Learning Theory and the Philosophy of Science

Kevin T. Kelly; Oliver Schulte; Cory Juhl

Philosophy of Science, Vol. 64, No. 2 (Jun., 1997), 245-267.

Stable URL:
http://links jstor.org/sici?sici=0031-8248%28199706%2964%3 A2%3C245%3 ALTATPO%3E2.0.CO%3B2-0

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Philosophy of Science is published by The University of Chicago Press. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ucpress.html.

Philosophy of Science
©1997 Philosophy of Science Association

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Mon Sep 15 18:45:29 2003



Learning Theory and the Philosophy
of Science’

Kevin T. Kellyt?

Department of Philosophy, Carnegie Mellon University

Oliver Schulte

Department of Philosophy, University of Alberta

Cory Juhl

Department of Philosophy, University of Texas, Austin

This paper places formal learning theory in a broader philosophical context and pro-
vides a glimpse of what the philosophy of induction looks like from a learning-theoretic
point of view. Formal learning theory is compared with other standard approaches to
the philosophy of induction. Thereafter, we present some results and examples indi-
cating its unique character and philosophical interest, with special attention to its uni-
fied perspective on inductive uncertainty and uncomputability.

1. Introduction. Epistemology begins with the problem of induction,
the observation that drawing conclusions beyond the available evi-
dence entails some possibility of error. The philosophy of induction
has developed four basic responses. (I) We can seek “‘justification” by
obeying rules motivated by considerations other than finding the truth
and avoiding error (e.g., conformity with practice or intuition). (II) We
can neglect possibilities of error if there aren’t “too many” or if they
are all too “remote.” (III) Even significant possibilities of error are
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forgivable if we do the best we can. And finally, (IV) there may be a
way to avoid error in the limit.

Strategy (I) is characteristic of philosophical work on confirmation
(e.g., Hempel 1966, Glymour 1980), moralizing historical studies of the
sort now standard in the history and philosophy of science, purely
axiomatic approaches to induction such as belief revision theory (Gér-
denfors 1988), and Dutch book arguments for coherence and condi-
tionalization (cf. Hellman’s contribution to this symposium).

Strategy (II) is adopted by probabilistic (Goldman 1986) and coun-
terfactual (Nozick 1981) accounts of reliability. The former dismiss
“small” sets of mistakes and the latter dismiss “remote” mistakes. It
is also a crucial feature of probabilistic convergence theorems (e.g.,
classical “consistency’ results and Bayesian “almost sure” learning re-
sults: cf. Hellman’s contribution to this symposium), which also illus-
trate strategy (IV). More recently, strategy (II) is the basis of a devel-
opment in computer science known as PAC (Probably Approximately
Correct) learning theory, which mixes computational complexity con-
siderations with short-run convergence bounds derived from a random
sampling setting (Kearns and Vazirani 1994).

Strategy (III) is exemplified by decision theoretic approaches to in-
duction in which the scientist is viewed as choosing among a range of
possible new beliefs carrying “epistemic utilities” that reflect both truth
and content (Levi 1983). The scientist is then exonerated for error so
long as she chooses the belief that carries the highest expected utility
at the moment it is chosen. Another example is Neyman-Pearson hy-
pothesis testing, since the probability of erroneous acceptance of the
null hypothesis is minimized but is not necessarily small (cf. Mayo’s
contribution to this symposium).

In its pure form, strategy (IV) is a thematic feature of the philoso-
phies of Peirce and Popper. It is the basis of Reichenbach’s frequentist
vindication of induction (Kelly 1991) and it is still paid perfunctory
homage by frequentist statisticians. In the early 1960s, Hilary Putnam
(1963) and E. M. Gold (1967) independently recognized and exploited
deep affinities between strategy (IV) and the theory of computability.
Since then, the approach has been developed by cognitive and com-
puter scientists under the somewhat misleading rubric of ““formal learn-
ing theory” (cf. Osherson et al. 1986). “Logical reliability theory” is a
more accurate name, since the basic idea is to find methods that succeed
in every possible world in a given range. We will use the terms inter-
changably.

Formal learning theory is very simple in outline. An inductive prob-
lem specifies a range of epistemically possible worlds over which to
succeed and determines what sort of output would be correct, where
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correctness may embody both content and truth (or some analogous
virtue like empirical adequacy). Each possible world produces an input
stream which the inductive method processes sequentially, generating
its own output stream, which may terminate (ending with a mark in-
dicating this fact) or go on forever. A notion of success specifies how
the method should converge to a correct output in each possible world.
A method solves the problem (in a given sense) just in case the method
succeeds (in the appropriate sense) in each of the possible worlds spec-
ified by the problem. We say that such a method is reliable. Of two
non-solutions, one is as reliable as the other just in case it succeeds in
all the worlds the other one succeeds in. That’s all there is to it!

Of course, that’s not really all there is to it. The interesting part begins
when various senses of solution are defined and we begin to ask an
increasingly general sequence of questions. What problem does a given
method solve? Does a particular problem have a solution? What is the
strictest sense in which it is solvable? Do the solvable problems all share
a certain structure? Are there complete methods that solve all solvable
problems? Do problems of one type reduce to problems of another type?
What notions of solution are equivalent? How do the answers to these
questions change when inductive methods are required to be computable
or are subject to further cognitive restrictions? And so on.

The purpose of this paper is to place learning theory in a broader
philosophical context and to provide a glimpse of what the philosophy
of induction looks like from a logical reliabilist’s point of view. In the
next section we compare it to some other standard approaches. There-
after, we present some results and applications indicating its unique
character and philosophical interest.

