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Abstract

Occam’s razor directs us to adopt the simplest hypothesis consistent with the
evidence. Learning theory provides a precise definition of the inductive sim-
plicity of a hypothesis for a given learning problem. This definition specifies a
learning method that implements an inductive version of Occam’s razor. As a
case study, we apply Occam’s inductive razor to causal learning. We consider
two causal learning problems: learning a causal graph structure that presents
global causal connections among a set of domain variables, and learning context-
sensitive causal relationships that hold not globally, but only relative to a con-
text. For causal graph learning, Occam’s inductive razor directs us to adopt the
model that explains the observed correlations with a minimum number of direct
causal connections. For expanding a causal graph structure to include context-
sensitive relationships, Occam’s inductive razor directs us to adopt the expan-
sion that explains the observed correlations with a minimum number of free
parameters. This is equivalent to explaining the correlations with a minimum
number of probabilistic logical rules. The paper provides a gentle introduction
to the learning-theoretic definition of inductive simplicity and the application
of Occam’s razor for causal learning.

1. Introduction: Causal Learning and Inductive Simplicity

An inductive version of Occam’s razor directs us to adopt the simplest hypoth-
esis consistent with the evidence. This raises the question of how to define
simplicity. In this paper we describe a learning-theoretic topological concept
of inductive simplicity. As a case study, we apply the concept to an important
and challenging inductive problem: inferring causal relationships from observed
correlations among variables.

Learning Causal Graphs. Causal graphs are a widely used model class for rep-
resenting such relationships (also known as Bayesian networks [28, 29, 37]). We
show that the inductive simplicity rank of a causal graph is measured exactly
by the number of edges in the graph: The smaller this number is, the greater
is the model’s inductive simplicity. Thus the disconnected graph is simplest,
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and the fully connected graph the most complex. Occam’s razor for learning
causal graphs therefore directs us to adopt a graph that explains the observed
correlations with a minimum number of direct causal links.

Learning Context-Sensitive Causal Relationships. As a second study in causal
learning, we examine context-sensitive causal relationships, that hold only in
a given context. For example, di↵erent subpopulations may exhibit di↵erent
causal connections. A common approach to learning context-sensitive causal
relationships is to first learn a causal graph that describes general causal rela-
tionships, then expand the causal graph with a model of context-sensitive rela-
tionships. Context-sensitive causal relationships can be represented in graphs
whose edges are labelled with specific values of variables. These graphical rep-
resentations can be converted to probabilistic logical rules of the form “if the
following causes obtain, then the e↵ect obtains with probability p [27]. There-
fore a method for learning context-sensitive relationships can also be used to
learn probabilistic logical rules that represent statistical patterns in the data.
We show that the inductive simplicity rank of a context-sensitive causal model
is measured exactly by the number of free parameters in the model: The smaller
this number is, the greater is the model’s inductive simplicity. In this sense, the
learning-theoretic concept agrees with widely used statistical model selection
scores (e.g., BIC and AIC [4]), which also use the number of free parameters.
While the methodological recommendations are similar, the justification is very
di↵erent: A statistical model selection score penalizes complex models with
many parameters to avoid overfitting, which improves out-of-sample generaliza-
tion. The learning-theoretic justification is in terms of optimality criteria for a
learning method: maximizing the simplicity of the selected models minimizes
the worst-case number of times that a causal graph learner may have to change
its model.

Learning Theory and Inductive Simplicity: General Concepts. The paper presents
a gentle introduction to the learning-theoretic definitions and theorems that
lead to an inductive version of Occam’s razor. We begin with the concept of
a learning problem. A learning problem has three components: i) A space of
alternative hypotheses, ii) a set of possible evidence items that learning uses to
decide among di↵erent hypotheses, and iii) a definition of which hypotheses are
consistent with which evidence items. We discuss how causal learning can be
framed as a learning problem in this sense.

We present a general definition of Occam’s razor for a given learning prob-
lem with a finite space of alternative hypotheses. Finite hypothesis spaces are
su�cient for our causal learning case study, and the finiteness assumption sim-
plifies technical definitions and theorems. Learning theorists have developed
the concept of inductive simplicity more generally for infinite hypothesis spaces
[24]. In a finite hypothesis space, inductive simplicity is defined in terms of the
branching structure of the hypothesis space as follows. The inductive simplicity
rank of a hypothesis H is the length of the longest chain of nested hypotheses,
starting with the hypothesis H. One hypothesis H1 is nested within another
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H2 if all evidence items that are consistent with H1 are also consistent with H2,
but not vice versa. This simplicity concept has several noteworthy features.

1. Although in practice a hypothesis is described within a hypothesis lan-
guage, its inductive simplicity ranking is entirely a function of its obser-
vational content. Inductive simplicity therefore is completely independent
of the choice of language for describing hypotheses.

2. Inductive simplicity depends on the learning context; it is relative to the
entire hypothesis space. A hypothesis does not have an intrinsic inductive
simplicity rank, but only a rank relative to alternatives under considera-
tion. If the set of alternatives under consideration changes, the inductive
complexity of a hypothesis can change as well [32].

3. A precise definition of inductive simplicity leads to a precise definition of
Occam’s razor for inductive inference. The inductive version of Occam’s
razor that corresponds to the topological definition can be rigorously jus-
tified in terms of learning performance: We show that Occam’s inductive
razor is the only learning method that achieves reliable, steady, and fast
convergence to a correct hypothesis.

Applications of Inductive Simplicity. This theorem provides a justification of
Occam’s razor in terms of learning performance that is independent of whether
the inferences underwritten by Occam’s inductive razor are intuitively plausible.
Nonetheless, it is interesting to ask whether in cases of interest, Occam’s induc-
tive razor directs us towards plausible inferences. The answer is generally yes:
We have already described the results for causal learning. Other case studies
include Goodman’s New Riddle of Induction, where Occam’s inductive razor
selects “all emeralds are green” over “all emeralds are grue” [33], and infer-
ring conservation laws in particle physics, where the Occam method rediscovers
the laws in the important Standard Model of particle physics [34]. This paper
shows, using the example of causal learning, how learning theory can be applied
to substantive real inductive problems.

Paper Organization. We introduce the concept of a learning problem using an
abstract toy example. Then we discuss how causal graph learning can be framed
as a learning problem. The toy example serves to introduce performance criteria
for a learning method. We give the general definition of inductive simplicity for a
finite hypothesis space, then prove the relationship between inductive simplicity
and optimal learning performance. Causal learning illustrates these results in a
concrete setting. We first apply the general theory to the problem of learning
causal graph structures, then to the problem of learning context-senstive causal
relationships.

2. Definition of Learning Problems

We first introduce general concepts from learning theory and present some gen-
eral results concerning inductive simplicity. These concepts have been used
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with di↵erent nomenclature depending on the intended application [15, 16, 25].
We present a framework that is as simple as possible, while expressive enough
to model causal learning. Our nomenclature is intended to be appropriate for
discussing learning in general (rather than, e.g., language learning problems, in
particular). After introducing the general concepts, we present in detail a model
for applying them to causal graph learning.

