use of aggregate function loses statistical
information and is not necessary [4]. The multi-relational Naive Bayes Clas-
sifier assumes that all attributes in a database are independent, including
attributes from the same table [4]. We use a weaker assumption by learning
decision trees for attributes within the tables.

CrossMine [18] is an e�cient ILP-style rule learner algorithm. It uses
tuple ID propagation to virtually join tables, and randomly selects instances
to overcome the skewness of datasets.

Structured logistic regression treats the influence on the class label of the
target table and that of linked tables as independent [24]. Two independent
logistic regressions are carried out, one on the target table and the other
on the set of linked tables. Information from links is summarized using
aggregate functions. The product of the results determines the class label.
In our method we use a stronger assumption that links are independent of
each other, and learn a model for each link separately. The predictors in
our model are probabilities predicted based on local information rather than
aggregates as in structured logistic regression.

The Heterogeneous Naive Bayes classifier [5] considers join tables con-
ditionally independent, and combines the posterior results from the table
classifiers applied separately to linked and target tables by a naive Bayes
assumption. A key di↵erence is the classification model: We formally derive
our classification formula, which normalizes the posterior probability from
each linked table by the class prior. Also, we use decision trees, and we
employ logistic regression to combine the contributions of di↵erent linked

5

tables.

Ensemble Classifiers. Our model has some resemblance to ensemble/committee
classifiers in that we combine the probabilistic outputs of di↵erent classifiers.
The main di↵erences are as follows.

1. Most ensemble methods grow the set of classifiers, e.g., a decision forest,
dynamically in the course of learning. In a simple decision forest, the
set of decision trees is fixed by the database schema, since each tree
represents a classifier for a given relational pathway (chain of foreign
key links).

2. In many ensemble models, gating functions are learned that assign
di↵erent classifiers to di↵erent parts of the input feature space. In
our simple decision forest, the partition of the input feature space is
predetermined by the database schema.

3. There are potentially many methods for combining the predictions of a
classifier ensemble [27, 28]. Our cross-table Naive Bayes independence
assumption entails a log-linear combining method.

Graphical Models. Ideas from directed graphical models are used by Proba-
bilistic Relational Models [29], which learn a Bayesian network model of the
data distribution, and use aggregate functions to specify conditional proba-
bility tables.

Unlike directed graphical models which impose an acyclicity constraint,
undirected ones do not have a cyclicity problem and are widely used for LBC
[30, 10, 31]. Two major formalisms are relational conditional Markov ran-
dom fields [30] and Markov Logic Networks (MLNs) [10]. Relational Markov
random fields are a general log-linear model that does not use aggregate
functions nor independence assumptions [10]. The classification formula we
derive from the cross-table Naive Bayes assumption is also a log-linear model,
which shows that our model is a subclass of relational conditional random
fields. This observation provides a probabilistic interpretation of our classi-
fication formulas in terms of a general graphical model. While compared to
general Markov models, the expressive power of our log-linear model is re-
stricted by independence assumptions, the trade-o↵ for the expressive power
of more general log-linear models is higher complexity in learning; various
studies have shown that scaleable learning is a major challenge for Markov
model learning in the multi-relational setting [32, 33, 31].

6

In practice one often needs to perform collective classification: predict
the class label of several interrelated entities simultaneously. While collective
classification has received much attention [30, 34], our theoretical framework
for multi-relational classification formulas is already quite rich, so our empiri-
cal evaluation focuses only on individual classification and leaves applications
to collective classification for future work. A principled approach to collec-
tive classification is to convert decision forests to Markov Logic Networks,
as described in Section 3.2, and then apply MLN techniques for collective
classification [10].

3. Preliminaries and Notation

A standard relational schema contains a set of tables. A database in-
stance specifies the tuples contained in the tables of a given database schema.
If the schema is derived from an entity-relationship model [35, Ch.2.2], the
tables in the relational schema can be divided into entity tables and relation-
ship tables. Relationship tables link Entity tables to each other by foreign
key pointers. The natural join of two tables is the set of tuples from their
cross product that agree on the values of fields common to both tables.

3.1. Pathways and Join Tables

One of the key challenges in multi-relational classification is the multi-
plicity of pathways or table joins through which the target entity may be
linked to other entities. Han et al. [4] proposed a graphical way to structure
the space of possible pathways. A Semantic Relationship Graph (SRG)
for a database D is a directed acyclic graph (DAG) whose nodes are database
tables in D and whose only source (starting point) is the target table T .
For simplicity we assume that the target table is an entity table. If an edge
links two tables in the Semantic Relationship Graph, then the two tables
share at least one primary key. For each path T, T1, . . . , Tk in an Semantic
Relationship Graph, there is a corresponding valid join T on T1 · · · on Tk.
Because the number of attributes in a valid join may become quite large,
Han et al. use only the attributes of the last table in the path, and the
class attribute from the target table, which is called propagating the class
attribute along the join path [4]. An extended database is a database that
contains all valid join tables with selecting (projecting) the class attribute
and attributes from the last table in each join. We refer to the tables in the
extended database as extended join tables, or simply join tables. A decision

7

Figure 1: Semantic relationship graph for the university schema. Each path in the Se-
mantic Relationship Graph corresponds to a join table in the extended database.

tree for an extended join table contains nodes labelled with attributes from
the join table. The leaves contain a probability distribution over the class
labels. A simple decision forest contains a decision tree for each join table
in the extended database.

Example. A university schema is our running example. The Semantic Re-
lationship Graph is shown in Figure 1. The schema has three entity tables:
Student, Course and Professor, and two relationships: Registration records
Courses taken by each Student and RA records research assistantship of stu-
dents for professors. An instance for this schema is given in Figure 2. The
class attribute is Intelligence of a Student. Therefore, in the Semantic Re-
lationship Graph we have Student table as the source node. Figure 3 shows
an extended university database instance that results from propagating the
class attribute Intelligence. The paths in the Semantic Relationship Graph
of Figure 1 correspond to join tables in Figure 3. In the extended university
database valid joins include the following:

Figure 2: A small instance of a university database.