2. Some Comparisons. Formal learning theory shares with options (II)
and (III) the idea that a fundamental aim of inquiry is to find nontrivial
truth or something like it. In this respect it differs sharply from confir-
mation theories, belief revision theories, and other methodologies mo-
tivated along the lines of (I). Such approaches strike us as both evasive
and conservative: evasive because they do not make contact with the
aims of finding truth and avoiding error and conservative because they
elevate current intuitions and practices into regulative ideals. On our
view, the rationality restrictions philosophers impose on inquiry should
serve as a cog in a process reliably directed toward the truth, or at least
not stand in the way. An important learning theoretic project is there-
fore to determine whether a proposed methodological norm prevents
inquiry from being as reliable as it could have been. For example, one
can ask whether every solvable inductive problem can be solved by
some Bayesian updating agent. One may ask the same question con-
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cerning computable or otherwise bounded agents. Often, requirements
that seem to make sense for the ideal agents of epistemology (e.g.,
maintaining consistency between theory and evidence) stand in the way
of success for computable agents and may even preclude the reliability
of agents whose cognitive abilities exceed those of computers to an
infinite degree (cf. Section 6).

When learning theoretic analysis shows that there is not even a lim-
iting solution to a given problem, it is attractive to adopt strategy (III),
trying at least to maximize the reliability of the method one selects. An
interesting question is whether there even exists a maximally reliable
method for an unsolvable problem. Typically, there is an infinite as-
cending chain of ever more reliable non-solutions (Kelly 1996). An-
other learning theoretic application of strategy (III) is to answer the
standard concern that limiting reliability is compatible with any silly
behavior in the short run. This may be true, but not if we request, quite
naturally, that the method converge to the truth as fast as possible and
with the fewest number of troublesome retractions prior to conver-
gence,without compromising its reliability (Juhl 1994, Kelly 1996,
Schulte 1997).

A more ambitious, “myopic” appeal to strategy (I1I) drops strategy
(IV) altogether and recommends always choosing the best belief one
can choose, rather than choosing a reliable method or strategy and
sticking with it (Levi 1983).! These local decisions to believe are viewed
as maximizing expected epistemic utility, a quantity reflecting both the
truth value and the content of a candidate belief. Since the expected
epistemic utility of weakening one’s current beliefs cannot exceed that
of keeping them (content is lost and no serious possibilities of error are
eliminated from one’s current point of view), a different story is re-
quired to motivate retractions of belief.

Myopic methodology is analogous to learning theory in its emphasis
on truth and content as explicit aims of scientific method. But whereas
myopic methodology focuses on individual decisions to believe, learn-
ing theory reflects on the overall structure of our dispositions to re-
spond to evidence with new theories. From this broader perspective,
myopic inquiry involves much more than the aim of finding the truth.
Along with the explicitly represented epistemic utilities, there are per-
sonal probabilities, confirmational commitments for how to maintain
these probabilities, and rules of hypothetical reasoning employed in the
account of belief retraction. The learning theoretic question is whether
this whole assemblage of values and principles of rationality comprises
a reliable strategy for approaching the truth. Every component of in-

1. The account of scientific progress offered in Kitcher 1993 is also myopic in this sense.
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ductive practice, including the alleged principles of rationality, is
judged according to its contribution to the global aim of approaching
the truth, rather than by appeals to practice or intuition along the lines
of option (I). As has already been mentioned, insistence on such prin-
ciples can actually restrict the overall reliability of inquiry even under
very mild restrictions on the cognitive abilities of the scientist.

Learning theory is similar to classical statistics in its emphasis on
procedures and their reliability. When chance hypotheses are rigor-
ously assumed to entail limiting relative frequencies of outcomes, then
statistical inference problems are directly subject to learning theoretic
analysis (cf. Section 4). But there are also important differences. When
chances are held not to entail limiting constraints on the input se-
quence, learning theoretic analysis simply says that the inference prob-
lem is hopeless, since such hypotheses are logically consistent with any-
thing happening in the long run. We think this raises as many questions
about the practical and empirical relevance of propensities as it does
about logical reliability (Kelly 1996). Also, formal learning theory ap-
plies when the existence of probabilities is not presupposed. And we
do not share the classical statistician’s dismay at attaching probabilities
to hypotheses, so long as these numbers can be shown to converge to
the truth values of the hypotheses they attach to.

Bayesian “almost sure” convergence theorems (strategies I and I'V)
seem to fit right into our program, and in a sense this is true: the gambit
is clearly to raise the probability of success by moving to a limiting
notion of success. The only difference is that learning theory focuses
on the precise set of possibilities over which a method succeeds rather
than on the probability of this set. This might not seem to make much
difference, but it makes a great deal of difference. When probability is
spread out over all the possible input streams a scientific method might
receive in the limit, it ends up spread so thin that the problem of in-
duction gets lost in a set of zero measure (cf. Section 3). Attending only
to probabilities does not distinguish cases in which the problem of
induction is present from those in which it is absent. We would prefer
to know whether the problem of induction is actually present in a prob-
lem or is merely being ignored in a set of zero measure. If it is present,
then neglecting the possibilities of error it gives rise to may be vindi-
cated by strategy (III), but we should still be aware that we are helping
ourselves to such vindication rather than actually solving the inductive
problem at hand. And if they are not, then errors should not be ex-
cused, since we could have used a more reliable method. What we like
about the learning theoretic approach is that neglected possibilities are
neglected explicitly rather than under a blanket entitlement that both
obscures objective differences in the relative difficulties of induc-
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tive problems and forestalls the question whether a more reliable
method is available.?

With a few exceptions, the philosophy of induction has drawn upon
the theory of probability for its inspiration. Global probabilistic co-
herence at an instant does not fit naturally with the local, stepwise
character of computation. This leads to a characteristic dualism be-
tween inductive and formal methodology. Idealized, coherentist meth-
odologies are proposed as ideals. Computational agents are enjoined
to accommodate them by seeking professional help (Levi 1991), by
steadily repairing inconsistent probability judgments (Good 1983) and
making local corrections that in some cases can never lead to full co-
herence, or by insisting on full coherence in a metalanguage and con-
ditioning on formal facts (Garber 1983).