2.1. Learning Problems

Learning begins with observations. The first part of a learning problem is there-
fore a set of evidence items. For learning-theoretic analysis, a sequence of
evidence items is the basis for drawing inductive conclusions; more formally, a
sequence of evidence items is the input to a learning algorithm.

Examples. In modelling high-energy physics, an evidence item may be a
single reaction that physicists report as having observed in a particle acceler-
ator [34]. In cognitive psychology, an evidence item may be a reaction by an
experimental subject to an input stimulus that is to be explained by a model of
cognitive architecture [12]. In inductive problems often discussed in philosophy,
an evidence item may be the color of a swan, the color of an emerald, or the
observation of a sunrise on a given day. In language learning, an evidence item
may be a single sentence heard by a child [13].

The second part of a learning problem is a space of hypotheses, possible
explanations/models of the evidence. This space represents the background
knowledge on which learning is based.

Examples. In high-energy physics, a set of conservation laws defines which
particle reactions are possible. In cognitive architectures, a specification of
cognitive models and their interconnections can explain behavior. In language
learning, a grammar defines a set of well-formed sentences.

The third part of a learning problem is a specification of which evidence items
are consistent with which hypotheses. This specifies the prediction made by a
hypothesis, or its empirical content.

Examples. In high-energy physics, a reaction is consistent with a set of
conservation laws if it conserves all quantities posited by the conservation laws.
A cognitive computational architecture is consistent with a subject’s reaction
to an input stimulus if the reaction is the same as the output computed by
the hypothesized system. In language learning, a sentence is consistent with a
grammar if it can be generated by the grammar.

In sum, we have the following definition of a learning problem.

Definition 1. A learning problem consists of the following three components.

Evidence Items A countable set of evidence items E.

Hypotheses A finite set of hypotheses H.

Consistency A consistency relation between a hypothesis and an evidence item
that specifies which hypotheses are consistent with which evidence items.
Thus the consistency relation is a subset of the Cartesian product E⇥H.
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Even more general definitions of a learning problem are possible (see e.g.,
[10]). The definition given is equivalent to the concept of a language learning
problem used in formal learning theory [15]. Learning-theoretic analysis applies
to infinite hypothesis sets as well as finite ones. We assume finiteness only to
simplify the definitions.
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1,2 1,3 

2 

Evidence Item 2 1 3 
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1st mind 
change 

{1,2,3} 
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change 
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Conjectures of a learner as evidence items accumulate 

Evidence Items = {1,2,3} 

Figure 1: Left: A set of abstract evidence items (three) and a simple abstract hypothesis
space. A hypothesis is represented as the set of evidence items that are consistent with it.
Links between hypotheses correspond to set inclusion. Right: A learning sequence for this
learning problem. Three evidence items are presented in sequence (2,1,3). After each new
evidence item, the output of the learner is shown.

2.2. Data Streams

A data stream is an infinite sequence of evidence items (or #). The content
of a data stream is the set of evidence items that appear in the sequence. A
hypothesis is correct for a data stream if the evidence items in the data stream
comprise all and only those consistent with the hypothesis. A data stream is
possible for a learning problem if some alternative hypothesis is correct for it.
In other words, we assume that every possible complete sequence of evidence
items can be explained by some hypothesis under consideration. It is however
possible that for a finite evidence sequence, no hypothesis is consistent with all
and only the evidence items observed. For instance in the toy problem above, if
the first evidence sequence is (1), there is no hypothesis in the space is consistent
with item 1 and only 1.

An important issue for both the philosophy and the practice of science is that
di↵erent hypotheses may be empirically equivalent, meaning that they are
correct for exactly the same data streams, and hence consistent with exactly the
same evidence items. This occurs in many practical hypothesis spaces, because
hypotheses are described using a hypothesis language, and just like natural lan-
guage, a hypothesis language typically allows us to express the same content in
di↵erent ways. For example one set of conservation laws is empirically equivalent
to another if they both span the same linear subspace [34]. We discuss empir-
ical equivalence for causal graphs in Section 3.3 below. This phenomenon has
been described as global underdetermination [16]. In statistical terminology, it is
referred to as the identifiability problem, where even an infinitely large sample
does not entail a uniquely correct model and/or parameter values for the model.
Global underdetermination raises the problem of defining which hypothesis is
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the correct one for a complete set of observations when there are empirically
equivalent alternatives. A simple approach to global underdetermination is to
have learners output an equivalence class of hypotheses. In e↵ect, this changes
the hypothesis space so that a hypothesis in the new space is an equivalence
class of hypotheses in the original space. A benefit of focusing on empirical
equivalence classes is that in many problems, determining which hypotheses are
empirically equivalent is a problem of independent interest. In the following we
assume that learners output equivalence classes of hypotheses. As we show in
the causal graph example, an equivalence class of original hypotheses can be
often be described compactly.

3. The Causal Graph Structure Learning Problem

We present a view of causal graph learning as a learning problem in the sense
of Definition 1, following previous work [18, 36]. In this paper, we use the term
“causal graph” as essentially synonymous with “Bayesian network”. The ap-
proaches for learning Bayesian networks are similar to those for causal graphs.
The main di↵erence is in the interpretation: causal graphs are viewed as repre-
senting the e↵ects of actions or interventions. For further discussion see [37, 29].

3.1. Hypothesis Space

A causal graph structure is a directed acyclic graph (DAG). The hypothesis
space is the set of causal graphs that share a common fixed set of nodes V =
{X1, X2, . . . , Xn}. The nodes are also called its variables. Every node X has
a possible domain of values. In this paper we consider only discrete variables
with finite domains. We write X = x for an assignment of value to variable X,
and use boldface vector notation such as X = x for a set of variables with an
assignment of values. Figure 2(left) shows a causal graph from [29, p.15]. The
graph represents causal relationships in an intuitive visual way, where parents
are direct causes of their children. For example, a sprinkler running directly
causes the pavement to be wet, and wetness directly causes the pavement to
be slippery. Indirect causes can be read o↵ by following the causal arrows. For
example, a sprinkler running is an indirect cause of the pavement being slippery.

season

sprinkler rain

wet

slippery

season

sprinkler rain

wet

slippery

Figure 2: The sprinkler network (left) and its pattern (right). Sprinkler and Rain share Season
as a common cause, and Wetness as a common e↵ect. The wetness of the pavement is a direct
cause of its being slippery.
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3.2. Evidence Items

An evidence item is a conditional dependence statement of the form

X?6? Y|Z (1)

where X, Y, and Z are disjoint sets of variables. Intuitively, a dependence
statement can be read as “the variables in the set X are relevant to the variables
in the set Y, given an assignment of values to the variables in the set Z.”

Examples. The most common interpretation of a dependence statement is as
expressing a probabilistic dependence. Probabilistic dependencies are defined
with respect to a joint distribution over the nodes in the graph. A joint
distribution specifies a probability

P (V = v)

for each complete assignment of values to the variables. From a joint distribution
we obtain marginal distributions over any subset X of variables

P (Y = y) ⌘
X

x

P (Y = y,X = x)

where X is the set of variables V �Y other than Y.
A joint distribution also specifies conditional distributions via the definition

P (Y = y|X = x) ⌘
P (Y = y,X = x)

P (X = x)

where X and Y are disjoint, and P (X = x) > 0. In what follows we assume
that all joint probabilities are positive so that conditional probabilities are well
defined. For a discussion of learning causal graphs with 0 joint probabilities,
which may occur with deterministic causal relationships, see [23].

