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Abstract—The revolution of social networks and methods of
analyzing them have attracted interest in many research fields.
Predicting whether a friendship holds in a social network between
two individuals or not, link prediction, has been a heavily
researched topic in the last decade . In this paper we investigate a
related problem, link strength prediction: how to assign ratings or
strengths to friendship links. A basic approach would be matrix
factorization applied to only friendship ratings. However, the
existence of extensive transactions among users may be used for
better predictions. We propose a new type of multiple-matrix
factorization model for incorporating a transaction matrix. We
derive gradient descent update equations for learning latent
factors that predict values in the target rating matrix. Multiple-
matrix factorization can be seen as a data fusion technique, that
combines evidence from different sources. In the social network
application, the target matrix contains friendship ratings and the
evidence matrices specify transaction intensities between users.
To evaluate the model, we introduce data from Cloob, a popular
Iranian social network as well as synthetic data.

I. INTRODUCTION

Online social networks (Facebook, Orkut, LinkedIn, Mys-
pace) and methods of analyzing them have attracted extensive
interest in many research fields. Much of the past work has
focused on social networks with binary relational ties (e.g.,
whether two people are friends or not), which is known as link
prediction [9]. Because of the low-cost or effort for becoming
friends in on-line social networks, the resulting networks have
both strong and weak ties with little or no information to
differentiate the two, so these binary indicators provide only a
coarse indication of the nature of the relationship. Treating
both strong and weak ties the same, when analyzing the
characteristics of an individual, increases the noise level and
leads to misleading results. A recent trend in on-line social
network, such as Google+ and Facebook, has been to allow
users to differentiate among their friendship links by forming
lists or circles. Gilbert [2] presents research on restricting
Twitter lists to a subset of people followed by a user. We
formulate the link strength problem to extend link prediction to
estimate the strength of a tie given a pair of linked individuals
where larger values indicate a stronger link [6, 3]. Lists can be
viewed as a simple discretization of the continuous tie strength
concept that we model.

The topological structure of the network defines an explicit
network that contains information about the strength of links.
A basic approach would be to apply matrix factorization

to this network to learn latent factors for each user. Al-
though this model performs reasonably well, the existence
of a large volume of data recording transactions between
users is a motivation for building more complex models that
better predict strengths of friendships. The strength of a tie
directly impacts the frequency of transactional events between
users, as users tend to interact mostly with their strong ties.
These transactional intensities generate an implicitly weighted
network among users that may be used in addition to the
explicit network. Previous approaches have derived features
from the implicit networks and then used the features to build
a classification model for distinguishing weak from strong
ties [6, 3]. Instead, multiple-matrix factorization performs data
fusion, which is the process of combining data from multiple
sources into one model for analysis.

Collective matrix factorization is a general approach for an-
alyzing multiple matrices [15, 10]. In this model, for each indi-
vidual a single latent feature vector is introduced to explain all
the links that the individual participates in. Collective matrix
factorization is well-suited to generative models that represent
the joint distribution over all relationships. In contrast, we use
a discriminative model where the goal is to predict the values
of a single target matrix—strength of friendship—and implicit
matrices, like transactional intensities, are used to weight the
importance of connections between users.

Research on social recommendation systems has shown
that friendship information can improve item recommendation
[5, 15]. Investigations of social networks have shown that it
is friends with strong ties, rather than weak ties, that exhibit
similar preferences [3]. Therefore a promising application of
link strength prediction is to combine it with social recom-
mendation models (i.e., a user-item matrix) [14].

Evaluation. We use data from Cloob1, a popular Iranian
website, as well as synthetic data to validate our work.
To our knowledge, the Cloob dataset is the only dataset
that contains explicit friendship ratings, which serve as a
ground truth for our evaluation. Experimental results show
that our Transaction-MF model outperforms collective matrix
factorization, single table matrix factorization, as well as
models that analyze the data matrices separately. An important
challenge for link strength prediction is the presence of zero-

1http://www.cloob.com

191978-1-4673-5895-8/13/$31.00 c©2013 IEEE



transaction friendships, between user dyads that are friends
but have no recorded activities. Our experiments illustrate
that even in the absence of direct transactions between two
friends, their transactional behavior with their other friends is
informative and leads Transaction-MF model to perform better
than competitors. Our experiments also examine the impact of
a number of model parameters, including the dimensionality
of the latent factors and a trade-off parameter that controls the
importance of the transaction intensities.