Formal learning theory, on the other hand, draws its inspiration
from the theory of computability. Its stepwise, strategic, problem-
solving perspective on inquiry meshes seamlessly and symmetrically
with computational considerations. For a probabilistic coherentist, see-
ing a black raven is a completely different matter than seeing the thou-
sandth digit of  emerge from a computer. The former is learning from
experience. The latter is either recovery from a bout of irrationality or
an instance of “‘semantic ascent.” From the learning theoretic perspec-
tive, there is no interesting difference between the two cases, which is
as it should be. From our point of view, uncomputability is itself a
form of inductive underdetermination. The trouble with the halting
problem is that a given program might halt just when our algorithm
for deciding the halting problem becomes sure that it never will (Kelly
and Schulte 1996). And just as in learning theory, uncomputable prob-
lems that cannot be solved in the short run may be solvable in the limit.
In learning theoretic analyses of computable inquiry, the trick is often
to determine whether limiting solutions to the formal difficulties posed
by an inductive problem can be interwoven with limiting solutions to
the purely empirical part of the problem to yield a limiting, computa-
tional solution to the whole problem. Results concerning computable
inquiry are among the most interesting and suggestive learning theory
has to offer (cf. Section 6).

3. The Structure of Underdetermination. Reliability and underdeter-

2. In this respect, our critique of Bayesian convergence results goes much farther than
that in Hellman’s contribution. There are Bayesian motives for criticizing “almost sure”
convergence: (i) non-Archimedean decision theories countenancing infinitesimal de-
grees of belief (Fishburn 1981), (ii) Bayesian “consistency” results (Diaconis and Freed-
man 1986), and (iii) “robust” convergence among agents who disagree in their place-
ment of zeros.
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mination are flip-sides of the same coin: data determine the truth if
there is some reliable way to use the data to find it.> Hence, there are
as many concepts of underdetermination as there are concepts of reli-
ability. A central question of formal learning theory (and we think, of
epistemology) is to isolate the structures of these various concepts of
underdetermination. In a fully successful answer, the structuresisolated
should exactly characterize when reliable success is or is not possible.
In this section, we answer the question for problems of empirical hy-
pothesis assessment. As a byproduct, we will construct a complete ar-
chitecture or recipe for producing methods from problems that is guar-
anteed to yield a solution for every solvable problem.

An empirical hypothesis is a hypothesis whose truth depends entirely
on the input stream, so we may simply identify possible worlds with
their input streams and identify an empirical hypothesis H with the set
of possible input streams of which it is true.*

A hypothesis assessment method produces real numbers in the unit
interval in response to the inputs received so far. It may also output a
halting mark, indicating that inquiry has ended. For simplicity, we will
consider all possible such methods. The parallel results for computable
and finite state methods are presented in Kelly 1996.

To define reliability, we must define convergence to an output. Let s
be the method’s output stream on some input stream. s converges to v
with certainty just in case the halting mark occurs exactly once and all
the following outputs are v. s converges to v in the limit just in case there
is a stage after which s is constantly v. s converges to v gradually just in
case for each nonzero distance from v, there is a stage after which the
entries in s eventually remain at least within that distance from v.

Success may also be defined in several ways. Decision requires con-
vergence to the truth value of H, whatever that truth value is. Verifi-
cation requires convergence to 1 if H is true and anything but conver-
gence to 1 if H is false. Refutation requires convergence to 0 if H is
false and anything but convergence to 0 if H is true. We may now
entertain such notions of success as decision with certainty, verification
in the limit, gradual refutation and so forth.

The empirical proposition corresponding to a finite sequence of in-

3. In his contribution, Hellman insists on a much stronger condition for underdeter-
mination, requiring essentially that every data stream arising from a world making a
given hypothesis true could have been produced by a world making the hypothesis
false. For us, even failure of the condition w.o0.d. discussed by Hellman is not necessary
for underdetermination.

4. H supervenes on the data stream, in the terminology of Hellman’s contribution.
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puts is the set of all possible input streams extending this sequence.’
Such a proposition looks like an infinite fan whose handle is the finite
input sequence that all members of the fan share in common (Fig. 1).

The structural characterization of verification with certainty is quite
simple: a hypothesis is verifiable with certainty just in case it can be
represented as the union of a collection of fans (Fig. 2). For example
the hypothesis that some raven is white is the (disjoint) union of the
set of all fans whose handles have white ravens occurring only in the
final position.

The hypotheses verifiable with certainty are the open sets of a top-
ological space.® Hypotheses that are refutable with certainty are the
complements of hypotheses verifiable with certainty and hence are
closed sets. Hypotheses that are decidable with certainty are both open
and closed (i.e., clopen).

In this topological space, a limit point of an empirical proposition
is an input stream s such that for each position along s there is an input
stream in the proposition that agrees with s up to that position. A

received inputs possible extensions

\

—

=

\

Figure 1. A fan of input streams.

YvYvy..

Figure 2. An open set.

5. Some readers may prefer to skip immediately to the examples in Section 4 before
proceeding with what follows.

6. The empty hypothesis is verifiable with certainty by a method that always outputs
0. The space of all possible input streams is verifiable with certainty by a method that
always outputs 1. To verify with certainty an arbitrary union (disjunction) of verifiable
empirical hypotheses, return 1 when the verifier for any hypothesis in the union returns
1 and return 0 otherwise. To verify with certainty a finite intersection (conjunction) of
hypotheses, return 1 only when the verifiers for each hypothesis return 1. (When the
assumption of perfect memory is dropped, only closure under finite intersection fails.)
The resulting space is the usual infinite product space over the set of possible inputs.
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boundary point of an empirical proposition is a limit point both of the
proposition and of its complement (Fig. 3).

The classical problem of induction arises only on the boundary
points of hypotheses. Suppose that a hypothesis contains a boundary
point 5. Then although the hypothesis is correct for s, the evidence
presented along s remains forever consistent with the incorrectness of
the hypothesis. This is just the sort of situation that an inductive skep-
tic’s wily demon can exploit. The demon feeds s to our hapless method
until the method declares certainty in the hypothesis. Then the demon
veers off of s onto an input stream for which the hypothesis is incorrect.
If the method never declares certainty in the hypothesis along s, it loses.
If it does declare certainty along s, then it still loses since it cannot take
back its declaration of certainty after the demon veers. Since the demon
has a winning strategy in the game of inquiry, the hypothesis is not
verifiable with certainty. In fact, a hypothesis is verifiable with certainty
just in case it contains none of its boundary points and a hypothesis is
refutable with certainty just in case it contains all of its boundary
points.