The meaning of a conditional dependence statement can be defined in terms
of a probabilistic inequality as follows:

X?6? Y|Z ⌘ 9x,y, z.P (Y = y|X = x,Z = z) 6= P (Y = y|Z = z). (2)

For example, in the graph of Figure 2, a joint distribution may specify a
probability of 0.1 that it is summer, the sprinker is on, and all other variables
are simultaneously true:

P (season = summer , sprinkler = on, rain = T , wet = T , slippery = T ) = 0.1.

The joint distribution may entail the following claim: the probability that
the pavement is wet is a↵ected by the probability that the season is summer,
even given that the sprinkler is on:
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P (wet = T |season = summer , sprinkler = on) 6= P (wet = T |sprinkler = on)

which witnesses the dependence assertion that

wet?6? season|sprinkler.

3.3. Consistency of a Causal Graph With Dependency
Statements

For parametric models in general, a model structure is consistent with a set of
evidence items if there exists an assignment of values to the model parameters
that entails the observed evidence. This logic can be applied to causal graphs
as follows. The parameters of a causal graph are conditional probabilities that
specify, for each assignment of a value to a node, and for each assignment of
values to the node’s parents, the probability of the child node value, given
the parent values. The combination of (graph structure + parameters) defines
a joint distribution P over the nodes in the graph. Such a combination is
consistent with a set of observed dependencies if the dependencies are entailed by
the joint distribution P . A causal graph structure G by itself is then consistent
with a set of dependence statements of the form 1 if there exists a parameter
assignment for the graph G that is consistent with the observed dependencies.
Figure 3 illustrates the logic of this definition.

The combination of (graph structure + parameters) defines a joint distribu-
tion via the product formula: multiply together all the conditional probabilities
defined by each child-parent value assignment. For instance, for the graph in
Figure 2(left), the joint probability that all variables above would be defined by
the product

P (season = summer , sprinkler = on, rain = T , wet = T , slippery = T )

= P (season = summer)⇥ P (sprinkler = on|season = summer)⇥ P (rain = T |season = summer

⇥ P (wet = T |sprinkler = on, rain = T )⇥ P (slippery = T |wet = T )

where the conditional probabilities that appear in this expression are specified
as parameter values for the causal graph.

Causal graphs allow us to compute joint probabilities that describe the e↵ects
of interventions. For example, suppose we turn on the sprinkler given the causal
structure of Figure 2. The joint distribution given this intervention can be
computed by removing the edge season ! sprinkler—which represents that
the value sprinkler has been determined exogenously outside the system—and
using the conditional probabilities in the resulting truncated graph to compute
joint probabilities. For more examples and details please see [29].

Graph Dependencies and d-Separation. It may appear that determining whether
a graph structure G is consistent with a given set of dependencies is di�cult be-
cause searching through the set of all possible parameter assignments is di�cult.
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Causal Graph Structure Conditional Probability Parameters 

Parametrized Causal Graph 

Joint Probability Distribution 

Dependency Statements 

entails 

defines 

Figure 3: Consistency of Causal Graph Structure with Observed Dependency Statements. A
parametrized causal graph is consistent with observed dependencies if its joint distribution
entails the dependencies. A causal graph structure is consistent with observed dependencies
if there is a parametrization of the structure that is consistent with the dependencies.

However, causal graph theory has developed a graph-based criterion, known as
d-separation, that facilitates an e�cient check whether a graph structure is
consistent with given dependencies based on the links only, without reference to
parameter values. For readers unfamiliar with this criterion, we provide a review
in the appendix. In terms of d-separation, a causal graph structure is consistent
with observed dependencies if it is an I-map of the given dependencies. This
means that if any node set X is d-separated from another Y by the nodes Z,
then the dependency statement X?6? Y|Z is not in the given dependencies.

The d-separation criterion also makes it possible to provide a graphical char-
acterization of causal graphs that are empirically equivalent, that is, that are
consistent with exactly the same set of dependency statements. Two nodes
X,Y are adjacent in a graph G if G contains an edge X ! Y or Y ! X. The
pattern of DAG G is the partially directed graph that has the same adjacen-
cies as G, and contains an arrowhead X ! Y if and only if G contains a triple
X ! Y  Z where X and Z are not adjacent. Figure 2 (right) illustrates the
concept. Verma and Pearl proved that two graphs G1 and G2 are consistent with
the same dependency statements if and only if they lead to the same pattern [40,
Thm. 1]). Thus we can use a pattern as a syntactic representation of an empir-
ical equivalence class of graphs. This completes our description of causal graph
learning as an instance of a learning problem: Evidence items are conditional
dependence statements, hypotheses are patterns (equivalence classes of causal
graphs), and a hypothesis is consistent with a set of dependence statements if
the dependencies are entailed by applying d-separation to the graph. We next
discuss the assumptions and limitations of this model (see also the predecessor
paper by Schulte et al. [36]).

4. Discussion: Assumptions and Limitations

The key assumptions are characteristic of all learning-theoretic applications,
concerning the correctness and completeness of the available evidence, as well
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as the adequacy of the hypotheses under consideration. We discuss how our
assumptions relate to previous work on learning causal graphs.

Approaches to Learning Causal Graphs. There are two well established gen-
eral approaches to learning a causal graph, or Bayesian network structure.
Constraint-based (CB) methods employ a statistical test to detect conditional
(in)dependencies given a data sample, and then compute a graph structure
that fits the (in)dependencies [5, 37]. Score-based methods search for models
that maximize a model selection score [14]. Statistical model selection scores
typically balance model fit—measured by the likelihood of the data under the
model—against model complexity—often measured by the number of model
parameters. For example, the AIC score subtracts the number of model pa-
rameters from the data likelihood. A key di↵erence is that a statistical model
selection score measures the fit of a model to data as a continuous quantity
that comes in degrees. As the name “constraint” suggest, CB methods evalu-
ate graphs in a Boolean fashion against the data: a graph either satisfies the
observed (in)dependencies or not. Our paper falls in the CB paradigm, because
CB methods are based on a discrete notion of consistency that allows us to apply
learning-theoretic analysis. An alternative recent approach to applying learning
theory to statistical problem is to develop the theory directly for probabilistic
models [19, 10], where consistency is taken to be a matter of degree.

