
Knowledge and Planning in an Action-Based
Multi-Agent Framework: A Case Study

Bradley Bart1, James P. Delgrande1, and Oliver Schulte2

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C., Canada V5A 1S6, {bbart,jim}@cs.sfu.ca

2 Department of Computing Science , University of Alberta, Edmonton, Alberta
Canada T6G 2E1, oschulte@cs.ualberta.ca

Abstract. The situation calculus is a logical formalism that has been
extensively developed for planning. We apply the formalism in a com-
plex multi-agent domain, modelled on the game of Clue. We find that
the situation calculus, with suitable extensions, supplies a unified repre-
sentation of (1) the interaction protocol, or structure of the game, (2)
the dynamics of the knowledge and common knowledge of the agents,
and (3) principles of strategic planning.

1 Introduction

The situation calculus is a logical formalism originally developed for planning
by a single agent but more recently extended to deal with multiple agents and
knowledge. In this paper we use a variant of the game of Clue as a testbed for
gauging the power of the situation calculus in an epistemic, multi-agent setting.
This has the potential to contribute to several areas of AI, such as the design of
intelligent agents, game playing, and the formalism of the situation calculus itself.
The situation calculus provides a general language for specifying interactions of
a software agent; it can also be used to represent an agent’s reasoning. Thus the
situation calculus provides an integrated description of the action capabilities of
agents and their reasoning and decision-making mechanisms. Similarly, in game
playing the situation formalism can represent the rules of the game as well as
knowledge about agents’ strategies. Conversely, the connection with games opens
up the possibility of applying efficient algorithms from games research for finding
optimal strategies in multi-agent planning problems.
This paper focuses on issues concerning multi-agent interactions in the situa-

tion calculus. A novel aspect of this work is that we deal with knowledge that is
common to a group of agents. We address these issues in a variant of the game
of Clue, described below. Clue is a game in which the agents–players–have
to discover the state of the world, rather than change it. We use the situation
calculus to represent three aspects of the game:

1. The rules–what players can do when.
2. Information–what the players know at various stages of the game, includ-
ing (objective) knowledge of the domain together with knowledge opf other
agent’s knowledge.

3. Planning–how they can exploit that knowledge to find strategic plans for
playing the game.

Most of the paper deals with the first two aspects. We found that the situa-
tion calculus is a remarkably natural formalism for describing a game structure.
For representing the knowledge of the players during the game we employ an
epistemic extension of the situation calculus that axiomatizes a knowledge flu-
ent [?]. We require several extensions beyond the single-agent epistemic version
of the situation calculus. First, we need an agent parameter for knowledge, to
distinguish whose knowledge is referred to. Secondly, strategic reasoning involves
an agent’s reasoning about another agent’s knowledge, as well as common knowl-
edge.
We concentrate on a variant of Clue here, called MYST. The next section

introduces Clue and MYST, and the situation calculus. The third section devel-
ops our axiomatisation of the game, while the fourth section addresses reasoning
issues. We conclude with a short discussion. Further details are found in [?].

2 Background

Clue and MYST: We ignore those aspects of Clue that are irrelevant to
the general problems of knowledge representation and planning. The premise
of Clue is that there has been a murder; it is each player’s goal to determine
the murderer, weapon, and location of the murder. Each suspect, and possible
weapon and location, are represented by a card. Initially the cards are divided
into their three sorts (suspect, weapon, location), and from each sort one card
is randomly selected and hidden. These three cards determine the details of the
crime. The remaining cards are dealt to the players. At the outset a player sees
only her own hand, and thus knows what cards she has been dealt, but not what
the other players have received. Each player in turn asks one of the other players
about a suspect, a weapon and a room. If the (queried) player has one of the
queried cards, she shows it to the asker. The asker then knows that the player
has that card; the other players know only that the (showing) player has one
of the three cards. A player may guess the identity of the hidden cards at the
end of their turn and, if correct, they win the game. The three hidden cards
represent the state of the world. The joint knowledge of the players is sufficient
to determine this information. However each player’s goal is to learn the state
of the world before the others do. Thus the game is of the same flavour as the
“muddy children problem” [?], although more subtle and (we feel) interesting.
We reformulate the game of Clue as a simpler game that we call “MYST”

(for “mystery”). In MYST there is a finite set of cards, but without the three
sorts in Clue. There are m cards hidden in a “mystery pile” and n are given
to each of p players. Hence there is a total of k = m + (n × p) cards. On their
turn, a player asks a question about q cards of the form, “Do you have one of
cards: c1, . . . , cq?” This player is called the “poser”. If the next player has one
of these cards, they (privately) show the poser the card and the poser’s turn is

over. If the answer is “no”, then the next player in turn is presented with the
same query. After asking his question, a player may guess the contents of the
mystery pile. If correct, he wins the game; otherwise, the player is relegated to
answering posed queries only. The game ends if a player determines the contents
of the mystery pile or if all players have been eliminated by unsuccessful guesses.