Contributions.
• To our knowledge, ours is the first paper using matrix

factorization model to predict the strength of an existing
link, as opposed to the existence of a link.

• Since the user-user link strength rating is directed, we
distinguish two types of latent feature vectors associated
with each user: one that models the user’s behavior as a
rater, and a second that models the user’s behavior as a
ratee.

• We present the first evaluation of link-strength prediction
on a real-world data set with continuous ratings, as
ground truth, as opposed to binary link strength labels.

II. PROBLEM DEFINITION, BACKGROUND, AND NOTATION

Suppose the social network consists of a set of N users. The
link strengths expressed by users for other users are given in
a link strength matrix RN×N . This matrix is not symmetric,
because users u and v can express different strengths for their
friendship. Instead of using indices like i, j for a generic user,
we use the index u for users as raters, and v for users as ratees.
The goal of link strength prediction is to infer the value of ru,v
given that we know u and v are friends. The baseline or bias
parameters brateru and brateev indicate the observed deviation
of user u as rater and user v as rated from average µ over
all expressed strengths in the training dataset. Each user is
assigned two baseline parameters [7]. For example, suppose
user John wants to rate his friendship with user Mary. Assume
that the average of the ratings is µ which is 3.4 and Mary is a
popular user whom users rate 0.8 above average. On the other
hand, John is a critical user who rates 0.3 below average. We
would predict John will rate his friendship with Mary as 3.4
+ 0.8 - 0.3 = 3.9.

The basic idea of our data fusion model is to learn infor-
mative latent factors for each individual. Since the patterns of
how a user rates others and how others rate him are usually
distinct, we associate two sets of latent factors to each user.
As an example, a popular movie star may be linked to many
fans that indicate a strong tie to him, but he would probably
indicate a weak tie to fans that he does not personally know.
Let UN×K be the latent factors modeling how users rate and
let VN×K be the latent factors modeling how users are rated.
In our example, the V factors of the movie star indicate that
he tends to be rated high and U factors of the movie star show
that he tends to rate low.

We employ matrix factorization techniques to learn the
latent characteristics of users. Matrix factorization maps users
to a joint latent factor space of dimensionality k, such that the

rating between two users would be the inner products of their
latent factor like r̂uv = Uu

TVv . The baseline predictors may
be integrated with the raw matrix factorization model

r̂uv = µ+ brateru + brateev + Uu
TVv

Each user has two sets of direct friends or neighbors: First,
Nrater for the friends that the user has rated, Nratee for
the friends that have given the user a rating. We translate
transactional intensities between two neighbors into real num-
bers. The transaction intensities are stored in the transaction
matrices T i

N×N . The expression T i
u,v = x denotes that x

is the intensity of transaction type i between u and v that
were carried out by u. In general, transactions are directed
(e.g., sending a message), so T i is asymmetric. In this paper,
we focus on one transaction matrix TN×N ; however, our
techniques extend to multiple matrices. We use the terms
transactions and activities interchangeably.

III. TRANSACTIONAL-BASED LINK STRENGTH MODEL

In this section we go through the mathematical details of the
proposed TMF model. Basically we use a Gausian prediction
model where the mean of the predictive distribution is a linear
combination of the baseline predictors and the product of the
latent factors.

We discuss how the baseline predictors brateru and brateev

and latent factors for U and V are learned given the strength
of the friendship and transactional intensities between users.
The corresponding graphical model is presented in Figure 1
which can be computed using the following Gaussian,

p(R|U, V,σ2
R)

=
N∏

u=1

N∏

v=1

[
N
(
ru,v|g(µ+ brateru + brateev + UT

u Vv),σ
2
R

)]Ir
u,v

Here N (x|µ,σ2) is the normal distribution with mean µ
and variance σ2, and Iru,v is the indicator function that is
equal to 1 if u has rated v and equals to 0 otherwise. The
expression g(x) ≡ 1

1+e−x denotes the logistic function. The
logistic function was previously used for probabilistic matrix
factorization [5].