Obtaining Dependence Statements from Statistical Tests. A dependence state-
ment existentially quantifies over possible values of variables: it asserts that
there exist specific values x,y, z such that if the conditioning variable set Z
takes on the values z, then the values x for X do not a↵ect the probability that
Y takes on value y. This existentially quantified statement can be derived from
basic unquantified probabilistic inequalities of the form

P (Y = y|X = x,Z = z) 6= P (Y = y|Z = z) (3)

for fixed values x,y, z. Such basic probabilistic inequalities can be ascer-
tained using statistical tests. In practice, a Bayesian network structure learner
obtains a random sample d drawn from the data generating joint distribution
over the variables V, and applies a suitable statistical criterion to decide if a
dependency X?6? Y |S holds [37], [39, Sec.4]. Many constraint-based approaches
to learning causal graphs use a statistical test as follows: given a query “Does
X?6? Y |S hold?”, the system answers “yes” if the test rejects the hypothesis
X ?? Y |S, and “no” otherwise. The assumption that this procedure yields
correct results is called the assumption of valid statistical testing [5, Sect.6.2].
Compared to this assumption, our model of learning from conditional dependen-
cies (positive data) is more realistic in two respects. First, the model assumes
only that dependency information is available, but does not rely on indepen-
dence data. In fact, many statisticians hold that no independence conclusion
should be drawn when a statistical significance test fails to reject an indepen-
dence hypothesis [11], because there is no bound on the probability of falsely
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accepting an independence hypothesis after a failure to reject.1 Second, the
dependency learning model does not assume that the dependency information
is supplied by an oracle all at once, but explicitly considers learning in a set-
ting where more information becomes available as the sample size increases. Our
model still assumes that a statistically significant correlation does not disappear
as the sample size increases. The extent to which this assumption is plausible
depends on the testing strategy that extracts correlations from the given sam-
ples. The most common approach in constraint-based methods is to employ a
fixed conservative significance level (e.g., ↵ = 0.1% [37, Ch.5], [6], [39]) for any
sample size; with this kind of testing strategy, our assumption that the store of
observed correlations grows monotonically is quite plausible.

Complete Data Enumeration. This observation supports the standard assump-
tion in learning theory that a complete infinite data stream enumerates exactly
the true evidence items; in our case, the dependencies that are true in a domain.

Adequacy of Hypothesis Space. In addition, the learning model model assumes
that these true domain dependencies can be represented exactly by a causal
graph. In causal graph theory, this assumption is known as faithfulness. For
discussions of the faithfulness assumption, see [29, Ch.2.4], [41], [38, Ch.8.1]).

As the causal graph example shows, defining the three components of a
learning problem for a realistic scenario can be a substantial task. Once this
is accomplished, we can apply powerful results from general learning theory
to determine optimal learning algorithms for the learning problem. We review
some of these general results and apply them to causal graph structure learning
in the next section.

5. Learning Methods and Optimal Learning

We generically denote learners by upper-case Greek letters such as  ,�. In-
tuitively, a learner takes as input a sequence of evidence items—called the
data sequence, and produces as output a member of the hypothesis space. It
is often convenient to slightly generalize this learning model: First, we allow
the data sequence to contain the special non-evidence symbol {#} to model
pauses in data presentation. Second, we allow the learner to output {?}, where
? corresponds to the vacuous output “no guess”.

Figure 1 illustrates these concepts. There are three evidence sequences,

(2), (2, 1), (2, 1, 3).

The learner maps these to a sequence of conjectures outputs

{2}, {1, 2}, {1, 2, 3}.

Each output is consistent with exactly the observed items.

1Schulte et al. [36] describe the Occam method for learning from independencies as evi-
dence items.
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5.1. Performance Criteria for Learning

Learning theorists have studied a number of performance criteria for succes-
ful learning (often referred to as identification criteria [3]). In this paper we
consider three: i) reliable identification of a correct hypothesis in the limit, ii)
steady identification of a correct hypothesis, i.e., minimizing hypothesis changes,
and iii) fast identification of a correct hypothesis, i.e., minimizing time to con-
vergence.

We say that a learner identifies a correct hypothesis on an infinite data
stream if after some finite time, the learner outputs a hypothesis that is cor-
rect for the entire data stream. Identification requires induction in the sense
of going beyond the data: although the learner typically has not observed all
evidence items that may appear, the hypothesis it selects does concern future
evidence items. A learner reliably identifies the correct hypothesis in a learn-
ing problem if it identifies a correct hypothesis on every possible data stream.
To illustrate these concepts in the example of Figure 1, consider the infinite
data stream

2, 1, 3,#,#, . . . .

The set of evidence items for this data stream is {1, 2, 3}, so the learner
converges to a correct hypothesis after three evidence items have been observed.
Figure 4 provides more examples of evidence and hypothesis sequences.Learner Examples 
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change 
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Alternatives 

unique unique unique 

Evidence 
Item 

1 2 3 

Conjecture {1,3} {1,2} 
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change 
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Evidence Item 2 1 3 
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1st mind 
change 

Simplest 
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{2} 
unique 

unique unique 

Occam Learner Not strongly mind-change optimal 

Not efficient for convergence time Occam Learner 

Figure 4: Examples of di↵erent learning methods. After each evidence is received, a learner
outputs a hypothesis.

Identifiability requires only eventual convergence. We can compare the per-
formance of di↵erent learners with respect to convergence speed by using the
decision-theoretic criterion of weak dominance: A learner  is faster than a
learner � on a data stream if  converges to a hypothesis before � does. A
learner  is uniformly faster than � if  is faster than � on some possible
data stream, and  is at least as fast as � on every possible data stream.
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Our final criterion is steadiness of convergence: minimizing the number
of times that a learner changes its hypothesis before convergence. A learner
 changes its mind at some nonempty finite sequence of evidence items
he1, . . . , em, em+1i if the output of  after observing evidence items he1, . . . , emi
is not vacuous (i.e., is not ?) and di↵ers from the output of  after observing
evidence items he1, . . . , em, em+1i [15, Ch.12.2], [31, 18]. For any possible data
stream, we can count the number of mind changes that a learner undergoes on
that data stream. This is a finite number assuming that the learner eventually
settles on a correct hypothesis.

We can assess the performance of a learner with respect to mind changes
by using the decision-theoretic minimax criterion, which considers worst-case
performance.2 Say that a learner  reliably identifies a correct hypothesis with
at most k mind changes if it is reliable and changes its hypotheses at most k

times on every possible data stream. In the toy problem of Figure 1, a learner
can reliably identify a correct hypothesis with at most two mind changes. This is
illustrated by the Occam learner shown in Figure 1 and in the left two examples
of Figure 4. The Occam learner outputs a hypothesis that accommodates a
minimum number of evidence items, if there is a unique such hypothesis. If
there is not, the learner outputs ?.

A natural alternative is to express uncertainty by a set (disjunction) of
hypotheses as possible outputs rather than ?. The meaning of an output is
then that the true hypothesis is a member of the set. For example, a learner
could output a set of languages, or a set of causal graphs. A mind change
is then said to occur at he1, . . . , em, em+1i if the set of hypotheses of  after
observing evidence items he1, . . . , emi is not entailed by the output of  after
observing evidence items he1, . . . , em, em+1i. (In symbols,  (he1, . . . , emi) 6◆
 (he1, . . . , em, , em+1i).) The results about problem complexity and learning
optimality remain the same, so we keep with the simpler traditional ? repre-
sentation in formal learning theory [15, Ch.12.2]. A global mind change bound
is not quite good enough in many problems, because a learner may fail to take
advantage of a lucky evidence sequence that makes it possible to learn with
fewer mind changes than in the worst case. The top half of Figure 4 illustrates
this possibility. After evidence item 1 is observed, it is possible to succeed with
at most one further mind change: wait with ? until further evidence decides
between the hypotheses {1, 2} or {1, 3}. Then at most one more mind change
is required if the correct hypothesis turns out to be {1, 2, 3}. The learner in the
top right box outputs {1, 3} right away and undergoes two mind changes in case
the item 2 is observed before 3. Since the problem requires two mind changes
in the worst case (see Figure 1), this behavior is consistent with a global mind
change bound of two. We therefore refine the mind change criterion as follows
[36]. Say that a learning problem can be solved with at most k mind changes
starting with evidence sequence he1, . . . , emi if for every data stream extending
the evidence sequence, there is a learner that reliably identifies a correct hy-

2Schulte shows that applying admissibility to mind changes is not fruitful [33].
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pothesis, and uses at most k mind changes, where mind changes are counted
starting at time m. That is, mind changes are counted with the output for
he1, . . . , emi as the initial hypothesis. A learner  is strongly mind change
optimal if for every finite evidence sequence he1, . . . , emi, the learner  solves
the learning problem with the best possible mind change bound starting with
he1, . . . , emi.