8

• Student on Registration with (a projection of) the attributes from
Registration, and the class label from Student (e.g., Intelligence of Stu-
dent).

• Student on Registration on Course, with (a projection of) the attributes
from Course, and the class label from Student .

• Student on RA, with (a projection of) the attributes from RA, and the
class label from Student .

• Student on RA on Professor , with a selection of the attributes from
Professor , and the class label from Student .

Figure 4 shows a simple decision tree for the extended join table Student on
RA on Prof table that may be learned from data like that shown in Figure 1.

Figure 3: An instance of the extended university database. The target entity is Jack, the
target table is Student , and the class label is Intelligence.

3.2. Model Conversions

We discuss how decision forests can be converted to other model types.
If knowledge discovery is the goal of data analysis, the rule format provides
an accessible presentation of statistical regularities for users. Simple decision
forests support rule extraction because each join table corresponds to an
Semantic Relationship Graph path. For each table decision tree, each branch
converts to a rule in the usual way (conjunction of conditions along the

9

Popularity+

2+ 3+

+
Intelligence+=1++0%+
Intelligence+=2++100%+

+

Intelligence+=1++100%+
Intelligence+=2+++0%+

RA(S,P),+Popularity(P,2)+!++Intelligence(S,2):+100%+

Figure 4: Left: A simple single decision tree that may be learned for data in the format
of the extend join table Student on RA on Prof table. Right: A logical rule extracted from
the tree, corresponding to the leftmost branch.

branch). The relational context in which the rule holds is specified by the
join conditions of the table. Figure 4 (right) provides an example.

Markov Logic Networks (MLNs) are a prominent statistical-relational
model class that combine first-order logic with Markov random fields (undi-
rected graphical models) [10]. An MLN comprises a set of weighted first-order
clauses. In terms of graphical models, an MLN is a template for a Markov
random field, with a log-linear likelihood function that is the weighted sum
of counts of features defined by the first-order formulas. A state-of-the-art
approach to learning the clauses in an MLN is to first learn a set of decision
trees and then convert each branch of each decision tree to an MLN clause
[36, 33]. The weights of the clauses are obtained from probability estimation
trees by using the log-conditional probabilities associated with a leaf [36],
and from regression trees by using the regression weights [33]. The example
rule from Figure 4 (right) would induce the MLN clause

RA(S ,P),TeachingA(P , 1), Intelligence(S , 2) : w = ln(100%).

For general discussion and details on MLNs and the conversion from decision
forests to MLNs please see [36, 33]. The conversion to Markov Logic Networks
provides a probabilistic foundation for our classification approach in terms of
log-linear models, and o↵ers a principled approach to collective classification
with the cross-table Naive Bayes assumption (see Sec. 2).

4. The Cross-Table Naive Bayes Assumption

In this section we define our independence assumption formally and de-
rive a classification formula. The formula entails a logistic regression model
for multi-relational classification. Applying the regression to decision trees
defines the simple decision forest classification model.

10

4.1. Independence Assumptions

In the definitions below, we view a table Mi as a conjunction of the
information pieces in it, that is, as a conjunction of value assignments . We
write Mi,r for the tuple of values in row r of table Mi without the primary
key(s). For example, suppose that Mi is the Student on Registration on

Course table from Figure 3. Then Mi,1 = h3, 1, ?i and Mi,3 = h2, 2, 2i.

Definition 1. Consider an extended database with target table T , containing
class attribute c and non-class attributes a, and join tables J1, . . . , Jm. The
Inter-Table Independence Principle states that

P (T, J1, . . . , Jm|c) = P (a|c)
mY

i=1

rowsiY

r=1

P (Ji,r|c). (1)

For instance, we may have t = jack , c = Intelligence and a = {Ranking},
so a(jack) = h1 i.

Discussion. Equation (1) says that, conditional on the class label, the prob-
ability of the extended database instance is the product of the probability
of the target attributes with the probabilities of each row of each join table.
This assumption combines two principles, which we separate for discussion.
First, that the information in di↵erent tables is independent given the class
label:

P (T, J1, . . . , Jm|c) = P (a|c)
mY

i=1

P (Ji|c) (2)

and second, that the information in di↵erent rows is independent given the
class label, for each table i with rowsi rows:

P (Ji|c) =
rowsiY

r=1

P (Ji,r|c). (3)

It is easy to see that Assumptions (2) and (3) entail the Inter-Table Inde-
pendence Principle (1). Figure 5 illustrates Assumption (2) for the university
schema using a Bayesian network. Since the class attribute is propagated to
all join tables, table independence requires conditioning on this common
information. This is an instance of the general principle that structured ob-
jects may become independent if we condition on their shared components.
For instance, in Figure 3 the join tables Student-Registration-Course and

11

Figure 5: An example of the Table Independence Principle in the university domain.
Attributes of di↵erent tables extended by the class label are independent of each other
given the class label.

Student-RA-Prof both share the information about the intelligence of stu-
dents.

Assumption (3) says that, given the common class label, rows of the
link table join are independent of each other. This assumption is required
to apply a single table classifier to each extended table. For instance, in
Figure 3 two rows in the Registration table with the same student-id both
share the information about the intelligence of the student.

Examples. Consider the extended university database from Figure 3 with
the four join tables as shown. Then by Assumption (2), the joint probability
of the database instance conditional on the class label factors as

P (T, J1, J2, J3, J4|Intelligence(jack) = 2) =

P (Ranking(jack) = 1 |Intelligence(jack) = 2) ·
P (Student � Registration|Intelligence(jack) = 2) ·

P (Student � Registration � Course|Intelligence(jack) = 2) ·
P (Student � RA|Intelligence(jack) = 2) ·

P (Student � RA� Prof |Intelligence(jack) = 2)

where the expression attribute(jack) = 2 denotes that the attribute value
for target entity jack is 2.