In plain English, the model embodies the following assump-
tions about latent features. 1) The strength of a link between
two users depends on how well the latent features of the two
users match. 2) The latent features of a rater should be related
to the latent features of her friends as ratees, where friends
carry more weight if the intensity of transactions between the
rater and the friend was higher. 3) The latent features of a
ratee should be related to the latent features of her friends
as raters, where friends carry more weight if the intensity of
transactions between the ratee and the friend was higher.

Learning. We first learn the baseline estimates without
considering the latent factors, following [7]. The intuition is
that the baseline terms capture the general rating trend of a
rater resp. ratee, independently of the transaction intensities.
In contrast, the latent factors U and V depend on both the
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Fig. 1. The Transaction-MF or (TMF) plate model. Observed quantities are
the ratings Ruv and the transaction intensities Tu,v .

ratings and the transaction intensities. In order to estimate
brateru and brateev for each user, we therefore maximize the log-
likelihood of the ratings without considering the latent factors.
Adding a L2-regularizer and trade-off parameter λb then leads
to minimizing the following objective:

1

2

N∑

u=1

N∑

v=1

Iru,v

(
ru,v − g(µ+ brateru + brateev )

)2

+
λb

2

N∑

u=1

(brateru )2 +
λb

2

N∑

v=1

(brateev )2

We use gradient descent to learn the baseline predictors.
The following formula gives the update rules.

brateru := brateru − γ(
∑

v∈Nu

g′(µ+ brateev + brateru )

×
(
g(µ+ brateev + brateru )− ruv

)
+ λbb

rater
u )

brateev := brateev − γ(
∑

u∈Nv

g′(µ+ brateev + brateru )

×
(
g(µ+ brateev + brateru )− ruv

)
+ λbb

ratee
v )

Similar to the Social-MF model [5], we make some simpli-
fying assumptions to approximate the optimal latent factors.
(1) The rater factors U and ratee factors V are mutually
dependent. We approximate their joint distribution as the
product of the conditional distributions. (2) The conditional
distribution of one latent factor conditional on the model
parameters and the other latent factors are split into two terms:
(i) the shrinkage prior and (ii) the conditional distribution
given the latent factors of friends. (3) The latent factor that
describes how a user rates her friends depends linearly on the

latent factors that describe how her friends are rated, with the
transaction intensities between her and her friends as weights.

We can apply Bayes’ theorem and the assumptions stated to
obtain a tractable approximation to the posterior probability of
the latent variables U and V , shown in the following formula.

p(U, V |R, T,σ2
R,σ

2
T ,σ

2
U ,σ

2
V )

≈ p(R|U, V,σ2
R)× p(U |V, T,σ2

U ,σ
2
T )× p(V |U, T,σ2

V ,σ
2
T )

=
N∏

u=1

N∏

v=1

[
N
(
ru,v|g(µ+ brateru + brateev + UT

u Vv),σ
2
R

)]Ir
u,v

×
N∏

u=1

N (Uu|
∑

v∈Nu

Tu,vVv,σ
2
T I)×

N∏

u=1

N (Uu|0,σ2
uI)

×
N∏

v=1

N (Vv|
∑

u∈Nv

Tu,vUu,σ
2
T I)×

N∏

v=1

N (Vv|0,σ2
vI)

The log of the approximate posterior probability can be
computed using the following formula. In the following for-
mula set λU = σ2

R/σ
2
U , λV = σ2

R/σ
2
V and λT = σ2

R/σ
2
T .

L(R, T, U, V )

=
1

2

N∑

u=1

N∑

v=1

Iru,v

(
ru,v − g(µ+ brateru + brateev + UT

u Vv)

)2

+
λU

2

N∑

u=1

UT
u Uu +

λV

2

N∑

v=1

V T
v Vv

+
λT

2

N∑

u=1

(
(Uu −

∑

v∈Nu

Tu,vVv)
T (Uu −

∑

v∈Nu

Tu,vVv)

)

+
λT

2

N∑

v=1

(
(Vv −

∑

u∈Nv

Tu,vUu)
T (Vv −

∑

u∈Nv

Tu,vUu)

)

This formula is the main objective function with the predic-
tive baselines and transactional intensities included. Taking the
derivative with respect to Uu and Vv yields gradient descent
update formulas for the baseline predictors and latent factors.