The Situation Calculus: The intuition behind the situation calculus is that
the world persists in one state until an action is performed that changes it to
a new state. Time is discrete, one action occurs at a time, time durations do
not matter, and actions are irreducible entities. Actions are conceptualised as
objects in the universe of discourse, as are states of the world. Hence, states and
actions are reified. That is, the action of, for example, moving block a from block
b to block c is an object.
The constant s0 refers to the initial state, and do(A, s) is the state result-

ing from doing action A in state s. Thus do(stack(a, b), s0) is the state re-
sulting from a stack action performed on a and b in situation s0. The fact
that, after performing the stack action, “a is on b” could be represented by
on(a, b, do(stack(a, b), s0)). Time-varying predicates, such as on, are referred to
as fluents. Actions have preconditions specifying the conditions under which an
action can be performed, and successor state axioms giving the effects of an
action. The predicate Poss(A, s) is used by convention to “collect” the pre-
conditions for action A in situation s. So for stack we can express that the
preconditions are (1) the hand is holding the block to be stacked and the block
to be stacked onto has a clear top:

Poss(stack(X,Y), s)↔ inhand(X, s) ∧ clear(Y, s).

The fluent on(X,Y, s) is true in a state resulting from X being stacked on Y so
long as the stack action was possible:

Poss(stack(X,Y), s)→ on(X,Y, do(stack(X,Y), s)).

The only other time that an on is true in a non-initial state is when it was true
in the previous state, and was not undone by an action:

Poss(A, s) ∧A 6= unstack(X,Y) ∧ on(X,Y, s).→ on(X,Y, do(A, s)).

This last axiom is called a frame axiom, and specifies what remains unchanged
during an action.
Hayes and McCarthy [?] originally proposed the situation calculus; we use

the version from [?], making use of the formalisation of knowledge in [?], with
variants that we describe later. A multiple-agent version of the situation calculus
is described in [?]. There, information exchanges are modelled via “send” and
“receive” commands. Here in contrast we axiomatise operations that result in a
change of knowledge for an agent. Thus for example, if an agent shows another
a card, then the second knows the value of the card.

3 Representing MYST in the Situation Calculus

In this section, we formalize the game of MYST by specifying a set of axioms
in the language of the situation calculus. Of particular interest is the knowledge
fluent that describes what players know at various stages of the game.

3.1 Situation Calculus Terms Used in the Formalisation of MYST

Constants: We assume enough arithmetic to define a sort natural_num with
constants 0, 1, .., n, ... to have their intended denotation. We extend the situation
calculus with two more sorts: the sort player and the sort card. We introduce
the constants described in the following table.

Constant Symbol(s) Sort Meaning
p natural_num total number of players
k natural_num total number of cards
n natural_num number of cards in each player’s hand
m natural_num number of cards in mystery pile
q natural_num number of cards in a query

p1, .., pp player pi denotes player i.
c1, ..., ck card ci denotes card i

To encode the fact that we deal with a finite set of distinct players and cards,
we adopt a unique names assumption (UNA) and domain closure assumption
(DCA) with respect to these sorts. That is, for the set of players we add axioms

UNAP : (pi 6= pj) for all 1 ≤ i 6= j ≤ p.
DCAP : ∀x. player(x) ≡ (x = p1 ∨ · · · ∨ x = pp).

Analogous axioms (UNAC , DCAC) are adopted for the set of cards. We have
a further constant s0 to denote the initial situation in MYST, which obtains
immediately after the cards have been dealt.
Since the above predicates conceptually define a finite set of players (and

cards), we adopt a set theoretic notation for players (and cards). Adopting a set
notation–which we could embed in first-order logic–will make the axiomatisa-
tion neater and the language more mathematically familiar. Henceforth we will
use the following notation

C := {c1, ..., ck} the set of all cards
P := {1, ..., p} the set of all players (denoted by integers).