5.2. Optimal Learning

Performance criteria can be used to select learning methods. We can picture a
performance criterion as a filter that is applied to learning methods: applying
multiple performance criteria is like applying successive filters to learning. The
criteria we examine in the rest of the paper are as follows.

First, filter out all methods that do not reliably identify a correct hypothesis.
Second, eliminate among the remaining ones those methods that are uniformly
slower than another remaining method. Third, among these, filter out those
that are not strongly mind change optimal. We refer to a method that meets
these criteria simply as optimal. In decision-theoretic terms, the successive
filters correspond to a lexicographic ordering of performance criteria: identi-
fiability first, convergence time second, mind change optimality third. Other
combinations of performance criteria lead to di↵erent concepts of optimality;
the optimality concept of this paper is the most fruitful for applications [33, 18].

The lexicographic concept is surprisingly powerful: we will show next that
in many problems, including those with finite hypothesis spaces, there is only
one optimal method. This optimal method guides us towards interesting and
plausible inductive inferences in many domains. Determining the hypotheses
selected by the optimal method is an investigation that leads to substantive
insights into the methodological structure of a learning problem. We outline a
general result that assists a theorist in determining the conjecture of the optimal
method. Then we show how to apply this to causal graph search.

6. Optimal Learning and Inductive Simplicity

Our goals in this section are to prove the uniqueness of an optimal learner and to
characterize optimal inferences in terms of the structure of the learning problem.
This structure can be described in terms of a topological ranking of hypotheses
in a given hypothesis space [24].

Definition 2. Let H be a hypothesis space and H be a hypothesis in H. We
write H ⇢ H

0 to denote that the evidence items consistent with hypothesis H

are a proper subset of those consistent with H
0. An inclusion chain of length

k starting with H is a sequence of the form

H ⇢ H1 ⇢ · · · ⇢ Hi ⇢ · · · ⇢ Hk

where each hypothesis in the chain is contained in the hypothesis space H. The
inclusion depth of H is the maximum length of an inclusion chain starting
with H.
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Kevin Kelly has developed the view that inclusion depth, or closely related
concepts, can be viewed as a simplicity ranking of hypotheses [17]. Accordingly,
we define the inductive simplicity rank of a hypothesis H in a learning
problem as the inclusion depth of H. Thus defined, simplicity increases with
inclusion depth. Occam’s razor directs us to adopt a maximally simple hypoth-
esis that is consistent with the evidence. For a learning problem, this leads to
the following definition of the Occam learner

 occam(he1, . . . , emi) =

(
? if there is no uniquely simplest hypothesis consistent with he1, . . . , emi

H if H is the uniquely simplest hypothesis consistent with he1, . . . , emi

where  occam(he1, . . . , emi) is the output of the Occam learner after receiving
the evidence sequence he1, . . . , emi. This definition assumes that there are no
empirically equivalent hypotheses; otherwise it should be modified so that the
Occam learner outputs the maximally simple equivalence class if there is one.

The next proposition shows a strong connection between inductive simplicity
and required mind changes: The worst case number of mind changes required is
exactly the maximum of the inductive simplicity ranks in the hypothesis space.

Proposition 3 (Luo and Schulte 2006). For any learning problem with a finite
hypothesis space, there is a learner that reliably identifies a correct hypothesis
with at most k mind changes () the maximum inductive simplicity rank of
any hypothesis is k.

Proof. (() Suppose that the maximum inductive simplicity rank of any hy-
pothesis is k. Consider a mind change by the Occam learner  occam on a
sequence of evidence items he1, . . . , em, em+1i. Let H be the output of  occam

on the previous sequence he1, . . . , emi. Since a mind change occurred at stage
m + 1, the hypothesis H is not vacuous. By the definition of the Occam
learner, H is therefore the uniquely most simple consistent with the evidence
he1, . . . , emi. Thus any other hypothesis consistent with the further evidence
he1, . . . , em, em+1i must have lower simplicity rank than H. Therefore any time
that the Occam learner changes its mind, the maximum simplicity rank of the
remaining hypotheses decreases by at least 1. Since the maximum rank over all
is k, there can be at most k mind changes by the Occam learner.

()) Let  be an arbitrary learner. Suppose that there exists an inclusion
chain

H ⇢ H1 ⇢ · · · ⇢ Hi ⇢ · · · ⇢ Hk.

There is a possible data stream that enumerates all and only evidence items
that are consistent with H. On this data stream, the learner  must output
H at some finite stage m to converge to the correct hypothesis. At this point,
there is a data stream that extends the finite evidence sequence and enumerates
all and only evidence items that are consistent with H1. Again the learner  
must output H1 at some finite stage m1 to converge to the correct hypothesis.
This leads to at least one mind change by the learner. Repeating this argument,
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we can extend the data streams after the mind change occurs consistent with
hypotheses H2, . . . , Hi, . . . , Hk, in such a way that a mind change occurs for
each hypothesis in the chain. The result is a data stream on which the learner
 requires at least k mind changes. Since  is an arbitrary learner, the con-
struction shows that in the worst case, every learner requires at least k mind
changes.

This result can be extended to infinite hypothesis spaces using transfinite
mind change bounds and a topological generalization of the concept of simplicity
rank. The concept of inductive simplicity developed applies therefore in a wide
class of problems. The main restriction is that learning with a mind change
bound requires that some hypothesis be conclusively verifiable, in the sense that
there is some evidence that is consistent only with that hypothesis. Kelly [19]
presents a generalization of mind change optimality that relaxes this assumption.

Proposition 3 characterizes the inductive complexity of an entire learning
problem. The next proposition concerns the properties of optimal learners. The
main result is that the Occam learner is the only learner that achieves reliable,
steady, and fast convergence.

Proposition 4. For a finite hypothesis space, the Occam learner is the only
learner that reliably identifies a correct hypothesis, is convergence-time e�cient,
and strongly mind change optimal.

Proof Outline. Any reliable learner is strongly mind change optimal if and
only if whenever it produces a nonvacuous hypothesis, the hypothesis is the
uniquely simplest consistent with the evidence. For otherwise the learner may
incur one more mind change than necessary given the evidence, as illustrated
in the top right box of Figure 4. What distinguishes the Occam learner from
other strongly mind change optimal learners is that the Occam learner does
not wait: it immediately conjectures the uniquely simplest hypothesis as soon
as there is one, whereas other strongly mind change optimal may output ?
instead. It is easy to see that the Occam learner is uniformly faster than all such
learners: Since the output ? is not correct for any data stream, whenever a non-
Occam learner outputs ? on an evidence sequence he1, . . . , emi , its convergence
time is later than stage m. The Occam learner by contrast converges to the
uniquely simplest hypothesis H by time m on every data stream extending
the evidence he1, . . . , emi for which H is correct. Therefore the Occam learner
possibly converges sooner than the non-Occam learner, and never slower.