∂L

∂Uu
=

N∑

v=1

Iru,v

[
Vvg

′(µ+ brateru + brateev + UT
u Vv)

×
(
g(µ+ brateru + brateev + UT

u Vv)− ru,v

)]
+ λUUu

+λT (Uu −
∑

v∈Nu

Tu,vVv) + λT

( ∑

v∈Nu

Tu,v(UuTu,v − Vv)

)

∂L

∂Vv
=

N∑

u=1

Iru,v

[
Uug

′(µ+ brateru + brateev + UT
u Vv)

×
(
g(µ+ brateru + brateev + UT

u Vv)− ru,v

)
+ λV Vv

+λT (Vv −
∑

u∈Nv

Tu,vVv) + λT

( ∑

u∈Nv

Tu,v(VvTu,v − Uu)

)
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IV. RELATED WORK

a) Link Prediction: Matrix factorization models have
been developed for predicting the existence of a link (e.g.,
[4, 12]). While such models are broadly similar to ours, the
task of link strength prediction has different characteristics
from the task of link existence prediction [6]: We model link
strength as continuous, whereas link existence is binary. A big
difference for learning methods is that links are sparse, so link
existence shows a high class imbalance, whereas link strength
applies only to existing links and does not exhibit the class
imbalance problem.

b) Link Strength Prediction: Most previous link strength
models treat the binary classification problem of distinguishing
weak from strong ties [3, 6]. These models use transaction
intensities as observed predictor variables. We use continuous
link strength as dependent variable, and the predictors are
latent user factors that are learned using the continuous trans-
action intensities. A major advantage of latent factor models
is that they can utilize parameters for each individual rather
than a weight for each attribute.

Xiang et al. [14] predict continuous link strength with a
latent variable model. However, their model does not use
matrix factorization, that is, it does not assign a latent factor to
each user that explains the user’s ratings (given and received).
Instead, the link strength itself is the latent variable, related to
user similarity and transaction records as observed features.
The evaluation does not compare predicted link strength
against true link strength ratings as their datasets do not
provide ground truth ratings.

c) Single Matrix Factorization: Link prediction uses
latent factors to model a link matrix, where links are typically
undirected and have binary values. Our models feature two
directed and continuous matrices, link strength and transaction
intensity. Recommendation systems also predict a continuous
rating. Koren et al in [8, 7] combine single matrix factorization
with baseline predictors for the Netflix challenge. Our model
adopts this idea.

d) Multiple Matrix Factorization: Social recommender
systems can use double-matrix factorization, one item-user
matrix and another user-user friendship or trust matrix [5, 11,
10, 10]. The Social-MF model of [5] is a discriminative model
where the goal is to predict the values of a single target matrix
(user-item). A trust matrix is used to weight the strength of
connections between users. The Social-MF model features a
recursive dependency in which the latent factors of a user
depend on the latent factors of his friends.

Our Transaction-MF model (TMF) incorporates multiple
(user-user) matrices and the goal is to predict the values of
a user-user target rating matrix. The predictions are made on
the basis of two sets of latent factors U and V , that model
the behavior of each user, one for rating and one for being
rated. TMF adapts the idea of a recursive dependency among
latent factors, where a transaction intensity matrix is used to
weight the strength of connections between users. The main
new aspects of our model compared to Social-MF are the
following.

1) The prediction target is a directed user-user rating, not
a user-item rating. Therefore we introduce two sets of
latent features, one that models each user’s behavior as
a rater, and another that models each user’s behavior as
a ratee.

2) In Social-MF, the latent feature of each user depends
on those of her neighbors, so the latent features can be
interpreted in terms of a similarity metric between users.
In TMF, the latent factor of a rater (ratee) depends on
the latent factors of her neighbors as ratees (raters). This
condition can be interpreted as a regularization [5], but
not as expressing that latent factors of neighbors should
be similar.

3) The trust information that is used to weight the latent
neighbor factors in Social-MF is replaced by informa-
tion about transaction intensities, which reflect multiple
types, with different scales, of actitivities between users.
Whereas trust values are usually not directly expressed
by users, specially continuous ones, transactions are
logged in the system.