To characterize limiting verification, refutation, and decision, we
require topological generalizations of the open, closed and clopen sets,
respectively. Say that a set is limiting open just in case it is a countable
union of closed sets, limiting closed just in case it is the complement of
a limiting open set, and limiting clopen just in case it is both limiting
open and limiting closed.”

Every limiting open hypothesis is verifiable in the limit. For suppose
the hypothesis is limiting open. Then there exists a countable collection
of closed sets such that the hypothesis is the union of all the sets in the
collection. Place a moveable pointer at the beginning of the enumera-
tion (Fig. 4). As each new input arrives, bump the pointer to the first
non-refuted closed set in the enumeration (recall that the closed sets
are refutable with certainty). Output 0 if the pointer bumps when the
last datum is read; Output 1 otherwise. If the hypothesis is correct, so

boundary point

hypothesis

Figure 3. A boundary point in a hypothesis.

7. Officially, the limiting open sets are called £ Borel sets, the limiting closed sets are
called IT§ Borel sets, and the limiting clopen sets are called A Borel sets.
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closed subsets of the hypothesis

refuted refuted coe
bump to first Output 0 if the pointer
unrefuted set is bumped on the last

input received up to now.
Else, output 1.

Figure 4. The bumping pointer method.

is some closed subset and the pointer can never bump past it so the
method stabilizes to 1, as required. If the hypothesis is incorrect, the
pointer is eventually bumped past each closed set in the enumeration,
so infinitely many Os are output, as required.

Conversely, only limiting open hypotheses are verifiable in the limit,
so the bumping pointer construction is a complete architecture for lim-
iting verification.® Hence, a hypothesis is verifiable in the limit just in
case it is limiting open. By similar arguments, a hypothesis is refutable
in the limit just in case it is limiting closed and is decidable in the limit
just in case it is limiting clopen. As a corollary to our argument, the
bumping pointer method is complete in the sense that every hypothesis
that is verifiable, (refutable, decidable) in the limit is verifiable (refut-
able, decidable) in the limit by some implementation of the bumping
pointer method.

Limiting decidability and gradual decidability are coextensive in
terms of problem solvability,” but the latter criterion is more natural
for methods like Bayesian updating that treat 1 and 0 as incorrigible
marks of certainty. Gradual verification and refutation extend the
scope of inquiry beyond their limiting counterparts, however. Say that
a set is gradually open just in case it is a countable union of limiting
closed sets and is gradually closed just in case it is the complement of
a gradually open set. Then it is easily shown that precisely the gradually
closed sets are gradually verifiable (Kelly 1996). The various charac-
terization results are summarized in Figure 5. The figure illustrates how

8. Suppose a method verifies a hypothesis in the limit. The hypothesis may be repre-
sented as the countable union of all empirical propositions of the form “from now on,
the method outputs only 1’s”, which are all refutable with certainty (wait for the method
to produce an output other than 1). Hence, the hypothesis is limiting open. Oddly
enough, this fact cannot be proved in standard set theory by showing that there is a
winning strategy for the demon whenever the hypothesis is not limiting open (Juhl 1995,
Kelly 1996, Ch. 5).

9. A gradual decider can be converted into a limiting decider: just output 1 when the
gradual decider makes an output greater than .5 and output 0 otherwise.
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open

verifiable
with certainty

limiting open

verifiable
in the limit

gradually open

gradually
refutable

clopen

decidable
with certainty

limiting clopen

decidable
in the limit
and gradually

gradually clopen

increasing
complexity

closed

refutable
with certainty

limiting closed

refutable
in the limit

gradually closed

gradually
verifiable

Figure 5. The reliability hierarchy.

the different senses of convergence serve as a precise scale of inductive
underdetermination that corresponds exactly to a parallel scale of top-
ological complexity. This scale provides an objective comparison of the
intrinsic difficulties of inductive problems arising in very different areas
of the philosophy of science, as we shall now illustrate with a few ex-
amples.

4. Some Examples. The various levels of topological complexity intro-
duced in the preceding section correspond intuitively to numbers of
alternations of quantifiers over the natural numbers. Open sets corre-
spond to existential hypotheses and closed sets correspond to universal
hypotheses. Limiting open sets correspond to hypotheses of form IV
and limiting closed sets correspond to hypotheses of form V3. Grad-
ually open sets correspond to hypotheses of form 3v3, and so forth.
The correspondence is exact if it is assumed that the world under study
is a countable relational structure for the hypothesis language, each
individual in the structure is named by a constant in the language, the
input stream consists of a complete enumeration of the quantifier-free
sentences true of the structure, and each such enumeration is possible
(Kelly and Glymour 1990). If any of these assumptions is dropped,
then the logical form of the hypothesis may not correspond to its top-
ological complexity and it is the topological complexity rather than
syntactic form that ultimately determines the sense in which the hy-
pothesis can be reliably investigated. Still, the rough and idealized cor-
respondence can be useful as a first approximation when dealing with
examples.

Kant’s second antinomy of pure reason concerns the thesis that mat-
ter is infinitely divisible. Kant claimed that this hypothesis goes “‘be-
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yond all possible experience.” In fact, the hypothesis is refutable but
not verifiable in the limit: for each piece of matter there exists a suffi-
ciently high energy at which it can be split.’® Limiting verifiability fails
because it may always take much more energy than we expected to
split the particles we have encountered so far, so that each time a new
and larger “energy desert” is encountered, we are lulled into confidence
that we have found the ultimate constituents of matter. In practice, this
difficulty does not seem to arise because scientists usually focus on a
few competing theories at a time so that it seems as though ““eliminative
induction” should suffice to determine what the elementary structure
of the universe is like. But it is one thing to focus on the available
theories and quite another to insist that one of them must be true.