Applying the Assumption (3) to the join table Ji = Student � Registration�
Course we have

P (Student � Registration � Course|Intelligence(jack) = 2) =

P (Rating(101) = 3 ,Di↵ (101) = 1 |Intelligence(jack) = 2) ·
P (Rating(102) = 2 ,Di↵ (102) = 2 |Intelligence(jack) = 2)

where the expression attribute(course) = x denotes that the attribute

12

value for course course is x. Rows that do not contain the target entity jack
are not included in the equation.

Multi-relational Naive Bayes (NB) classifiers [4] add yet another assump-
tion: the Column Independence Principle that within each row of each join
table, the attributes are independent given the class label, which amounts
to applying the single-table NB classifier in each join table. Using only
Inter-Table Independence adds a degree of freedom that allows us to apply a
classifier other than single-table NB to the join tables. Data from the same
table is more likely to be correlated than data from di↵erent tables, because
the database designer groups related attributes within a table. Thus by not
assuming Column Independence, we exploit the domain knowledge implicit
in the database design.

Impact of Assumption. We emphasize that we do not claim that the
Inter-Table Independence Assumption is exactly true in a given database.
For example, if we know that Jack is an intelligent student, the row indepen-
dence principle (3) implies that his grades in course 101, and his grades in
course 102, are independent of each other. There will in general be depen-
dencies among di↵erent links/link attributes of the same entity. Therefore
in a given dataset, these assumption may not be entirely but only approxi-
mately true. The use of relational independence principles is best viewed as
a simplifying approximation to the actual dependencies in the dataset. Like
the non-relational Naive Bayes assumption, the assumption permits accurate
predictions of an entity’s attributes even when false [37]. Another view is that
it represents which correlations are modeled: Namely correlations between
attributes and the class label given the link structure, but not correlations
among the links or among the attributes of non-target entities. Analogously,
the Naive Bayes assumption allows a model to present correlations between
features and the class label in a single table, but not correlations among
the features. As our experiments illustrate, the assumption leads to highly
scalable learning, while it allows a model to capture the most relevant cor-
relations from the data. To develop a learning algorithm and to investigate
the impact of the assumption empirically, we derive a classification formula
from it.

5. The Multi-Relational Classification Model

Let t denote the target entity from table T , such that c(t) is the target
class label and a(t) its non-class features. For simplicity we assume a binary

13

class label, so c(t) 2 {0, 1}; our derivation can be extended to multi-class
problems. Given a testing example (all the information in the extended
tables) the posterior class odds are given by:

P (c(t) = 0|T, J1, . . . , Jm)
P (c(t) = 1|T, J1, . . . , Jm)

=
P (T, J1, . . . , Jm|c(t) = 0)P (c(t) = 0)

P (T, J1, . . . , Jm|c(t) = 1)P (c(t) = 1)

The class label is 0 if the posterior odds is larger than 1 and 1 otherwise.
Applying the Inter-Table Independence Assumption (1), we have:

=
P (c(t) = 0)P (a(t)|c(t) = 0)

Qm
i=1

Q
rowsi

r=1 P (Ji,r|c(t) = 0)

P (c(t) = 1)P (a(t)|c(t) = 1)
Qm

i=1

Q
rowsi

r=1 P (Ji,r|c(t) = 1)

where rows i is the number of rows in join table Ji. Substituting posterior
probabilities using Bayes’ theorem leads to the final classification formula:

=
P (c(t) = 0|a(t))
P (c(t) = 1|a(t))

mY

i=1

rowsiY

r=1

P (c(t) = 1)

P (c(t) = 0)
· P (c(t) = 0|Ji,r)
P (c(t) = 1|Ji,r)

(4)

5.1. The Weighted Log-Linear Classification Model

We convert the classification formula 4 to a parametrized log-linear model
that assigns di↵erent weights to information from di↵erent database tables.
Adding weight parameters and scale factors to Formula 4 leads to our final
log-linear classification model:

log

✓
P (c = 0|T, J1, . . . , Jm
P (c = 1|T, J1, . . . , Jm)

◆
= w0 + wT log

✓
P (c(t) = 0|a(t))
P (c(t) = 1|a(t))

◆
+

mX

i=1

wi

rows i

rowsiX

r=1

log

✓
P (c(t) = 1)

P (c(t) = 0)

◆
+ log

✓
P (c(t) = 0|Ji,r)
P (c(t) = 1|Ji,r)

◆ (5)

First, the weighted log of the posterior odds given the information in the
target table is computed. Second, for each of the join tables and for each row
in it, we compute the log of: the posterior odds, given the attributes of the
join table, divided by the prior class odds. This quantity measures how much
the information from the join table changes the prior probability of a class
label. Thirdly, the log-contribution from each extended table is weighted and
scaled by the number of its rows. Finally, the weighted log-contributions are
added together to predict the class label. Algorithm 1 shows the classification
algorithm that corresponds to Formula 5.

14

Motivation. A direct application of inter-table independence assigns the same
weight for the information obtained from di↵erent sources. The weights
w0, w1, . . . , wm adaptively control the impact of information from di↵erent
links for class prediction.1

If an object has a large number of links, the information from links con-
tributes many more terms in Equation (5) than the target entity’s attributes.
For example if Jack has taken 6 courses, the information from attributes of
Jack, like ranking, is overwhelmed by information about courses. Normaliz-
ing the total log-contribution from each table by its size puts the contribution
from tables with di↵erent sizes on the same scale: This uses the average log-
contribution from the rows in a table, rather than the sum total of the log-
contributions over all rows in the table. Scaling factors have been previously
used with log-linear models [10, 38].