Variables: We introduce variables ranging over components of MYST. We need
two more sorts: set_cards for a set of cards, and set_players for a set of players.
We will use variables as follows.

Symbol Meaning
i, j players (i, j ∈ P);

typically i is the poser and j the responder
cx single card (cx ∈ C)
G subset of players (G ⊆ P)
Q set of cards in a question (Q ⊆ C)
M set of cards in a guess about the mystery pile (M ⊆ C)
Cj set of cards held by player j (Cj ⊆ C)
C0 set of cards in mystery pile (C0 ⊆ C)
Σ generic set of cards (Σ ⊆ C)
a an action
s a situation

We will not explicitly list “type-checking” predicates to ensure that cx is a card
(for instance).

Actions: The following is the list of action functions and their informal de-
scriptions. The sequence in which actions may occur is defined by the predicate
Poss(a, s) below. Note that the first argument always represents the player per-
forming the action.

Action function symbol Meaning
asks(i,Q) Player i asks question Q
no(j) Player j says no to question Q
yes(j) Player j says yes to question Q

shows(j, i, cx) Player j shows card cx ∈ Q ∩Cj to player i
guess(i,M) Player i guesses that C0 =M
noguess(i) Player i makes no guess
endturn(i) Player i ends his turn

Fluents: The following is a list of fluents and their informal descriptions. The
evaluation of the fluents will depend on the situation s. Their truth values may
change, according to successor state axioms.
Fluents Describing the Location of Cards:

H(i, cx, s) : Player i holds card cx.
H(0, cx, s) : The mystery pile holds card cx.

Fluents Describing Knowledge:
Know(i,φ, s) : Player i knows φ.
C(G,φ, s) : φ is common knowledge for all players in G ⊆ P .

C(G,φ, s) has the interpretation that, not only do all the players in G know that
φ, but every player in G knows that the others know this, that they know that
each knows this, and so on. There are well-known difficulties with axiomatizing a
common knowledge operator, and well-known solutions as well (cf.[?]). We don’t
address these issues, but simply assume a language with a common knowledge
modal operator.

Fluents Describing the State of the Game:
In(i, s) : Player i has not yet been defeated due to a wrong guess.
Question(Q, s) : Question Q was the most recently asked question.
Gameover(s) : The game is over.
Without going into the details, we may assume the presence of axioms that

ensure that at most one query is asked per situation, that is, that Question(Q, s)
holds for at most one query Q.
Fluents Describing the Turn Order and Phases:

Turn(i, s) : It is player i’s turn.
AnsTurn(j, s) : It is player j’s turn to answer the question.
As with queries, we assume the presence of axioms that ensure that it is

exactly one player’s turn and exactly one player’s “answer turn”.
Fluents Describing the Phases:

AskPhase(s) : It is the ask phase.
Similarly we have fluents for the answer phase (AnsPhase(s)), show phase

(ShowPhase(s)), guess phase (GuessPhase(s)), and end phase (EndPhase(s)).
Any situation s is in exactly one of these phases; we assume axioms that enforce
this specification.

3.2 Axioms

The Initial Situation s0: Different initial situations are possible depending on
the initial random distribution of the cards. [?, ?] modify the situation calculus
to allow different initial situations by defining a predicate K0(s) that applies to
situations that might be initial ones for all the agent knows. Our approach is
different but equivalent: We use the single constant s0 to refer to whatever initial
situation results from dealing the cards, and represent the players’ uncertainty by
describing what fluents they do and do not know to hold in the initial situation.
The following table of initialization axioms describes those fluent values common
at s0 in all games.

Initialization Axiom Meaning
∀i.In(i, s0) No player has been eliminated

∀Q.¬Question(Q, s0) No one has asked a question
AskPhase(s0), Turn(1, s0) Player 1 is in the AskPhase of her turn

¬Gameover(s0) The game is not over

The cards C are partitioned among the players and the mystery pile. The fol-
lowing axioms are the partition axioms for C. Here and elsewhere, free variables
are understood to be universally quantified.

Exclusiveness H(i, cx, s0)→ ∀j 6= i.¬H(j, cx, s0).
If player i holds card cx, then no other player j (or the mystery pile) holds
cx. If the mystery pile holds card cx, then cx is not held by any player.