There is something unsettling about conservation laws. When the
conserved quantities do not seem to balance in a reaction, it may be
because the missing quantities have assumed a new and unexpected
form that we were not looking for, as in the case of conservation of
energy (Poincare 1952, 166; Feynman 1994, 69). When the equation
does seem to balance, unexpected forms of the quantity that overturn
the equation may be discovered later. If we admit that we may be
surprised by new forms of the quantity at any time, we can express the
empirical content of a conservation law for quantity g as follows: for
each reaction, there is a time such that for each later time, we discover
no more g going into or out of the reaction and the ¢ accounted for as
going in exactly balances the g accounted for as going out. By its form,
this hypothesis is gradually closed and hence is gradually verifiable.
That is a pretty weak sense of success. But we have not introduced any
background assumptions yet. It is usually assumed that only finitely
much of the quantity g enters into or out of any given reaction. It is
also sometimes assumed that g is quantized, in the sense of coming in
chunks of some fixed size. Finally, it may sometimes be supposed that
the lab never spuriously reports nonexistent amounts of g, even though
it may fail for a while to recognize ¢ that is present.

Relative to these assumptions, the conservation law is refutable in
the limit, since its empirical content can be redefined as follows: for
each reaction for each time there is a later time at which the observed
q going into the reaction balances the observed g going out.!!

10. All of Kant’s antinomies have this character. The first antinomy: for each time, there
is an earlier time. The third antinomy: for each state, there is an earlier state that causes
it. The fourth antinomy: for each entity, there is another entity on which it is contingent.

11. Given the assumptions, the only way the equation can be observed to balance
infinitely often without balancing all but finitely often is if the ¢ going in and out
continues to rise forever, first balancing and then violating the equation. But since ¢ is
quantized, the total quantity would have to rise without bound, so in the limit the total
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A central thesis of cognitive psychology is that we are computable.
Without further background assumptions, the thesis is verifiable but
not refutable in the limit. The problem, intuitively, is that each finite
sequence of behavior of a system is consistent with some computer
program that “memorizes” exactly that sequence in a lookup table. So
this problem has the same complexity as the complements of the Kan-
tian and the conservation examples. The result is the same if we add
the plausible background assumption that humans have finitely
bounded memories but no particular bound is assumed. An assumed
upper bound on memory size would make the problem decidable with
certainty.

Thomas Kuhn (1970) proposed that research is organized around a
“paradigm” that can be “articulated” in various different directions.
The function of a paradigm is to generate puzzles and to admit of
articulations that resolve them. This ‘“historicist” proposal seems to
have little to do with limiting reliabilism, but in fact, it provides a
number of interesting applications of our approach. Learning theoretic
analysis applies not only to truth but to any virtue of theories or par-
adigms that goes beyond the available evidence. One such virtue of a
paradigm is that it have some possible articulation that is capable of
handling all future problems. This “meta-hypothesis’ about the par-
adigm is verifiable in the limit. To verify this hypothesis in the limit,
one must eventually reject it if it is false, even though there may be no
intersubjectively compelling reason forcing the rejection at any partic-
ular time. This spontaneous rejection in the absence of any local reason
is one of the main features of scientific revolutions stressed by Kuhn.!2

The preceding account makes the completion of science the goal of
science, for convergence would occur when no further articulations of
the paradigm are required. Kuhn remarks that such static paradigms
(e.g., geometrical optics) die even more surely than paradigms in an
interesting state of crisis: nobody gets famous solving textbook exer-
cises. What is desired, on this view, is not an anomaly-proof articula-
tion of a paradigm, but a heuristically exciting paradigm that never
stops generating interesting problems that it can later absorb. In other
words, for each problem, there should exist an articulation that solves
this problem along with most of the preceding ones.!* This meta-

q involved in the reaction would be infinite. Feynman (1994, 69) emphasizes the epi-
stemic role of quantization in the investigation of conservation laws.

12. We do not intend to take issue here with those who have attempted to provide
rational reconstructions of revolutionary episodes: e.g., Kitcher 1993.

13. There remains a question whether the limit of the articulations is itself an articu-
lation or an infinite sequence of patches that never fit together. Both proposals are
interesting.
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hypothesis is refutable in the limit but may fail to be decidable in the
limit.'* An even more “‘cynical’’ proposal is that it does not really mat-
ter whether the paradigm is capable of solving a problem if one’s col-
leagues are so pessimistic that they dump the paradigm before the so-
lution is found. This sort of thinking suggests that the paradigm must
actually yield problem solutions in sufficient time to prevent the par-
adigm from being dropped prematurely. This bound on the search time
for finding the solution would make the Kuhnian meta-hypothesis re-
futable with certainty. One important advantage of the strategic per-
spective of limiting reliabilism over confirmation theory is that stan-
dards of problem solution are widely held to be paradigm-relative,
whereas our various notions of paradigm correctness adopt a strategic
perspective that takes the relativity into account without begging ques-
tions about commensurability between problem solution standards
across paradigms.'

The frequentist interpretation of probability assigns a determinate
empirical proposition to each objective probability claim, and hence
embeds probabilistic questions into the limiting reliabilist framework
we have presented.!'¢ If frequentists were ever to admit the possibility
that no limiting relative frequency exists for a given outcome, hypoth-
eses asserting point probabilities would be gradually verifiable but not
gradually refutable. But as a matter of fact, classical statistical proce-
dures usually proceed under the assumption that probabilities exist,
else their probabilistic error bounds would be undefined. Given this
assumption, the empirical hypothesis that a certain outcome occurs
with a given limiting relative frequency is refutable (but not verifiable)
in the limit."” Surely that cannot be! Aren’t statistical hypotheses re-
futed in statistical tests all the time? Not on the limiting relative fre-

14. This analysis assumes that problem solution can be recognized with certainty. If it
is conceded that a solution can be overturned as a rounding error, faulty calculation,
or experimental artifact, then we have to add an extra universal quantifier to the effect
that the solution will never be overturned and the problem is no longer even gradually
refutable.

15. The same point can be made concerning theory laden data and theoretical meaning
variance: cf. (Kelly and Glymour 1992; Kelly, Juhl and Glymour 1994; Kelly 1996, Ch.
15).

16. For our purposes, this is the crucial feature of the view, so we will not distinguish
frequentism from versions of the propensity interpretation that take propensities to
logically entail limiting relative frequencies (e.g., Howson and Urbach 1990).