Algorithm 1 Multi-Relational Data Classification
Input:
(1) A new target instance t.
(2) Extended data base tables J1, . . . , Jk.
(3) Regression weights ~w.
(4) Probabilistic Classifier CT for the target table, Ci for each extended
table.
Output: A predicted class label

1: TP := w0 + w1 · (log(CT (c = 0|a(t))� log(C(c = 1|a(t))) {Posteriors of
the target table}

2: for all (extended tables Ji) do
3: LP := 0
4: for each (row Ji,r containing the target entity t) do

5: LP+ = log
⇣

Ci(c(t=0)|Ji,r)·Ci(c(t)=1)
Ci(c(t=1)|Ji,r)·Ci(c(t)=0)

⌘

6: end for
7: TP+ = wi · 1

rowsi
· LP

8: end for
9: if (TP > 0) return 0

10: else return 1

1For applying Markov Logic Networks as discussed in Section 3, MLN weights can be
obtained by multiplying the logistic regression weights by the log-conditional probabilities.

15

Figure 6: The process of classifying relational data using the Decision Forest

6. Learning Decision Forests With Regression

The log-linear classifier of Algorithm 1 requires as input three compo-
nents. We discuss the construction of each of these components in turn.

(1) For constructing the extended database, in our experimental datasets
it su�ces simply to enumerate the possible valid joins based on Semantic
Relationship Graphs and add the corresponding join tables as views to the
database. The foreign key constraints keep the space of valid table joins
manageable.

(2) For the classifier Ci for the join table Ji, we used probability estimation
trees with the Laplace correction and no post-pruning, as recommended by
Provost and Domingos [6].

(3) To learn the regression weights for combining the contributions from
di↵erent table classifiers, we apply logistic regression as follows. Define bi by

bT = log

✓
P (c(t) = 0|a(t))
P (c(t) = 1|a(t))

◆
, bi =

1

rows i

rowsiX

r=1

log

✓
P (c(t) = 0|Ji,r) · P (c(t) = 1)

P (c(t) = 1|Ji,r) · P (c(t) = 0)

◆
.

Then Formula 5 can be rewritten as a logistic regression formula (Logit
of posterior odds)

log

✓
P (c = 0|T, J1, . . . , Jm
P (c = 1|T, J1, . . . , Jm)

◆
= w0 + wT bT + w1b1 + . . .+ wmbm. (6)

The regression model serves to combine the predictions of the di↵erent
table classifiers. Whereas there are in general many options for combining

16

Algorithm 2 Multi-Relational Simple Decision Forest Induction and meta
regression weight learning (implements Formula (5)
Input: Extended join tables J1, . . . , Jm.
Output:
(1) A forest of decision tree: probabilistic Classifier CT for target table, Ci
for each extended table.
(2) Regression weights ~w.
Call: decision tree learner DT, and logistic regression weight learner LR

1: Fix a training set for DT learning, and a validation set for LR.
2: {Start Decision Trees induction} CT := Call DT (target table T).
3: for each table Ji in D do
4: Ci := Call DT (Ji).
5: end for
6: {Start Logistic Regression.} Create matrix M with m+ 1 columns.
7: for each target object tk in the validation set with the class label c(tk)

do
8: Mk,0 := c(tk)
9: Mk,1 := log(CT (c(tk) = 0|a(tk))� log(C(c(tk) = 1|a(tk))

10: for all join tables Ji do
11: LP := 0
12: for each row Ji,r containing the target entity tk do

13: LP+ = log
⇣

Ci(c(tk)=0)|Ji,r)·Ci(c(tk)=1)
Ci(c(tk)=1)|Ji,r)·Ci(c(tk)=0)

⌘

14: end for
15: Mk,i :=

1
rowsi

· LP
16: end for
17: end for
18: ~w = Call LR(M)

17

classifier predictions [28],[27, Ch.14], the features of the log-linear model (the
bi values) follow from the Inter-Table Independence Assumption of Defini-
tion 1.

Algorithm 2 describes the model learning phase. First, we divide the
learning input data into training and validation set using a division of the
original target table. We learn the classifiers on the training set and the
weights on the validation set, to avoid overfitting. In lines 1 to 5 di↵erent
trees on each table in the extended database are learned. To learn the regres-
sion weights, for each instance tk in the set, feature vectors or independent
variables b1(tk), . . . , bm(tk) are computed. A matrix with one row for each
training instance tk, one column for the class label c(tk), and one column for
each predictor bi(tk) is formed. This matrix is the input for a logistic regres-
sion package. Figure 6 represents the whole process of classifying relational
data using the decision forest.

The run-time complexity of the method is dominated by the cost of ap-
plying a decision tree learner to di↵erent join tables, which in turn depends
essentially on the size of the table joins. Experience with join-based meth-
ods [4, 5, 1] indicates that the table join sizes are manageable, for the follow-
ing reasons: (i) Informative correlations seldom require more than a foreign
key path of length 3, which correspond to joins of 3 tables or less. (ii) The
tuple ID propagation technique is an e�cient virtual join method that finds
the su�cient statistics for learning without materializing the actual table
join [1].

7. Evaluation

In this section, we compare di↵erent configurations of our proposed model
with various relational classification models. We describe the datasets, ba-
sic setting of our experiments, and results in di↵erent evaluation metrics. Our
code and datasets are available for anonymous ftp download from
ftp://ftp.fas.sfu.ca/pub/cs/oschulte/sdf. The hypotheses we investigate are
as follows.

1. That assuming (conditional) independence between only join tables
leads to better use of the database information than assuming inde-
pendence between attributes (as in the multi-relational Naive Bayes
classifier) or randomly selecting attributes.