4) We adapt Koren’s use of baseline or bias parameters
for each user to the link strength prediction setting. The
baseline parameters reflect a user’s general tendency to
rate and be rated, independent of transaction informa-
tion. Such baseline parameters are not used in Social-
MF.

V. EXPERIMENTS

In this section we examine the predictive performance of
the TMF model on different criteria. All of the experiments
are reported over 5-fold cross validation. We distribute the
friendship links for each user and the associated transaction
information, in either direction, evenly into the folds as
much as possible, so we train on approximately 80% of the
friendship links available for a user and test on the rest of the
friendships [13].

A. Datasets
We use synthetic and real world data to validate the model.
1) Cloob.com: It is a challenge to find data of reasonable

size on real social networks for evaluating link strength. We
introduce Cloob, which is the biggest social network and the
8th most popular website in Iran. We were given full access to
cloob’s anonymized data for research purposes. The network
has records of over 1.5 million users and 25 million friendships
between 2005 to 2010.

A special feature of Cloob is that users can enter a value
between 0 and 5 to indicate the strength of a friendship, which
provides us with a ground truth for evaluating link strength
models. Since the website does not require users to rate
their friends, many of the friendships have the default rating.
We omit the ties with default value from our experiments
and concentrate on ties of other strength because: (1) The
strength of default friendships are unknown since they contain
both strong and weak ties. (2) Due to the large skew on
the target class, including the default values in the learning
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procedure of the latent factors, makes the model perform
poorly in predicting other values of strength. After removing
all friendship ratings with the default value, the strengths are
in the range [1,5]. Table I shows the number of friendships and
activities after removing the default values. We evaluate the
ratings given by users that have rated at least five of their
friendships, and the ratings given to users that have been
rated at least five times. The network contains 20 million
transactional events between 2005 to 2010. Users can apply
five types of activities to one another: comment, paint, send
pictures, like, and write testimonial. To convert information
about the five types of activities into a single entry in a
transaction intensity matrix, we add up the five activity counts
for every pair of friends. An interesting extension for future
work would be to learn with five separate activity matrices.

# Friendships 502,060
# Users 45,150
# Activities 7,913,596

TABLE I
NUMBER OF FRIENDSHIPS AND

ACTIVITIES AFTER REMOVING THE
DEFAULT VALUES FOR THE CLOOB

DATASET.

# Friendships 50000
# Users 27000
# Activities 50000

TABLE II
NUMBER OF FRIENDSHIPS AND

ACTIVITIES FOR THE SYNTHETIC
DATASET.

2) Synthetic Data: The idea behind this paper is that the
implicit network created from the transactional intensities
among users correlates with explicit network generated by the
users ratings. We first generate a synthetic dataset in which
there is a very strong correlation between strengths of ties and
the intensity of transaction between users. In this dataset, the
following two assumptions are exaggerated compared to what
you expect in a real social network. (1) All of the friendship
ties generated in this dataset are directly dependent on the
number of transactions. This assumption does not generally
hold as two users u and v may have known each other for
a long time, leading to a strong tie, but have only recently
become friends in an on-line social network, so they don’t
have many recorded transactions. (2) The average number of
activities between users is much higher than what it normally
is; there are usually many ties in social networks with zero or
very few activities. The exaggerations are introduced to create
a dataset where the basic assumption of the TMF model is
true, so our expectation is that if the model assumptions are
true, our learning algorithm for TMF should outperform other
methods. This dataset is created using the following method.

First we generate users and their friendships using four dis-
tributions. The first two distributions are used to generate the
baseline values brateru and brateev for each user. We assume that
each user could have one of three different types of behavior
when defining strength for a friendship: assign higher than,
same as, or lower than average strength for their friendships.
The same three behaviors could be realized for how they have
been rated. We assign a uniform distribution over the nine
different types of people. The following formulas show how

the brateru and brateev are generated for users using the normal
distribution. The mean value of the distributions depend on
the user’s type, which is -1, 0, or 1:

brateru ∼ N ({−1, 0,+1},σ2
b ), b

ratee
v ∼ N ({−1, 0,+1},σ2

b )

We then introduce a third parameter accu for users to
generate their tendency to make friends. This parameter is
the probability of acceptance of friendships for users. To
generate friendships, we randomly sample two users u and
v and produce a random value x between 0 and 1. If x is
smaller than the accu, the link is kept, otherwise we repeat
the step and sample two other users. We set the acceptance
parameter to achieve a power law distribution on the number
of friendships.