Luo and Schulte [24] provide a formal proof that includes the general case
of infinite hypothesis spaces. Without the requirement of convergence-time e�-
ciency, the conjectures of a strongly mind-change optimal learner are no longer
uniquely determined, because the learner can always wait for more evidence to
make a conjecture without selecting a hypothesis. This is a reasonable induc-
tive strategy in many cases. However, as the argument above showed, it remains
the case that when the learner does eventually change its mind, it must be to
adopt a unique maximally simple hypothesis. Implementing the Occam learner
requires determining the simplicity rank of a hypothesis. In the next section we
determine the simplicity rank of causal graphs.
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7. Inductive Simplicity for Learning Causal Graphs

In this section we characterize the inductive simplicity rank of a causal graph
and the Occam learner for causal graphs.

A fundamental result in causal graph theory characterizes the inclusion re-
lation between two causal graphs G1 ⇢ G2, meaning that G2 is consistent with
all dependency statements that are consistent with G1. The Meek-Chickering
theorem shows that the inclusion holds just in case G2 can be transformed into
G1 by a sequence of two types of transformations: (i) deleting edges, and (ii)
reversing a covered arc [26],[4, Thm.4]. For definitions, please see [36].

Mind Change Optimal Learning of Bayes Net Structure 
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Figure 5: Left: An inclusion chain among causal graph patterns. The dependencies of the
bottom pattern are included in those for the middle pattern which are included in those for
the top patterns. Right: Representative dependency statements for each pattern. In figures
we use the notation Dep(A,B|C) for A?6? |C.

The Meek-Chickering theorem is the basis for the following characterization
of inductive simplicity for causal graphs.

Proposition 5. The inductive simplicity rank of a causal graph or pattern
containing edges E is |V| � |E|, the number of edges that are not included in
the graph.

The formal proof can be found in [36]. So the simplest graph is the empty
one, and the most complex graph is the complete one that contains all possi-
ble adjacencies. It is not surprising that the inductive complexity of a graph
increases with the number of edges in the graph. The surprising aspect of the
proposition is that the number of edges is all that matters: the direction of the
adjacencies does not a↵ect the simplicity rank.

The Occam learner for causal graph learning is therefore as folllows. Let D
be a list of observed dependencies.

 occam(D) =

(
? if there is no uniquely simplest pattern consistent with the dependencies D

G if G is the uniquely simplest pattern consistent with D.

Figure 6 illustrates some of the hypotheses of the Occam learner. Schulte et
al. [36] provide a more elaborate example for a graph with four nodes.
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Figure 6: The hypotheses of the Occam learner on a sequence of three observed dependency
statements.

As the number of variables increases, it becomes challenging to determine
whether there is a uniquely optimal causal graph for a given list of observed
correlations. Schulte et al. [36, Th.23] show that computing the outputs of an
Occam learner is NP-hard. Therefore we can conclude that there is no algo-
rithm that implements the Occam learner exactly in reasonable (polynomial)
computation time. Researchers in causal graph learning have developed a num-
ber of heuristic search algorithms that can be seen as approximating the Occam
learner [35].

So far we have considered the problem of learning causal relationships among
variables. However, some causal relationships involve specific values of variables.
In the next section, we examine causal learning with Occam’s razor for variable
values.

8. The Occam Learner for Causal Context-Sensitive
Causal Relationships

We provide a motivation for our approach and overview of our results, then go
into the technical details.

8.1. Context-Sensitive Dependencies: Overview and
Motivation

For discrete variables, it is common that a causal relationship holds not in
general, but only conditional on the values of some variables [1, 9, 8]. These
values establish a context that may reveal additional causal relationships. For
a simple example, there may be a causal relationship between the intelligence
of a student and their grade in a course. But this relationship holds only for
students actually registered in the course, that is, conditional on Registration
being true. Geiger and Heckerman discuss the following example [9]. Figure 7
shows a Bayesian network structure for this example.

A guard of a secured building expects three types of persons to
approach the building’s entrance: workers in the building, approved
visitors, and spies. As a person approaches the building, the guard
can note its gender and whether or not the person wears a badge.
Spies are mostly men. Spies always wear badges in an attempt to
fool the guard. Visitors dont wear badges because they dont have
one. Female workers tend to wear badges more often than do male
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workers. The task of the guard is to identify the type of person
approaching the building.

Figure 7: A Bayesian network for Geiger and Heckerman’s security guard example. The type of
a person predicts its gender (spies are mostly men). Conditional on Type = Worker , Gender
predicts the wearing of a badge. However, conditional on Type = Visitor or on Type = Spy,
Gender and Badge are independent. However, the graph structure is consistent with every
dependency assertion, and fails to represent the two context-sensitive independencies.

Therefore for workers, gender is causally related to wearing a badge, but for
spies and visitors, it is not. As Figure 7 illustrates, a single graph structure
cannot represent this pattern explicitly, only implicitly through setting appro-
priate conditional probability parameters. An explicit context-sensitive rep-
resentation of conditional probabilities conveys more information to the user,
improves statistical e�ciency, and facilitates faster inference to answer proba-
bilistic queries [1, 8, 2]. Combining learning causal graphs and context-sensitive
independencies suggests a two-part approach: first, employ an Occam learner to
find a maximally simple graph with a minimum number of edges, then another
Occam method to find a maximally simple representation of context-sensitive
(in)dependencies between a child node and its parents.

One approach to representing context-sensitive (in)dependencies is to em-
ploy di↵erent causal graphs for di↵erent contexts, as in multinets or similarity
networks [9]. Another is to employ a structured representation of the condi-
tional probability parameters [21, 1, 8, 30]. Probability estimation diagrams [2]
are an intuitive formalism that provides a compact structured representation of
conditional probabilities (see Figure 8 below for an example). In this section
we examine the mind-change optimal Occam learner for identifying a probability
estimation diagram.

Our main result is that the inclusion depth complexity of a PED is given by
the number of its terminal nodes (with no children). The number of terminal
nodes is equivalent to the number of parameters required to specify a joint dis-
tribution. Inductive simplicity as defined in terms of inclusion chain therefore
agrees with standard statistical model selection criteria, such as BIC and AIC,
in measuring the complexity of a PED by the number of its parameters, but of-
fers a novel justification for minimizing the number of parameters: selecting the
simplest PED consistent with the observed dependencies minimizes the number
of worst-case mind changes a causal dependency learner may have to undergo.
Statistical model selection criteria do not usually take into account the num-
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ber of edges in a causal graph.3 However, because the number of parameters
increases with the number of edges, for many graphs ranking by the number
of parameters leads to very similar to results as our two-part scheme. We next
give the formal definitions to develop our technical results.