17. Interval hypotheses are often of interest in statistics. Absent any background as-
sumptions, the hypothesis that the limiting relative frequency exists in a given interval
(open or closed) is only gradually verifiable. Given that the limiting relative frequency
exists, its membership in an open interval is verifiable in the limit and its membership
in a closed interval is refutable in the limit (Kelly 1996, Ch. 3).
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quency account: the test is merely guaranteed to have a bounded lim-
iting relative frequency of erroneous rejections (and, preferably, a
minimal probability of erroneous acceptances when it is repeated in-
finitely often). Then at least the procedure will eventually correct itself
in the sense that if we were to repeat the test a few times we would see
that the rejection was mistaken?'® Again, not on the limiting relative
frequency account: all that follows is that there is an even lower limiting
relative frequency for proportions of rejections in runs of some fixed
length n. But this probability statement just repeats the V3V quantifier
pattern. What is required to improve the sense of convergence is to
actually bound the existential quantifier by saying which finite runs of
outcomes are logically inconsistent with one’s background beliefs and
the statistical hypothesis in question. But most probabilists are un-
willing to provide any such bound: the sample might simply have been
very unlucky. Either way, the limiting reliability analysis yields a pre-
cise result: if we are willing to bound the existential quantifier in the
V3V pattern, then frequentist probability statements are refutable with
certainty. If we are not, they are only refutable in the limit (even as-
suming that a limit exists).

In each of these examples, the background assumptions reduce the
topological complexity of the hypothesis in question so as to improve
the sense of reliable convergence attainable. If we are on the right track,
we should expect scientists to exercise their ingenuity to make their
questions appear to have the lowest possible topological complexities.
Newton’s investigation of universal gravitation illustrates this pattern.
In the Principia, the three laws of motion are assumed as relatively
stable background information. Kepler’s laws are taken to summarize
the astronomical data. One of the crowning achievements of Newton’s
Principia is Cor. I, Prop. XLV, of Book I. This result states that given
the laws of motion and given that the force on a planet is centripetally
directed and varies from the source by a power law, the inverse square
law is uniquely characterized by the absence of orbital precession. So
if the inverse square law were false, orbital precession would eventually
be observed. Newton’s geometrical analysis amounts to the construc-
tion of a method for refuting the inverse square law with certainty,
assuming the laws of motion and that the force law is a power law."?
Newton’s careful exploitation of geometrical structure to exhibit a re-

18. “. .. if we are wrong to reject H, . .. we would find we were rarely able to get so
statistically significant a result to recur, and in this way we would discover our original
error” (Mayo 1996, 427).

19. Newton had to first subtract off an estimate of the precession due to interplanetary
attractions.
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liable connection between theory and evidence helps to explain his in-
sistence that he “deduced” the theory from observation rather than
merely “feigning” hypotheses.?

As the above examples illustrate, the interesting applications of lim-
iting reliability analysis are those in which the hypothesis determines
an empirical proposition relative to background assumptions and the
problem involves unbounded quantifiers leading to unbounded
searches in the input stream. When such topological complexity arises,
it leads to a kind of methodological unease, as in the case of conser-
vation laws and hypotheses that can always be protected with new
auxiliaries to account for new anomalies. However, in many concrete
cases it is hard to find such unbounded quantifiers. Sometimes this is
because there is a great deal of relevant background theory and strong
evidence. Possibilities may also be ignored due to the more question-
able practice of assuming that one of the theories under consideration
must be true. And complexity can come to be ignored through con-
vention or habit. Physicists seem to have some skeptical worries about
high energies and very small scales, but they exhibit little concern with
the projection of regularities across unexceptional regions of space-
time. Similarly, packaging the three quantifiers of frequentist proba-
bility in the notion of a statistical test has fostered the impression that
probabilistic hypotheses can really be refuted. Since the probabilities
often arise at the “outside” of an analysis (e.g., as a theory of error
tacked onto a deterministic theory) they end up being routinely ig-
nored, focusing attention on quantifier alternations in the deterministic
hypotheses themselves.

5. Some Remarks on Bayesian Updating. A great deal of philosophical
attention has been devoted to “pure” Bayesianism, the attempt to ac-
count for scientific intuitions and practice in terms of personal prob-
abilities and updating by conditionalization, without recourse to util-
ities (e.g., Earman 1992, Howson and Urbach 1990, and Hellman’s
contribution). With some of our cards on the table, we would like to
relate our position to this one in a bit more detail.

We have mentioned that, unlike classical statisticians, we have no
special objection to the assignment of probabilities to hypotheses or to
the introduction of personal prior probabilities. In fact, the bumping
pointer method described in Section 3, which is motivated as a com-
plete inductive architecture rather than by any coherence considera-
tions, bears an intriguing, qualitative resemblance to Bayesian updat-

20. Cf. Harper and DiSalle 1986 for a treatment of the case from the perspective of
alternative (I).
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ing. The enumeration of closed sets serves as a kind of “plausibility
ranking” of different ““ways” in which the hypothesis might be correct.
Like the Bayesian’s prior probability distribution, the plausibility or-
dering is normatively arbitrary but determines which hypotheses are
taken more seriously by the method. The bumping of the pointer cor-
responds roughly to the redistribution of prior probability mass over
the remaining hypotheses when a closed set of data streams is refuted.
Reliability considerations alone therefore lead to a qualitative factoring
of inductive practice into an arbitrary a priori part and a data-driven
part.?!

Some of the victories claimed for Bayesian updating require only
this much apparatus to explain. One allegedly Bayesian virtue of varied
evidence is that it knocks out more various rival hypotheses, thereby
building up more mass on the true hypothesis (Earman 1992, Hell-
man’s contribution). In the bumping pointer construction the story is
similar: more varied evidence (for a particular implementation of the
method) can knock out more closed sets in the enumeration, possibly
speeding convergence of the pointer.