Exhaustiveness
Wp
i=0H(i, cx, s0).

Every card is held by at least one player (or the mystery pile).

Set Size for Players(SSA)
∀i ∈ {1..p}.∃Σ.|Σ| = n ∧ (∀x.H(i, cx, s0)⇔ cx ∈ Σ).
For player i, there is a set of n cards containing just the cards held by i.

Set Size for the Mystery Pile
∃Σ.|Σ| = m ∧ (∀cx.H(0, cx, s0) ⇐⇒ cx ∈ Σ).
There is a set of m cards containing just the cards in the mystery pile.

Preconditions: It is straightforward to define the preconditions of actions in
terms of the fluents. We do not have space to give all the definitions in detail;
instead, we specify the preconditions for the asks action as an example–the
other preconditions are analogous. Player i can ask a question iff

1. it is her turn and
2. the game is in the AskPhase.

Thus we have

Poss(asks(i,Q), s) ≡ Turn(i, s) ∧AskPhase(s).

Successor State Axioms: We next describe the successor state axioms for the
fluents. We begin with the card holding fluent.
The cards held by the players do not change over the course of the game.

H(i, cx, do(a, s)) ≡ H(i, cx, s) for i ∈ {0..p}.
The fluent H is independent of the situation argument, and so we abbreviate
H(i, cx, s) by H(i, cx). The fact that the card holdings are the same from situ-
ation to situation formally captures the fact that the world remains “static” as
the game continues, so that players are not reasoning about changes in the world,
but only about increasing information about a fixed but unknown constellation.
Next, we represent turn taking. Let before(i) = i−1 if i > 1, and before(1) =

p. Then we have the following axiom. A player’s turn does not change until the
previous player has taken the endturn action; the previous player is given by
the before function.

Turn(i, do(a, s)) ≡ Turn(before(i), s) ∧ a = endturn((before(i))∨
Turn(i, s) ∧ ¬(a = endturn(i))

Other axioms describe the other fluents; we omit the details.

Axioms for Knowledge in MYST: We conceive of the players as perfect rea-
soners. Every player knows all tautologies and is able to derive all consequences
of a set of formulas. As well, every player knows all the rules and axioms; see
[?] for a full characterization. Although these assumptions do not do justice to
the limitations of human and computational players, it makes the analysis of
strategies mathematically easier.

Game theorists distinguish broad classes of games according to their epis-
temic structure. We locate our discussion of knowledge in MYST in these gen-
eral game-theoretic terms; this will give an indication of the size of the class of
multi-agent interactions that falls within our analysis. We shall give informal
descriptions of the game-theoretic concepts, with a fairly precise rendering of
the concept in terms of knowledge fluents for MYST. Game theory texts give
precise definitions in game-theoretic terms; see for example [?].
A game has complete information if the rules of the game are common knowl-

edge among the players. This is indeed the case for MYST; in the situation
calculus, we can capture the complete information by stipulating that all the
axioms describing the game structure is common knowledge in every situation.
To illustrate, we have that C(P, In(i, s0), s0) holds for p ∈ {1..p}–it is common
knowledge that at the beginning every player is in the game. A game has perfect
information just in case every player knows the entire history of the game when
it is his turn to move. Chess is a game of perfect information; MYST is not.
For example, players don’t know the entire initial distribution of cards, which
is part of the history of the game. A game features perfect recall if no player
forgets what she once knew or did. We express perfect recall by stipulating that
once a player knows a fact in a situation, she continues to know it. Thus the
general class of games for which something like our axiomatization should be
adequate includes the class of games of complete, imperfect information with
perfect recall.
The fluent Know(i,φ, s) expresses that player i knows that φ in situation s.1

First, the players know which cards they hold in the initial situation s0.

Axiom 1 (Knowledge Initialization) Know(i,H(i, cx, s0), s0).

Now for the knowledge successor state axioms. Since we assume that the
players have perfect recall, we stipulate that knowledge once gained is not lost.
Formally, let φ be a nonepistemic fluent that does not contain a Know fluent.
The case of special interest to the players is the fluent H(i, cx) (player i holds
card x). The next axiom says that knowledge about φ is permanent in the sense
that once gained, it is never lost later.