18

2. That the induction or learning time of methods making independence
assumptions should be much faster than more general methods that do
not.

3. That logistic regression applied to the log-contributions of linked tables
is an e↵ective way of pruning uninformative tables.

7.1. Datasets

We use five benchmark real-world datasets. The datasets feature both
many-to-many and self-join relationships, as indicated, as well as 2-class
and 3-class problems. The semantic relationship graphs for the datasets are
depicted in Figure 7.

Financial Dataset. This dataset was used in the PKDD CUP 1999. Loan

is the target table with 682 instances (606 of loans are successful). Since
86% of the examples are positive, the data distribution is quite skewed. We
followed the modifications of Yin and Han [18, 4] and randomly selected 324
positive instances, and all the negative loans to make the numbers of positive
tuples and negative tuples more balanced. The number of join tables in the
extended database was 8.

Figure 7: Semantic Relationship Graphs: (a)Financial, (b)Hepatitis, and (c)Mondial
dataset.

Hepatitis Database. This data is a modified version of the PKDD’02 Discov-
ery Challenge database. We followed the modification of Frank et al.[39].
Biopsy is the target table with 206 instances of Hepatitis B, and 484 cases
of Hepatitis C. The number of join tables in the extended database was 4.

Mondial Database. This dataset contains data from multiple geographical
web data sources [40]. We predict the religion of a country as Christian
(positive) with 114 instances vs. all other religions with 71 instances. We
followed the modification of She et al. [41]. We use a subset of the tables
and features. Borders is a many-many relationship between Country and

19

Country. To create an acyclic semantic relationship graph for this database,
we duplicated the Country table (cf. [18, 4]). The number of join tables in
the extended database was 5.

MovieLens. This dataset is drawn from the UC Irvine machine learning
repository. It contains two entity tables: User with 941 tuples and Item,
with 1,682 tuples, and one relationship table Rated with 80,000 ratings. The
table Item has 17 Boolean attributes that indicate the genres of a given
movie. The class label is the user attribute age that we discretized into three
bins with equal frequency.

JMDB. This is our most complex dataset, containing information from the
Internet Movie Database (IMDB), about movies, such as titles, ratings, ac-
tors, studios. We obtained it from the IMDB data interface (http://www.imdb.com/interfaces).
The target table is ratings, and the target attribute rank records users, on
average, rank a movie on a scale from 1 to 10. We discretized the ratings
into 3 equal-width intervals, and removed movies that had not been ranked
by any user, for a total of 281,449 target instances. We omitted textual in-
formation, so our orginal database contained 7 tables, with an additional 6
join tables in the extended database.

7.2. Experimental Setting, Systems, and Performance Metrics.

All experiments were done on a Pentium 4 CPU 2.8Ghz and 3GB of RAM
system (except for some on the JMDB dataset, see below). The implementa-
tion used many of the procedures of the data mining software Weka [42]. We
compared the following relational classifiers. The first three are variations
of our own framework and the last three classifiers were developed by other
researchers.

Normalized decision forest Weighted log linear decision forest with scal-
ing factors (Formula 5).

Unnormalized decision forest weighted log linear decision forest with no
scaled weights (Formula 5 with rows i = 1).

Naive decision forest Decision forest with no weights for the trees (For-
mula 4).

TILDE First-order decision tree [19].

20

FORF-NA First-order random forest with no aggregates [12].

Graph-NB Multi-relational naive Bayes classifier [4].

TreeLiker-Relf A propositionalization algorithm that constructs tree-like
nonredundant conjunctive features [16]. We apply a decision tree learner
to the constructed features.

TreeLiker-Poly An extension of TreeLiker that supports the use of aggre-
gate functions for numeric attributes [16].

The datasets MovieLens and JMDB feature class labels with 3 possible
values. We used a multinomial logistic regression model, which learns 2 log-
odds weight vectors with class 3 as the pivot (log-odds of 1 vs. 3 and log-odds
of 2 vs. 3). We converted the log-odds to probabilities using the standard
formula for the multinomial logistic regression model, and classified instances
according to the resulting probability ranking of classes. We made use of the
following implementations.

Decision Tree Learning Weka’s J48 as a decision tree learner on each join
table. For simple decision forests, we used the probability estimation
tree setting that turns o↵ pruning and applies the Laplace correction [6].
We applied the classification tree setting with the features generated
by TreeLiker.

Logistic Regression The simple logistic regression procedure of Weka.

Graph-NB We implemented Graph-NB using the single-table Naive Bayes
Classifier procedure of Weka as the code is not available.

TreeLiker We use the code provided by the system creators, available at
http://ida.felk.cvut.cz/treeliker/. The minimum frequency parameter
is set at the default value 1%.

This design evaluates two di↵erent ways of upgrading the same propo-
sitional decision tree learner to relational data: using the cross-table Naive
Bayes assumption, as in simple decision forests, vs. using propositionalized
features, as in Treeliker.

TILDE and FORF-NA are included in the ACE data mining system [43].
We ran TILDE with the default setting. For FORF-NA we used bagging,

21

chose 25% of features to consider for testing in each node, and fixed the
number of trees in the forest to 33. Vens et al. report that this setting leads
to the most e�cient results in terms of accuracy and running time [12]. As in
previous studies [19, 12, 4], we use a leave-one-out test, where the prediction
for each target entity is based on knowledge of all other entities, and we
average the predictions over all target entities in the test fold. For decision
forests and Graph-NB, we performed ten-fold cross-validation to evaluate
predictive accuracy. In each run we learn the decision tree on a random 8-
fold of data, learn the weights of logistic regression on a 1 fold (validation
set), and test the model on the remaining fold. For the other systems, we
used the evaluation procedures supplied with the systems as recommended
by their creators. (Cross-validation for TILDE , out-of-bag for FORF-NA.)