There are other Bayesian success stories that we do not count as
such. For example, it is claimed that envisaging Bayesian updating as
a scientific method solves Duhem’s problem because some assignments
of numbers favor the hypothesis and others favor the auxiliaries (Dor-
ling 1979, Howson and Urbach 1990, Earman 1992). It will come as
no surprise that we expect a proper solution to Duhem’s problem to
reliably identify the false hypotheses. The problem may be solvable in
the short run if some patience and careful experimentation decisively
identify the offending hypotheses (cf. Mayo’s contribution). To cor-
rectly assign blame to the false hypotheses of a refuted theory in the
limit requires only that each hypothesis in the refuted theory be indi-
vidually decidable in the limit.

Folklore informs us that so long as alternative hypotheses receive
nonzero prior probabilities, the initial, prior probabilities will be
“washed out” by the evidence through the agency of the changing like-
lihoods. Helman’s paper discusses a result by Gaifman and Snir (1982).
In our setting, the following theorem is more immediately relevant:

For each empirical hypothesis (for which degrees of belief are de-

21. The idea of eliminative induction has been enjoying a recent resurgence in popularity
(Earman 1992, Kitcher 1993, Hawthorne 1993). The bumping pointer method may be
thought of as a genereralization of the eliminative inductivist idea. A standard objection
to eliminative inductivism is that knocking out finitely many theories still leaves infi-
nitely many at each stage. Our response is that knocking out finitely many possibilities
at each stage can lead to nontrivial convergent success.
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fined), each countably additive Bayesian agent with sufficiently
comprehensive degrees of belief2> must believe with unit probability
that updating her current degrees of belief by Bayesian condition-
ing will gradually decide the hypothesis (Halmos 74, section 49,
theorem B).??

This sort of result contrasts sharply with the hierarchy of underdeter-
mination developed in the preceding section, which shows that gradual
decision is possible only for limiting clopen sets. It cannot be that
Bayesian updating has special powers learning theory overlooks: it is
one of the methods whose powers are bounded by our characterization
results. What is really going on is that the theorem grants background
assumptions of unit probability to the Bayesian, and the hypothesis is
decidable in the limit (and hence limiting clopen) with respect to these
assumptions. With respect to the same assumptions, other methods
would converge to the truth as well: the bumping pointer method for
example. So the real moral of such results is that arbitrarily severe
skeptical arguments (i.e., arbitrarily high topological complexity) can
fit into an arbitrarily “small” set, if “smallness” is judged by a count-
ably additive probability measure assigning probabilities to a suffi-
ciently broad range of possible hypotheses. This suggests an intriguing
mathematical explanation of the perennial debate between realists and
anti-realists concerning the underdetermination of theory by evidence.
Anti-realists look at an inductive problem and see high levels of top-
ological complexity. Realists look at the same problem and see that the
topological complexity is confined to a “small” set of possibilities. Both
observations may be true.

One restriction on the probability measures considered in the result
is countable additivity (the probability of a countable union of disjoint
hypotheses is the sum of the probabilities). In fact, this hypothesis is
necessary, since one can construct a finitely additive probability mea-
sure and a hypothesis that is verifiable in the limit such that no possible
method, Bayesian updating or otherwise, can gradually decide the hy-
pothesis in the limit with unit probability (Kelly 1996). So when count-
able additivity is dropped, the skeptical, topological structures focused
on by formal learning theorists can give rise to nontrivial probabilities
of error. Moreover, a finitely additive Bayesian can be “almost sure”
that she will fail to solve a so/vable inductive problem.>

22. i.e., degrees of belief are assigned to each set in the o-field generated by the open
(verifiable) empirical hypotheses.

23. For a detailed discussion of Halmos’ result, cf. Schervish et al. 1990.

24. Adapting an example due to DeFinetti (1972, 87) along lines suggested to us by
Teddy Seidenfeld, consider a Bayesian who thinks the data are generated by fair coin
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But even when the conditions of the “almost sure” convergence the-
orems are met, learning theoretic considerations are relevant. By look-
ing at the exact range of possible worlds over which Bayesian updating
succeeds, we can determine whether a given Bayesian agent who suc-
ceeds “almost surely” solves the problem completely, or whether tin-
kering with the agent’s initial distribution could make her more reliable
still.?s

More generally, one may ask whether every hypothesis that is grad-
ually decidable in the limit is gradually decided by some Bayesian agent
in the learning theoretic sense. The answer is affirmative,? but success
may require significant tinkering with one’s joint initial distribution.
This should come as welcome news to those Bayesian confirmation
theorists who would prefer to adopt stronger rationality constraints on
the Bayesian’s initial distribution (e.g., Maher 1996).

The result that every solvable problem is solvable by a Bayesian
updater grants to the Bayesian the considerable idealization of logical
omniscience. The situation changes markedly when this idealization is
dropped in favor of a uniform approach to induction and computa-
bility, as will now be seen.

6. Computable Inquiry. We have emphasized the analogy between em-
pirical reliability and computability. This analogy facilitates a smooth
transition between the computational and empirical aspects of induc-
tive problems. Recall that the hypotheses ideally verifiable with cer-
tainty are precisely those that can be expressed as a union of fans. A
hypothesis is effectively verifiable with certainty just in case it can be

flips up to some stage n, where # is randomly sampled from a finitely additive distri-
bution in which each particular number is picked with probability zero. Thereafter, the
result of the last fair flip is repeated forever. The hypothesis is that the data stream will
eventually stabilize to 1. On each input stream, this Bayesian fails ever to update its
prior probability (.5) on the hypothesis. But the obvious method that conjectures 1
when the last datum seen is 1 and 0 otherwise decides the hypothesis in the limit given
the background assumption that the input stream converges to 0 or to 1 (the Bayesian
assigns unit probability to this assumption). By similar means, one can construct a
finitely additive Bayesian who fails to “almost surely”’ gradually decide a hypothesis
that is refutable with certainty (Kelly 1996). A decision theoretic Bayesian with utilities
on convergent success would prefer our recommendations to Bayesian updating in these
cases.

25. The philosophy of science has tended to ignore these considerations entirely. Dia-
conis and Freedman (1986) raise issues of Bayesian unreliability in a classical statistical
setting. Such results may be thought of as lying half way between Bayesian almost sure
convergence results and learning theoretic analyses.