Finally, the rating between users is randomly generated
according to the following distribution:

ruv ∼ N (µ+ brateru + brateev + auv,σ
2
R)

The auv parameter produces the number of activities between
users u and v, distributed as auv ∼ max(N (µa,σ2

a), 0). Thus
the number of activities between user pairs in social networks
is modelled with a normal distribution. For simplicity, only
one type of activity may be carried out between users. The
minimum number of activities between users is set to 0 to
avoid a negative number of transactions. In our experiment
we arbitrarily set σ2

b = 0.5, σ2
R = 0.1, µ = 3, and µa = 25.

Table II shows the number of generated friendships and
activities and table III summarizes the parameters used for the
synthetic data set.

B. Experimental Setup
As in previous evaluations [5, 7], the metric used in

our experiments is root mean squared error: RMSE =√∑
(u,i)∈Rtest

(ru,v−r̂u,v)2

|Rtest| , where Rtest is the set of all pairs
(u, v) in the test data. RMSE penalizes large errors more
than mean absolute error. The error is evaluated at parameter
settings obtained after gradient descent has converged. For
different models and methods, convergence is attained after
different numbers of iterations, which we also report. Note that
by running the gradient descent until convergence we focus on
comparing the predictive power of the models, rather than the
computational difficulty of optimizing parameters in each. We
compare the following seven methods.
LRT Linear Regression on Transactions (LRT) learns a
weight for each of the five transactions to predict the strength
of the friendships. Our implementation uses the Weka linear
regression package [1].
MF Uses Matrix factorization to learn the latent factors
without using the baseline predictors and activities.
MF+Base Uses Matrix factorization to learn the latent factors
using the baseline predictors, but not using activities. [8]
LRT+MF A weighted combination of the LRT and the MF
model. The weights are learned using regression, again with
Weka.
CMF Collective matrix factorization uses gradient descent to
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Parameter Interpretation Generation Method
µ Average friendship rating in population Set to 3
σ2
b Variance for generating baseline predictors for each user Set to 0.5

brateru observed deviation of user u as rater from µ N ({−1, 0,+1},σ2
b )

brateev observed deviation of user v as rated from µ N ({−1, 0,+1},σ2
b )

µa Average number of activities between two users Set to 25
σ2
a Variance for generating activities between a pair of users Set to 15

auv Number of activities between user u and v max(N (µa,σ2
a), 0)

accu Acceptance rate of friendships for users Set to 0.9,0.7,0.5,0.3,0.1
x To decide whether a friendship link is kept or not Randomly generated between 0 and 1
σ2
R Variance for generating rating between two users Set to 0.1

ruv Rating between user u and v N (µ+ brateru + brateev + auv,σ2
R)

TABLE III
PARAMETERS USED FOR GENERATING THE SYNTHETIC DATA

learn hidden factors to explain both the strength of the links
and the transactional intensities. This model has previously
been used mostly for recommendation systems in which the
explicit matrix is of type (user-item) and the implicit matrix
is of type (user-user) [15, 10]. We adapt the model to fit two
(user-user) matrices.
CMF+Base The addition of the baseline predictors to
Collective matrix factorization.
TMF Transaction-based Matrix factorization is our model
discussed in Section III.

Table V lists the parameters and their meaning used in this
evaluation. Since the focus of this paper is not on the prior
probabilities, we fix the values of λb = 0.001, λu = 0.001
and λv = 0.001 for all experiments.

C. Data Fusion Experiments
Data fusion, as discussed, is the process of combining data

from multiple sources for analysis instead of using each of
the sources individually. Among our comparison methods,
the CMF and TMF approaches can be viewed as perform-
ing data fusion, whereas the other approaches use only one
information source (LRT, MF), or model the information
sources independently (LRT+MF). We perform experiments to
evaluate whether a data fusion approach leads to more accurate
predictive performance or not. Table VI illustrates the results
for this experiment on the Cloob dataset.