8.2. Probability Estimation Diagrams

In what follows we consider a fixed graph structure G and a node Y in the
graph. The parents of Y are denoted X1, . . . , Xm. In causal terminology, the
child node Y represents a dependent or outcome variable, and the parent nodes
Xi represent independent or treatment variables. An assignment of m values to
each independent variable is denoted by boldface notation such as x,x0. The
parameters of a causal graph specify conditional probabilities of the form

P (Y = y|X = x).

Often the required conditional probabilities are specified simply by enumerating
them. The result is a flat table of conditional probabilities. A tabular repre-
sentation fails to capture additional structure in the conditional distribution of
the child variable given parent variable values; thus it fails to represent context-
sensitive independencies. A probability estimation diagram is a DAG D

whose nonterminal nodes are labelled with the parents of Y . Each terminal
node (with no children) is labelled with a probability distribution over the pos-
sible values of Y . An edge from a node labelled X to a child is labelled with a
possible value from the domain of X. The edges originating from a node labelled
X partition the domain of X, meaning that every possible value is assigned to
one and only one edge. This entails that for any complete assignment of parent
values, following the appropriate edges in the diagram leads to a unique ter-
minal, which we denote as terminalD(x). Figure 8 illustrates two probability
estimation diagrams for the security guard problem.Geiger diagrams 

Gender p = 0 

Type 

p = 1 

p = 0.3 p = 0.7 

Visitor Spy 
Worker 

Man 
Woman 

Gender 

p = 0 

Type 

p = 1 p = 0.3 

Worker 
Visitor 

Woman Man 

Type 

p = 0.7 

Spy 
Spy 

Visitor 

Figure 8: Two equivalent probability estimation diagrams for the security guard graph of
Figure 7, for the child node Badge, and the parent nodes Type and Gender . We define p =
P (Badge = T ). Both diagrams entail the same conditional dependencies and independencies.

3An exception is the minimum message length criterion, which explicitly includes both the
number of edges and the number of parameters in an additive overall complexity measures
[7].
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Given a probability estimation diagram, it is easy to translate paths in the
diagram into probabilistic clauses: logical rules with probabilities attached. For
instance, one of the paths in the left diagram of Figure 8 corresponds to the
probabilistic clause

Badge = T  Type = Worker ,Gender = Woman; p = 0 .7 .

Such clauses provide a way to combine the formalism of first-order logic
with probabilistic reasoning [27]. Khosravi et al. show that learning probability
estimation trees (a special type of PEDs) to augment causal graph structures is
a scalable way to discover probabilistic clauses that provide accurate predictions
[20].

8.3. The Diagram Learning Problem

The learning problem is to identify a probability estimation diagram structure
that is su�ciently complex to represent the true conditional probability distri-
bution of the child variable conditional on the parent variables. The evidence
items for this learning problem are conditional inequalities of the form

P (Y |X = x) 6= P (Y |X = x0)

where X denotes the parent variables and x is an assignment of values to the
parents. Thus an evidence item asserts that the distribution of the child variable,
conditional on one assignment of values to the parent variables, di↵ers from the
distribution conditional on another assignment of values to the parent variables.

To complete the definition of the learning problem, we need to specify the
set of evidence items are consistent with a diagram. A diagram D entails a
conditional equality constraint

P (Y |X = x) = P (Y |X = x0)

if terminalD(x) = terminalD(x0). A diagram is consistent with a conditional
inequality constraint P (Y |X = x) 6= P (Y |X = x0) if the diagram does not entail
its negation. Note that whether a diagram is consistent with an (in)equality con-
straint depends only on the qualitative graph structure of the diagram, not on
the quantitative probability estimates in its terminals. In sum, the components
of the learning problem in this section are as follows.

Hypothesis Space The set of probability estimation diagram structures for a
child variable Y with parent variables X.

Evidence Items Conditional distribution inequalities of the form

P (Y |X = x) 6= P (Y |X = x0).

Consistency Relation A diagram structure is consistent with an inequality
constraint P (Y |X = x) 6= P (Y |X = x0) if the assignments x,x0 are
mapped to di↵erent terminals.
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Cell 1 Cell 2 Cell 3 Cell 4
Visitor=T, Gender=Man Spy=T, Gender=Man Worker=T, Gender=Man Worker=T, Gender=Woman
Visitor=T, Gender=Woman Spy=T, Gender=Woman

Table 1: Each of the two diagrams in Figure 8 corresponds to the same 4-cell partition of
parent assigments, shown in the table.

The Occam learner for this problem selects the inductively simplest diagram.
In the next section we characterize the inductive simplicity rank of a probability
estimation diagram.

9. The Inductive Simplicity of a Probability Estimation
Diagram

Di↵erent diagram structures may be empirically equivalent in the sense of be-
ing consistent with exactly the same probabilistic inequalities. An equivalence
class can be characterized by a partition of parent value assignments. More
precisely, the terminals of a diagram induce a partition of the parent value as-
signments into equivalence classes, where two assignments are equivalent if they
are mapped to the same terminal node:

x ⌘ x0
() terminalD(x) = terminalD(x0). (4)

In general, if Equation (4) holds for an equivalence partition ⌘ and a diagram
D, we say that the partition corresponds to the diagram. It is easy to see
that two diagram structures are consistent with exactly the same probabilistic
inequalities just in case they corresond to the same partition. Table 1 shows
the partition that corresponds to the diagrams for the security guard problem.
Note that the number of terminals in a diagram equals the size of any partition
that corresponds to it. Therefore equivalent diagrams have the same number of
terminals, even if their internal structure is di↵erent.

It is easy to see that for every partition, there is a corresponding diagram: We
can build a tree structure whose branches corresond to the possible assignment
of parent values. If two assignments are equivalent, the corresponding branches
end in the same terminal node. We thus have the following lemma.

Lemma 6. Consider the space of complete parent value assignments X = x for
a child node Y .

1. For every diagram structure D, there is a corresponding partition of the
parent value assignments.

2. For every such partition ⌘, there is a corresponding diagram structure.

A diagram semantically includes another if it is consistent with more inequal-
ity constraints. Therefore diagram D

0 includes D if and only if the partition
of D0 refines the partition of D; we denote this relationship by D  D

0. The
benefit of the partition representation is that inclusion depth in partition space
is simply characterized by the size of the partition. Consider partitions of a
finite set S elements. So the coarsest partition has size 1, and the maximally
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refined partition has size |S|. A refinement chain starting with partition ⌘ is a
sequence

⌘⌘1⌘i · · · ⌘k,

where each element in the chain refines its predecessor but not vice versa. The
refinement depth of partition ⌘ is the length k of a refinement chain starting
with partition ⌘. The starting partition ⌘ is not included in the length count.
The next proposition asserts that the refinement depth of a partition is simply
the size |S| of the most refined partition, minus the size of the partition. The
basic reason for this is that to form a maximally long refinement chain, each
partition in the chain should split exactly one cell of its predecessor into exactly
two cells. Thus each partition in the chain contains exactly one more cell than
its predecessor. Any other way to construct a refined partition is equivalent to
merging two-way splits and therefore shortens the chain unnecessarily.

Proposition 7. The refinement depth of a partition ⌘ on a finite set with N

elements is N � | ⌘ |, where | ⌘ | is the size of the partition.