26. This claim is conjectured by Earman 1992. Versions of it are proved by Juhl 1993,
1997.
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expressed as a union of fans whose handles form a set that is mechan-
ically listable by a Turing machine. Such hypotheses are said to be
recursively enumerable or r.e. Mechanical listability corresponds to
formal verifiability: given an item to verify for set membership, crank
out the enumeration of the set and wait for it to appear. Hence, com-
putable empirical verifiability may be factored into two analogous
parts: empirical verifiability in light of the input stream and formal
verifiability in light of an internally generated enumeration of the set
of possible finite input sequences that would logically verify the hy-
pothesis under study. Formal learning theory provides a symmetrical
treatment of the two enumerations. Just as there is no guarantee when
the data relevant to the empirical verification of the hypothesis will
appear, there is no guarantee when the formal verification that the
inputs verify the hypothesis will appear. In fact, the formal verification
may arrive in the “internal”, formal enumeration much later than the
stage at which the inputs empirically verify the hypothesis. The same
may be said of refutation. It may, therefore, be possible for computable
methods to be reliable verifiers or refuters even when it is not possible
for them to satisfy the norms of logical consistency and entailment.
There are some who would say that the computable agents should try
harder to meet their deductive commitments (Levi 1991, 46). Our view
is that “commitments” to logical omniscience make about as much
sense as commitments to empirical clairvoyance. If we are going to
take the scientist’s bounded perspective on the universe seriously
enough to propose specific norms governing empirical uncertainty, we
ought to take a computable agent’s bounded perspective on infinite
formal enumerations equally seriously.?” But that may mean trading
some logical consistency for inductive reliability. Coherence and con-
sistency are not unimpeachable arbiters of inductive rationality.
These reflections suggest a fundamental question illustrating the
power of the unified, learning theoretic approach to formal and em-
pirical problems: how uncomputable can the predictions entailed by a
hypothesis be if the hypothesis is to be reliably tested by a computable
method? Philosophical tradition suggests that the predictions ought to
be formally derivable from the hypothesis: deduction works first; then
the derived predictions are compared against the input data and the
hypothesis is rejected if a mismatch is detected. But is derivability of

27. Some may object that the idealizing assumptions of Turing computability (e.g.,
unbounded memory) are equally unrealistic (Kitcher 1993, 66). In fact, learning theo-
retic analysis can be extended to examine what machines with bounded memory can
determine in the limit. For a characterization of the limiting reliability of finite state
automata, cf. Kelly 1996, Ch. 8.
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the predictions necessary? Or does tradition inadvertently restrict the
full power of computable inquiry by insisting on this division of labor
between formal and empirical reasoning? The answer is quite striking.
One can construct a hypothesis that is computably refutable with cer-
tainty but whose predictions are in a precise sense infinitely impossible
to derive.?® Whatever the mechanical test in this example does, it cannot
amount to waiting for formal derivations of predictions and then
checking them against the data. That would be infinitely impossible for
a computer to do. What the method does is to use future empirical
data as a formal “oracle” to help it determine whether past empirical
data have already refuted the hypothesis; and this appeal to future data
is unavoidable for any agent of even an infinitely non-computable sort
(hyperarithmetically definable). In fact, it can be shown that no hy-
perarithmetically definable method that rejects the hypothesis as soon
as it is refuted can even gradually refute or gradually verify the hy-
pothesis! So insistence on the short-run norm of consistency makes
even highly idealized agents held to a much weaker standard of success
less reliable than mechanical agents who violate the norm.?® Bayesian
agents are obligated to adjust their degrees of belief in refuted hypoth-
eses immediately to 0, so the same result applies to the requirement
that updating proceed by conditionalization. Hence, commonly en-
dorsed “rationality” restrictions on inductive methods may undermine
rather than contribute to the global reliability of empirical inquiry;
even for idealized agents endowed with infinitely non-computable pow-
ers.®® In such cases, reliability considerations should be at least as
weighty as the rationality constraints philosophers are accustomed to
recommend.

28. i.e., they are not hyperarithmetically definable (Kelly and Schulte 1995, 1996; Kelly
1996). A similar result in a different setting is presented in Gaifman and Snir 1982.

29. This result is much stronger than the one in Putnam 1963, reported in Earman 1992.
What Putnam showed is that there is an inductive problem no computable method can
solve but that some uncomputable method can solve. Carnap’s methods fail to solve it
because they are computable: hardly a decisive embarassment. We have shown that
there is a problem that no hyperarithmetically definable method that rejects a hypoth-
esis as soon as it is refuted can even gradually decide in the limit that can nonetheless
be refuted with certainty by a computable method. That is, even infinitely idealized
computational powers (hyperarithmetical definability) and a much weaker standard of
success (gradual decidability) cannot compensate for the debilitating effects on reli-
ability of insisting on consistency with the input data. Kelly and Schulte 1995 also
answers all other questions of this kind (e.g., how uncomputable can the predictions of
a theory be if the theory is to be effectively verifiable in the limit, etc).

30. Osherson et al. (1986) present a range of examples showing how methodological
principles can restrict the reliability of computable agents. For an alternative restric-
tiveness result for Bayesians, cf. Osherson and Weinstein 1988.
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7. Conclusion. For reasons of brevity, we have had to neglect some of
our favorite topics, including learning theoretic approaches to predic-
tion, the logic of discovery, the problem of new ideas, optimal reli-
ability, finite state methodology, experiment and causal inference,
meaning variance, theory-laden data, belief revision theory (Osherson
and Martin 1997, Kelly et al. 1996), the minimization of convergence
time, the minimization of retractions, the inference of quantum me-
chanical conservation laws (Schulte 1997), and Goodman’s problem
(Schulte 1997).3' Nonetheless, we hope to have conveyed something of
the novelty, power, and interest of the approach; particularly concern-
ing its detailed attention to the structure of inductive underdetermi-
nation, its potential for criticizing short run “‘rationality’” constraints
that restrict reliability, and its unified, symmetrical treatment of com-
putability and empirical considerations.
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