To evaluate classification performance, we used the following metrics:

Run time Induction time of the model.

Accuracy Percentage of correctly classified instances.

AUC The area under the ROC curve.

Weighted F-measure Sum of the F-measures for each class label, each
weighted according to the number of instances with a particular class
label (class prior). F-measure is the weighted harmonic mean of preci-
sion and recall.

7.3. Results.

We discuss run times for learning, then predictive performance.

7.3.1. Learning Times.
Table 1 reports the induction times of di↵erent relational classifiers on the

three datasets. The fastest system is Graph-NB, the multi-relational Naive
Bayes classifier, which makes the strongest independence assumptions. For
Normalized and Unnormalized Decision Forests, the induction time is basi-
cally the sum of the runtimes of the Naive Decision Forest learner and the
logistic regression. Normalized and Unnormalized Decision Forest di↵er only
in using scaling factors so they have the same induction time. The Decision
Forest learners are very fast as well, but because the Simple Decision For-
est learner considers dependencies within tables, they have a slightly longer
induction time compared to the Multi-relational Naive Bayes classifier. The

22

fast learning times of the independence-based methods on the large JMDB
dataset illustrate that these methods scale well in the dataset size.

The systems based on independence assumptions are 1,000 times or more
faster than the older propositionalization-based systems TILDE and FORF-
NA, which is a dramatic improvement. The state-of-the-art TreeLiker method
is quite fast on the smaller datasets, still about an order of magnitude slower
than decision forest learning. Table 7.3.1 shows the number of relevant fea-
tures constructed by the Treeliker methods. Because TreeLiker constructs a
large set of features, which correspond to subsets (conjunctions) of attributes,
it does not scale well with the size of the dataset, which is illustrated by its
learning time on the JMDB database. TreeLiker did not terminate on JMDB
using our standard system, so to obtain the classification results shown, we
ran it on a high-performance cluster with 554 nodes. In sum, our simu-
lations provide evidence that the cross-table independence assumption of
Definition 1 allows learning to proceed e�ciently by analyzing separate join
tables independently and combining the results in a principled manner. In
contrast, propositionalization methods search a large feature space, and even
a state-of-the-art e�cient method like TreeLiker does not scale well with
dataset size.

Learning Time Simple Decision Forest Reference Methods

Dataset Normalized Unnormalized Naive TILDE FORF-NA Graph-NB TreeLiker-Relf TreeLiker-Poly
Financial 2.3 2.3 1.4 2429 54006 0.8 61.5 41.3
Hepatitis 1.1 1.1 0.54 853 10515 0.21 7.24 6.43
Mondial 0.26 0.26 0.25 0.3 7.07 0.18 11.97 9.51

MovieLens 2.2 2.2 2 3 20 1.3 17.51 16.5
JMDB 13 13 11 NT NT 9 3173.1 506.67

Table 1: Average Induction time of di↵erent algorithms in seconds. Normalized and
Unnormalized Decision Forests use logistic regression to learn weights for join tables. NT
denotes nontermination after 4 days of running. The TreeLiker results on JMDB were
obtained on a high-performance cluster, as described in the text.

No.of Attributes TreeLiker - Relf Treeliker - Poly

MovieLens 53 26
Financial 337 353
Hepatitis 305 185
Mondial 418 40
JMDB 44 33

Table 2: Number of Attributes constructed by the TreeLiker propositionalization methods

23

7.3.2. Predictive Performance.
Table 3 shows the Accuracy, AUC, and F-measure of the di↵erent clas-

sifiers on the three datasets. For the multi-class problems, we report only
accuracy, since there is no standard way to extend f-measure and AUC to
multi-class problems [44], and since the three measures are highly correlated
on the binary class problems. We make the following observations.

1. Overall, the Normalized Decision Forest achieves always good classifi-
cation performance and typically the best.

2. Comparing Naive Decision Forest with Naive Bayes net classifier (Graph-
NB), taking into account within-table dependencies between attributes
of each join table is clearly beneficial. Even the worst Decision Forest
method makes better predictions.

3. Comparing Decision Forests with Random Forests, we found that group-
ing together the features of each join table for a classifier, instead of
learning on randomly selected subset of features, improved the perfor-
mance substantially on two of the three datasets (Hepatitis and Mon-
dial). On Financial, the Normalized and Naive Decision Forest methods
achieved better performance.

Regression Weights. To show how linear regression assigns weights to the
information from di↵erent tables, the weights learned by Normalized and
Unnormalized decision forests for the target table and each extended table of
each dataset are listed in Table 4. There are two extended join tables involv-
ing the Client relation, since in the Semantic Relationship Graph of Financial
there are two pathways to the Client table (see Figure 7). Because both join
tables receive regression weights 0, we show only one as “Client”. The fact
that the nonzero weights are far from uniform shows that regression learns an
importance ranking of the information from di↵erent tables. The 0 weights
demonstrate how regression prunes uninformative join tables. For instance,
on the Mondial database, the weights indicate that the most important fac-
tor in predicting the majority religion of a country is the majority religion
of its neighbors (1.43), the second most important factor is the continent on
which the country is located (1.23), and the third are the attributes of the
country contained in the country target table (0.94). If knowledge discovery
is the goal of data analysis, the regression weights enhance the information
conveyed by the decision trees, or extracted rules (see Section 3.2).