For the parameters of MF, CMF and TMF we used the
latent factor dimension k = 5 and the optimal value of
λt, as established by cross-validation. LRT assigns very low
weights to each of the activities and predicts values very close
to the mean of the strengths of ties, which indicates that
the activities are almost independent of the strength of ties.
This occurs mainly because many pairs of friends lack any
transactions—we refer to this situation as a zero-transaction
friendship. The MF model performs better than LRT and
is able to find factors that perform reasonably well in the
dataset. LRT+MF outperforms both the LRT and MF model by
using the information from both matrices separately. The TMF

approach uses data fusion and leads to the best performance
compared to learning weighted combination of the two models.

Zero-Transaction Friendships. To investigate further the
importance of data fusion, we separately report results regard-
ing zero-transaction friendships. Such friendships are numer-
ous; the Cloob database records 329,940 of them, or 65%
of all friendships. In this case a model based on explicit
transaction information does not apply, whereas the effect
of latent factor learning is to propagate information from
different third-party transactions. For example, if Jack and
James are friends with no transactions between them, but Jack
has recorded transactions with 20 other friends, and James has
recorded transactions with 30 other friends, this information
will influence the latent factors for Jack and James, and
hence the prediction of the link strength between them. Table
VII shows the cross-validation RMSE for zero-transaction
friendship pairs. Collective Matrix Factorization (CMF-base)
and single matrix factorization (MF-base) show the same
error rate on zero-transaction user pairs. This suggests that
Collective Matrix Factorization does not propagate informa-
tion as effectively as Transaction-based Matrix Factorization.
More effective propagation would also explain the superior
performance of TMF on the entire dataset, shown in Table VI.

Method RMSE
LRT 1.17 ± 0.012
MF 0.61 ± 0.023

MF + LRT 0.47 ± 0.019
CMF 0.50 ± 0.015
TMF 0.28 ± 0.008

TABLE VI
DATA FUSION.

Method Result
MF 0.55 ± 0.032

MF-Base 0.31 ± 0.023
CMF 0.47 ± 0.012

CMF-Base 0.31 ± 0.041
TMF 0.24 ± 0.014

TABLE VII
PERFORMANCE ON

ZERO-TRANSACTION USER PAIRS

D. Impact of Transaction Information
It is interesting to study the effect of the transactional

intensities on the link strength. Parameter λT in the TMF
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Method k = 2 k = 5 k = 10
RMSE itr RMSE itr RMSE itr

MF 0.67 ± 0.045 143 0.61 ± 0.023 88 0.71 ± 0.078 110
MF-Base 0.40 ± 0.014 246 0.35 ± 0.025 284 0.38 ± 0.030 331

CMF 0.90 ± 0.010 269 0.50 ± 0.015 422 2.52 ± 0.239 300
CMF-Base 0.38 ± 0.018 299 0.33 ± 0.010 308 0.36 ± 0.005 662

TMF 0.35 ± 0.015 403 0.28 ± 0.008 627 0.22 ± 0.032 1165
TABLE IV

AVERAGE RMSE AND NUMBER OF ITERATIONS FOR DIFFERENT DIMENSIONALITY IN THE CLOOB DATASET.

Parameter Interpretation Estimation Method
λb L2-regularizer for baseline predictors Fixed for all methods
λu L2-regularizer for raters Fixed for all methods
λv L2-regularizer for ratees Fixed for all methods
λt L2-regularizer for transaction intensities Evaluated with different values
k dimensionality of the latent factors Evaluated with different values
Uu latent factors modeling the behavior of raters Gradient descent
Vv latent factors modeling the behavior of ratees Gradient descent

TABLE V
THE INTERPRETATION AND THE METHODS OF ESTIMATION FOR THE NEW PARAMETERS USED IN THE CLOOB MODELS. PREVIOUS PARAMETERS

(TABLE III) WERE ESTIMATED AS FOLLOWS. µ :EMPIRICAL MEAN; brateru , brateev : GRADIENT DESCENT.