The proposition follows from the classical result [22] that the rank of a par-
tition over a finite set is N � | ⌘ |. To make the paper self-contained, we
provide a direct proof in the appendix using our notation. By the correspon-
dence Lemma 6, the inclusion depth of a diagram is the refinement depth of its
corresponding partition. By Proposition 7, the refinement depth is the size of
the partition, which equals the number of terminals in the diagram. Therefore
the inclusion depth of a diagram equals the number of terminals in the diagram.
We summarize our results in the following corollary.

Corollary 8. The inclusion depth of a diagram is the number of its terminals.
Therefore the Occam learner outputs a diagram with the minimum number of
terminals, if all such diagram structures are equivalent (i.e., they are consistent
with exactly the same probabilistic inequalities). Otherwise it outputs ?.

Figure 9 provides an example of the Occam learner. We leave for future
work the analysis of the computational complexity of implementing the Occam
learner.

10. Conclusion

An application of Occams razor to inductive inference directs us to choose the
simplest hypothesis consistent with the evidence. The principle is plausible
but vague to the extent that the concept of simplicity is undefined. Learning
theorists have developed a precise definition of inductive simplicity based on
the topology of the space of alternative hypotheses, which leads to a learning-
theoretic version of Occam’s razor. The learning-theory razor can be justified
in terms of learning performance: it is the only learning method that guaran-
tees reliable, steady, and fast convergence to a correct hypothesis. As a case
study, we applied Occam’s inductive razor to learning causal relationships from
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Occam Learner for Diagrams 
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Figure 9: To illustrate the Occam learner for the security guard problem. We have used
obvious abbreviations for variable values. The conditional probabilities are all of the form
P (Badge = T |·), abbreviated as P (T |·).
observed correlations, an important and challenging practical problem. The Oc-
cam learner selects the causal graph that represents the observed dependencies
among variables with a minimum number of edges. For context-sensitive depen-
dencies, that may hold only in a given context, the Occam learner augments the
causal graph with probability estimation diagrams that su�ce to explain the
observed correlations, with a minimum number of free parameters. Probability
estimation diagrams are easily converted to probabilistic logical rules, so causal
learning can be used to discover logical rules that represent statistical patterns
in the data.

The learning-theoretic version of Occams razor has a clear justification in
terms of learning performance guarantees. In many learning problems, including
causal modelling, it leads to plausible inferences and to substantive insights into
the methodological structure of the problem.
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Proof of Proposition 7

Proposition 7. The refinement depth of a partition ⌘ on a finite set with N

elements is N � | ⌘ |, where | ⌘ | is the size of the partition.

Proof. The proof is by downward induction on partition size | ⌘ |. Base
case: | ⌘ | = N . Then the partition is maximally refined and hence a maximal
refinement chain contains only ⌘, so its length is counted as 0. Inductive Step:
Assume the hypothesis for n + 1 and consider a starting partition ⌘ of size
n. We can split one cell of ⌘ into two subcells to obtain a partition ⌘0 that
contains exactly one more cell than ⌘. So ⌘0 contains n+1 cells. By inductive
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hypothesis, there is a refinement chain

⌘
0
⌘1 · · · ⌘N�(n+1)

that extends ⌘0 with N � (n+ 1) elements. Hence the refinement depth of the
starting partition ⌘ is at least N � (n+ 1) + 1 = N � n.

To show that the refinement depth if ⌘ is at most N � n, consider any
maximal refinement chain

⌘⌘1⌘i · · · ⌘
N (5)

where ⌘N denotes the maximally refined partition. We argue that (*) the
partition ⌘1 splits exactly one cell of the starting partition ⌘ in exactly two
subcells. For suppose otherwise for contradiction. If ⌘1 splits two or more cells
of the starting partition, form a partition ⌘0.5 that contains the first cell as in
the starting partition ⌘, but splits the other cells as in partition ⌘1. Then ⌘0.5

refines ⌘ and is refined by ⌘1. Therefore the chain

⌘⌘0.5⌘1⌘i · · · ⌘
N

refines the starting partition and is longer than the chain (5). So the original
chain is not maximally long, contrary to assumption. This establishes that ⌘1

splits at most one cell of the starting partition ⌘. If ⌘1 splits the starting par-
tition cell into more than two members, we can again construct an intermediate
partition ⌘0.5 by following only one of the splits and not the others. Then there
exists a longer refinement chain than that in Equation (5), contrary to assump-
tion. This establishes the claim (*) that the partition ⌘1 splits exactly one
cell of the starting partition ⌘ in exactly two subcells. Therefore ⌘1 contains
exactly one more cell than the starting partition:

| ⌘1 | = | ⌘1 |+ 1 = n+ 1.

Applying the inductive hypothesis to ⌘1, it follows that the chain

⌘1⌘i · · · ⌘
N

has length at mostN�(n+1), so the chain (5) has length at mostN�(n+1)+1 =
nmembers. Since this chain was chosen to have maximum length, the refinement
depth of the starting partition ⌘ is n.

Appendix: d-separation

An (undirected) path in G is a sequence of nodes such that every two consec-
utive nodes in the sequence are adjacent in G and no node occurs more than
once in the sequence. A node Y is a collider on undirected path p in DAG
G if p contains a triple X ! Y  Z. Thus a collider Y is a common e↵ect of
X and Z. If X and Z are adjacent in G, the collider Y is shielded, otherwise
unshielded. Every Bayesian network structure defines a separability relation
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between a pair of nodes X,Y relative to a set of nodes S, called d-separation:
if X,Y are two variables and S is a set of variables disjoint from {X,Y }, then S
d-separates X and Y if along every (undirected) path between X and Y there
is a node W satisfying one of the following conditions:

1. W is a collider on the path and neither W nor any of its descendants is
in S, or

2. W is not a collider on the path and W is in S.

We write (X?? Y |S)G if X and Y are d-separated by S in graph G. If two nodes
X and Y are not d-separated by S in graph G, then X and Y are d-connected
by S in G, written (X?6? Y |S)G.

Example. In the graph of Figure 2, the node wet is an unshielded collider on the
path sprinkler�wet�rain; node wet is not a collider on the path sprinkler�
wet�slippery. The pattern of the network has the same skeleton, but contains
only two edges that induce the collider wet. The variables sprinkler and rain
are d-separated given the set {season}, written (sprinkler?? rain|season)G,
which can be seen as follows. There are two undirected paths from sprinkler
to rain, namely sprinkler � wet � rain and sprinkler � season � rain.
For the first path, clause (1) of the definition of d-separation applies, since
wet is a collider on the path sprinkler � wet � rain and neither wet nor
its descendant slippery is contained in the conditioning set {season}. For
the second path, clause (2) applies, since season is not a collider on the path
sprinkler � season � rain and season is a member of the conditioning set
{season}. The variables sprinkler and rain are not d-separated given the set
{season, wet}, written (sprinkler?6? rain|season)G, because wet is a collider
on the path sprinkler � wet � rain contained in the conditioning set, which
violates clause (1) of the definition of d-separation.

A fundamental theorem of causal graph theory entails that a causal graph
structure over discrete variables is consistent with a set of observed dependencies
if and only if for each observed dependency, the corresponding d-connection
relation holds in the causal graph structure.
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