24

Financial Simple Decision Forest Reference Methods

Method Normalized Unnormalized Naive TILDE FORF-NA Graph-NB TreeLiker-Relf TreeLiker-Poly
Accuracy 92% 87% 91% 89% 89% 81% 87% 88%
AUC 0.88 0.85 0.85 0.69 0.75 0.82 0.67 0.58

F-measure 0.89 0.84 0.89 0.88 0.87 0.79 0.85 0.86

Hepatitis Simple Decision Forest Reference Methods

Method Normalized Unnormalized Naive TILDE FORF-NA Graph-NB TreeLiker-Relf TreeLiker-Poly
Accuracy 84% 84% 80% 61% 63% 75% 69% 67%
AUC 0.88 0.86 0.80 0.61 0.64 0.79 0.74 0.69

F-measure 0.79 0.75 0.75 0.59 0.61 0.68 0.69 0.67

Mondial Simple Decision Forest Reference Methods

Method Normalized Unnormalized Naive TILDE FORF-NA Graph-NB TreeLiker-Relf TreeLiker-Poly
Accuracy 84% 84% 83% 71% 71% 73% 80% 77%
AUC 0.85 0.86 0.86 0.75 0.79 0.74 0.833 0.702

F-measure 0.83 0.82 0.81 0.78 0.77 0.75 0.79 0.74

Multi-Class Simple Decision Forest Reference Methods

Method Normalized Unnormalized Naive TILDE FORF-NA Graph-NB TreeLiker-Relf TreeLiker-Poly
MovieLens-Acc 61.5% 60% 62% 47% 47% 51% 61% 63%
JMDB-Acc 57% 56% 53% NT NT 51.7% 51% 51%

Table 3: Performance of di↵erent classifiers by dataset. For multi-class problems we report
accuracy only.

8. Conclusion

A goal of relational classification is to make predictions that utilize in-
formation not only about the target table but also about related objects.
Decisions trees are a well-established predictive method for propositional
single table data. We proposed a new way of upgrading them for relational
data classification. The basic idea is to independently learn di↵erent deci-
sion trees for di↵erent related tables, and then combine their contributions
in a new log-linear model to predict class probabilities. The log-linear model
is derived from an explicitly defined cross-table Naive Bayes independence
assumption. Features that distinguish this method from other relational de-
cision tree learners include the following. (1) Aggregation functions are not
used, which avoids some information loss and allows for e�cient learning. (2)
Information from all links is considered in classification. (3) Logistic regres-
sion is used to weight information from di↵erent tables. Empirical evaluation
on three datasets showed very fast runtimes, with improved predictive per-
formance.

A natural variant of our approach, especially for continuous attributes,

25

Financial w0 Loan Account Order Trans Disp District Card Client
Normalized DF -0.19 0.52 0 0 0.2 0.02 0 0 0

Unnormalized DF -0.34 0.38 0 0.34 0.2 0 0 0 0

Hepatitis w0 Biopsy Patient In-Hosp Out-Hosp Interferon
Normalized DF 0.29 0.3 0.2 0.9 0 0.3

Unnormalized DF 0.97 0.76 0.4 0.22 0.03 0.9

Mondial w0 Country Borders Country2 Continent Economy Government
Normalized DF 0 0.94 0 1.43 1.23 0.86 0.7

Unnormalized DF 0 0.8 0.3 1.09 1.1 0.79 0

Table 4: The regression weights indicating the importance of linked tables for datasets
with binary class labels. Normalized DF divides a weights by the size of the associated
join table.

is to use logistic regression as the base probabilistic classifier, instead of
decision trees. This would provide regression weights on attributes/features
within each table in addition to the weights for each table we learned in our
experiment.

A promising direction for future work is to combine our log-linear model
with propositionalization techniques. While a search for informative aggre-
gate features is computationally expensive, when it succeeds, the new aggre-
gate features can increase the predictive accuracy (e.g., [39, 12]). There are
several possibilities for a combined hybrid approach. (i) Once good aggre-
gate features are found, they can be treated like other features and used in
a decision tree. (ii) A simple decision forest is fast to learn and can estab-
lish a strong baseline for evaluating the information gain due to a candidate
aggregate feature. (iii) The regression weights can be used to quickly prune
uninformative join tables with 0 or small weights, which allows the search
for aggregate features to focus on the most relevant link paths.

Acknowledgements

This research was supported by a Discovery grant to the senior author by
the Natural Sciences and Engineering Research Council of Canada. Anony-
mous reviewers for Decision Support Systems provided helpful comments.
We are grateful to Ondvrej Kuvzelka for help with running Treeliker.

26

References

[1] X. Yin, J. Han, Exploring the power of heuristics and links in multi-
relational data mining, in: ISMIS, LNAI, Springer, 2008, pp. 17–27.

[2] J. Neville, D. Jensen, Relational dependency networks, in: Introduction
to Statistical Relational Learning [45], Ch. 8, pp. 239–268.

[3] J. Neville, D. Jensen, B. Gallagher, R. Fairgrieve, Simple estimators for
relational bayesian classifiers, in: ICDM, IEEE Computer Society, 2003,
pp. 609–612.

[4] H. Chen, H. Liu, J. Han, X. Yin, Exploring optimization of semantic
relationship graph for multi-relational Bayesian classification, Decision
Support Systems 48 (1) (2009) 112–121.

[5] G. Manjunath, M. N. Murty, D. Sitaram, A practical heterogeneous
classifier for relational databases, in: ICPR, IEEE Computer Society,
2010, pp. 3316–3319.

[6] F. J. Provost, P. Domingos, Tree induction for probability-based rank-
ing, Machine Learning 52 (3) (2003) 199–215.

[7] D. Fierens, J. Ramon, H. Blockeel, M. Bruynooghe, A comparison of
pruning criteria for probability trees, Machine Learning 78 (1-2) (2010)
251–285.

[8] H. Zhang, J. Su, Conditional independence trees, in: ECML, LNAI,
Springer, 2004, pp. 513–524.

[9] R. Kohavi, Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid, in: KDD, AAAI Press, 1996, pp. 202–207.

[10] P. Domingos, D. Lowd, Markov Logic: An Interface Layer for Artificial
Intelligence, Morgan and Claypool Publishers, 2009.