model controls the influence of the transactional intensities.
Setting λT = 0 totally ignores the transactions to make
the model similar to the MF+base model. Large values of
λT indicate a strong influence of the transaction information
used to derive predictive features, moving close to the LRT
model. Figures 2 and 3 shows the transactional intensities’
influence. Figure 2 illustrates that TMF does much better on
the synthetic dataset, which was to be expected since the
data satisfy the assumptions of the model. The MF methods
do not perform well because they fail to make use of the
transaction information. Figure 3 shows that methods that
incorporate base-line predictors do well on the Cloob dataset.
In recommendation problems like the Netflix challenge, the
MF+base approach is a state-of-the-art method, so its strong
performance is to be expected. Still, data fusion with the
TMF model leads to further improvement. In both datasets,
we observe that for the data fusion methods (TMF and CMF),
as we increase λT , the performance first improves up to a point
and then starts to drop. Therefore, the transactional intensities
are helpful with link strength; however, if too much weight
is assigned to them, they would override the effects of the
friendship ratings. For the parameters of MF and TMF we
used the latent factor dimension k = 5.

E. Number of Latent Factors

We examine the impact of the dimensionality of the latent
factors k. In experiments from other sections the λT with
the best performance is used. Tables VIII and IV report the
average RMSE and the number of iterations for different
dimensions of the latent factors. The number of iterations is
reasonable for a gradient descent method, especially consider-

Fig. 2. Transactional intensities influence on Link strength in the synthetic
dataset.

Fig. 3. Transactional intensities influence on Link strength in the Cloob
dataset.

ing the high number of hidden factors to be assigned. On both
datasets, the TMF model performs best on each dimension.

On the synthetic dataset, MF, MF-Base, and CMF have their
best performance when k = 1. This is because the data size
is small and bigger values of k lead to over fitting. CMF-
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Method k = 1 k = 5 k = 10
RMSE itr RMSE itr RMSE itr

MF 0.80 ± 0.026 191 0.97 ± 0.283 344 3.37 ± 0.299 445
MF-Base 0.65 ± 0.011 258 0.76 ± 0.217 485 2.71 ± 0.310 678

CMF 0.70 ± 0.007 115 0.86 ± 0.174 434 2.52 ± 0.239 300
CMF-Base 0.64 ± 0.011 283 0.54 ± 0.091 389 2.58 ± 0.190 586

TMF 0.61 ± 0.012 295 0.20 ± 0.002 340 0.21 ± 0.003 413
TABLE VIII

AVERAGE RMSE AND NUMBER OF ITERATIONS FOR DIFFERENT DIMENSIONALITIES IN THE SYNTHETIC DATASET.

Base and TMF have their best performance on k = 5. On
the cloob dataset, since the dataset is much larger, higher
dimensionality improves all of the models. MF, MF-Base,
CMF, and CMF-Base have their best performance when k = 5.
The performance of TMF improves with dimensionality, which
suggests that the model is well-suited to the dependencies in
the data.

VI. LIMITATIONS AND FUTURE WORKS

1) The experiments of this paper aggregated the values of
different transactional intensities to create a single implicit
network. This method may be inappropriate, if the effect of
more frequent type of activities can overcome the effect of
more important, yet less frequent type of activities. We will
investigate the use of multiple implicit networks with different
weights in the future.

2) Social networks often contain useful temporal informa-
tion. The temporal behavior of users may play an important
role in link strength prediction. Consider a retired user that has
not had any activities or new friendships over a long period,
but used to be a very active user. Without considering the
temporal side of his behavior, the false prediction is made that
this user is very likely to obtain new strong friendships. The
Cloob dataset contains timestamps, and supports investigation
of temporal information for better link strength prediction.

3) Link prediction models often combine latent features
with observed features [4, 12]. Observed features may include
descriptive attributes of users (e.g., culture, behavior, personal-
ity), and features derived from the link topology (e.g.,number
of friends in common). A promising direction is to combine
latent and observed features for link strength prediction.

VII. CONCLUSION

We introduced a discriminative matrix factorization model
where the goal is to predict the values of a single explicit
matrix, and implicit matrices are used to weight the importance
of connections between users. We derived gradient descent
equations for learning two sets of latent factors for each
user, as a rater and as a ratee. In experiments on generated
synthetic data and on real-world data, our transaction-MF
model outperforms collective matrix factorization, single table
matrix factorization, as well as regression models that analyze
the data matrices separately.
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