∀i, s, s0.(s0 v s ∧Know(i,φ, s0)) → Know(i,φ, s)

∀i, s, s0.(s0 v s ∧Know(i,¬φ, s0)) → Know(i,¬φ, s) (1)

Inductively, it can be seen that knowing any of the knowledge of the form
(1) is also permanent, and so on. Therefore Axiom (1) holds for the common
knowledge fluent C as well as Know. Most of the reasoning about strategy rests
on common knowledge between agents, that is, on the C fluent, rather than the
separate knowledge of the agents expressed by the Know fluent.
Players obtain new knowledge only when one player shows a card to another.

1 See [?, ?] for details. Suffice it to note that Know is defined in first-order logic by
explicitly axiomatising an (equivalent of an) accessibility relation [?].

Axiom 2 do(shows(j, i, cx), s)→ C({i, j}, do(shows(j, i, cx), s), s).

Thus when player j shows a card to player i, it is common knowledge be-
tween them that this action took place. Note that it is then also common
knowledge between i and j that player j holds card cx. For one of the pre-
conditions of shows(j, i, cx) is that j holds card cx, and since the precondi-
tions are common knowledge between the players, it is common knowledge that
(do(shows(j, i, cx), s)→ holds(j, cx, s).
When player j shows player i a card, it becomes common knowledge among

the other players that j has at least one of the cards mentioned in i’s query,
although the other players won’t necessarily know which card. Our axiomatiza-
tion is powerful enough to represent the differential effect of showing cards on
the various players, but for lack of space we do not go into the details here.

4 Deriving Knowledge in MYST

We state a result that follows from the definition of Clue within the axiomatized
framework. This result describes what a player must know to prove the existence
of a card in the mystery pile, and thus guides the derivation of winning strategies.

Theorem 3. Player i knows that a card cx is in the mystery pile just in case i
knows that none of the other players hold cx. In symbols,

Know(i,H(0, cx), s) ≡ ∀j.Know(i,¬H(j, cx), s).

Furthermore, player i knows which cards are in the mystery pile just in case he
knows which cards are not in the mystery pile. In symbols,

∀cx ∈ C0.Know(i,H(0, cx), s) ≡ ∀cy /∈ C0.Know(i,¬H(0, cy), s).

The result follows more or less immediately from the partition axioms. The
result establishes two subgoals for the main goal of determining that a card cx
is in the mystery pile: The first, sanctioned by the first part of the theorem,
is to determine portions of the pile directly from “no” responses. The second,
following the second part of the theorem, is to determine the locations of the
k −m cards outside the mystery pile from “yes” responses and then, by the set
size axiom (SSA), deduce the m cards in the mystery pile. In either case, the set
size axiom is crucial for drawing conclusions about the location of cards.
These observations are fairly obvious to a human analyzing the game. The

point is that through our formalization of the game structure, a computational
agent with theorem-proving capabilities can recognize these points and make use
of them in planning queries.
In a multi-agent setting, optimal plans have an interactive and recursive

structure, because an optimal plan for agent i must typically assume that agent
j is following an optimal plan, which assumes that agent i is following an optimal
plan ... Game-theoretic concepts that incorporate this recursive structure are the

notion of Nash equilibrium and backward induction analysis (alpha-beta prun-
ing) [?]. For restricted versions of MYST (for example, with two players only),
we have determined the optimal backward induction strategies. Determining the
Nash equilibria of MYST is an open question for future research.
We have also analysed aspects of the complexity of reasoning in MYST. Our

analysis so far indicates that the computational complexity of this reasoning
becomes intractable as the size of the game increases, but is quite manageable
in relatively small spaces such as that of the original Clue game.

5 Conclusion

Clue and its variant MYST offer a number of challenges to a planning formalism
for multi-agent interactions. We must represent the rules governing the interac-
tion, uncertainty about the initial distribution of cards, the effects on knowledge
and common knowledge of show actions, and assumptions about the reasoning
of the agents, such as perfect recall. We showed that the epistemic version of the
situation calculus, extended with a common knowledge operator, can represent
all these aspects of the agents’ interaction in a unified, natural and perspicuous
manner. The formal representation permits agents to reason about each other’s
knowledge and their own, and to derive strategies for increasing their knowledge
to win the game. Our results confirm the expectation that the situation calcu-
lus will be as useful for planning in multi-agent interactions in a game-theoretic
setting as it has been for single-agent planning.