[11] M. Brydon, A. Gemino, You’ve data mined. now what?, The Com-
munications of the Association for Information Systems 22 (33) (2008)
603–616.

27

[12] A. Van Assche, C. Vens, H. Blockeel, S. Dvzeroski, First order random
forests: Learning relational classifiers with complex aggregates, Machine
Learning 64 (1) (2006) 149–182.

[13] S. Kramer, N. Lavrac, P. Flach, Propositionalization approaches to re-
lational data mining, in: Relational Data Mining, Springer, 2000, pp.
262–286.

[14] J. Neville, D. Jensen, L. Friedland, M. Hay, Learning relational proba-
bility trees, in: KDD, ACM Press, 2003, pp. 625–630.

[15] A. Popescul, L. Ungar, Feature generation and selection in multi-
relational learning, in: Introduction to Statistical Relational Learning
[45], Ch. 16, pp. 453–476.

[16] O. Kuzelka, F. Zelezný, Block-wise construction of tree-like relational
features with monotone reducibility and redundancy, Machine Learning
83 (2) (2011) 163–192.

[17] N. Landwehr, K. Kersting, L. D. Raedt, nfoil: Integrating näıve bayes
and foil, in: AAAI, AAAI Press, 2005, pp. 795–800.

[18] X. Yin, J. Han, J. Yang, P. S. Yu, Crossmine: E�cient classification
across multiple database relations, in: ICDE, IEEE Computer Society,
2004, pp. 399–410.

[19] H. Blockeel, L. D. Raedt, Top-down induction of first-order logical de-
cision trees, Artificial Intelligence 101 (1-2) (1998) 285–297.

[20] J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann
Publishers Inc., 1993.

[21] A. Atramentov, H. Leiva, V. Honavar, A multi-relational decision tree
learning algorithm - implementation and experiments, in: ILP, Vol. 2835
of LNAI, Springer, 2003, pp. 38–56.

[22] J.-F. Guo, J. Li, W.-F. Bian, An e�cient relational decision tree classi-
fication algorithm, in: ICNC, Vol. 3, IEEE Computer Society, 2007, pp.
530–534.

28

[23] A. Y. Ng, M. I. Jordan, On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes, in: NIPS, Vol. 14,
MIT Press, 2001, pp. 841–848.

[24] Q. Lu, L. Getoor, Link-based classification, in: ICML, AAAI Press,
2003, pp. 496–503.

[25] M. Ceci, A. Appice, D. Malerba, Mr-SBC: A multi-relational näıve Bayes
classifier, in: PKDD, Vol. 2838 of LNAI, Springer, 2003, pp. 95–106.

[26] P. A. Flach, N. Lachiche, Naive Bayesian classification of structured
data, Machine Learning. 57 (3) (2004) 233–269.

[27] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[28] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-
rithms, Wiley, 2004.

[29] L. Getoor, N. Friedman, D. Koller, A. Pfe↵er, B. Taskar, Probabilistic
relational models, in: Introduction to Statistical Relational Learning
[45], Ch. 5, pp. 129–173.

[30] B. Taskar, P. Abbeel, D. Koller, Discriminative probabilistic models for
relational data, in: UAI, Morgan Kaufmann Publishers Inc., 2002, pp.
485–492.

[31] T. N. Huynh, R. J. Mooney, Discriminative structure and parameter
learning for markov logic networks, in: ICML, Vol. 307, ACM, 2008, pp.
416–423.

[32] O. Schulte, H. Khosravi, Learning graphical models for relational data
via lattice search, Machine Learning 88 (3) (2012) 331–368.

[33] T. Khot, S. Natarajan, K. Kersting, J. W. Shavlik, Learning markov
logic networks via functional gradient boosting, in: ICDM, IEEE Com-
puter Society, 2011, pp. 320–329.

[34] D. Jensen, J. Neville, B. Gallagher, Why collective inference improves
relational classification, in: SIGKDD, ACM Press, 2004, pp. 593–598.

29

[35] J. D. Ullman, Principles of database systems, 2nd Edition, W. H. Free-
man & Co., 1982.

[36] H. Khosravi, O. Schulte, J. Hu, T. Gao, Learning compact markov logic
networks with decision trees, Machine Learning 89 (3) (2012) 257–277.

[37] P. Domingos, M. Pazzani, Beyond independence: Conditions for the op-
timality of the simple Bayesian classifier, in: ICML, Morgan Kaufmann,
1996, pp. 105–112.

[38] R. Raina, Y. Shen, A. Y. Ng, A. Mccallum, Classification with hybrid
generative/discriminative models, in: NIPS, MIT Press, 2003, pp. 545–
552.

[39] R. Frank, F. Moser, M. Ester, A method for multi-relational classifica-
tion using single and multi-feature aggregation functions, in: PKDD,
Vol. 4702 of LNAI, Springer, 2007, pp. 430–437.

[40] W. May, Information extraction and integration: The mondial case
study, Tech. rep., Universität Freiburg, Institut für Informatik (1999).

[41] R. She, K. Wang, Y. Xu, P. S. Yu, Pushing feature selection ahead of
join, in: SIAM SDM, 2005, pp. 536–540.

[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Wit-
ten, The weka data mining software: an update, SIGKDD Explorations
11 (1) (2009) 10–18.

[43] H. Blockeel, L. Dehaspe, J. Ramon, J. Struyf, A. Van Assche,
C. Vens, D. Fierens, The ACE Data Mining System: User’s Manual,
http://dtai.cs.kuleuven.be/ACE/doc/ACEuser-1.2.16.pdf (2009).

[44] R. Esṕındola, N. Ebecken, On extending f-measure and g-mean metrics
to multi-class problems, Data mining VI: Data mining, text mining and
their business applications 35 (2005) 25–34.

[45] L. Getoor, B. Taskar, Introduction to statistical relational learning, MIT
Press, 2007.

30

