
The Minimum Consistent Subset Cover Problem and its
Applications in Data Mining

Byron J. Gao1,2, Martin Ester1, Jin-Yi Cai2, Oliver Schulte1, and Hui Xiong3

1 School of Computing Science, Simon Fraser University, Canada
2 Computer Sciences Department, University of Wisconsin - Madison, USA

3 Department of Management Science & Information Systems, Rutgers University, USA

ABSTRACT
In this paper, we introduce and study the Minimum Consis-
tent Subset Cover (MCSC) problem. Given a finite ground
set X and a constraint t, find the minimum number of consis-
tent subsets that cover X, where a subset of X is consistent
if it satisfies t. The MCSC problem generalizes the tradi-
tional set covering problem and has Minimum Clique Parti-
tion, a dual problem of graph coloring, as an instance. Many
practical data mining problems in the areas of rule learning,
clustering, and frequent pattern mining can be formulated
as MCSC instances. In particular, we discuss the Minimum
Rule Set problem that minimizes model complexity of de-
cision rules as well as some converse k-clustering problems
that minimize the number of clusters satisfying certain dis-
tance constraints. We also show how the MCSC problem can
find applications in frequent pattern summarization. For
any of these MCSC formulations, our proposed novel graph-
based generic algorithm CAG can be directly applicable.
CAG starts by constructing a maximal optimal partial so-
lution, then performs an example-driven specific-to-general
search on a dynamically maintained bipartite assignment
graph to simultaneously learn a set of consistent subsets
with small cardinality covering the ground set. Our experi-
ments on benchmark datasets show that CAG achieves good
results compared to existing popular heuristics.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data Mining
General Terms: algorithms, theory, performance
Keywords: minimum consistent subset cover, minimum
rule set, converse k-clustering, pattern summarization

1. INTRODUCTION
Combinatorial optimization problems such as set cover-

ing and graph coloring have been extensively studied. By
making connections to these classical problems, we can gain
important insights into practical data mining applications.

In this paper, we introduce and study the Minimum Con-
sistent Subset Cover (MCSC) problem. Given a finite ground

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

set X and a constraint t, find the minimum number of consis-
tent subsets that cover X, where a subset of X is consistent
if it satisfies t. The MCSC problem provides one way of
generalizing the traditional set covering problem [12], where
a subset of X is consistent if it is a given subset. Different
from set covering, in typical MCSC instances the consistent
subsets are not explicitly given and they need to be gen-
erated. For example, Minimum Clique Partition (MCP),
a dual problem of graph coloring, can be considered as an
MCSC instance, where a subset is consistent if it forms a
clique and the cliques are not given as input.

As a practical application of the MCSC problem in rule
learning, the Minimum Rule Set (MRS) problem finds a
complete and consistent set of rules with the minimum cardi-
nality for a given set of labeled examples. The completeness
and consistency constraints require correct classifications of
all the given examples. With the goal of minimizing model
complexity, the MRS problem can be motivated from both
data classification and data description applications. The
MRS problem is a typical MCSC instance, where a subset
is consistent if it forms a consistent rule, i.e., the bounding
box of the subset contains no examples of other classes.

As a prominent clustering model, k-clustering generates k
clusters minimizing some objective, such as maximum radius
as in the k-center problem [21] or maximum diameter as in
the pairwise clustering problem [4]. The radius of a cluster
is the maximum distance between a fixed point (center) and
any point in the cluster, and the diameter is the maximum
distance between any two points in the cluster. Since the
number of clusters is often hard to determine in advance,
converse k-clustering can be a more appropriate clustering
model, where a maximum radius or diameter threshold is
given and the number of clusters k is to be minimized. The
converse k-center and converse pairwise clustering problems
are both MCSC instances, where a subset is consistent if it
forms a cluster satisfying a given distance constraint.

Frequent pattern mining has been a trademark of data
mining. While the mining efficiency has been greatly im-
proved, interpretability instead became a bottleneck to its
successful application. As a known problem, the overwhelm-
ingly large number of generated frequent patterns containing
redundant information are in fact “inaccessible knowledge”
that need to be further mined and explored. Thus, sum-
marization of large collections of patterns in the pursuit of
usability has emerged as an important research problem.
The converse k-clustering models discussed above as well as
some other MCSC formulations appear to be a very reason-
able and promising approach towards this problem.

These formulated MCSC instances generally feature anti-
monotonic constraints, under which any subset of a con-
sistent subset is also consistent. Such instances allow the
design of efficient and effective heuristic algorithms. Stimu-
lated by a theoretical study, our graph-based generic algo-
rithm CAG starts by constructing a maximal optimal partial
solution, and then performs an example-driven specific-to-
general search on a dynamically maintained bipartite assign-
ment graph to simultaneously learn a small consistent subset
cover. The construction of initial optimal partial solution,
the use of assignment graph allowing good choices of both
the element and the consistent subset in an assignment, and
the example-driven simultaneous learning (in contrast to
the most-seen separate-and-conquer) strategy are the three
novel design ideas that help to well guide the search leading
to good performance of CAG, as demonstrated by our ex-
periments on rule learning and graph coloring benchmarks
in comparison with existing popular heuristics.

Contributions. (1) We introduce and study the Mini-
mum Consistent Subset Cover (MCSC) problem, which gen-
eralizes the set covering problem and has Minimum Clique
Partition, a dual problem of graph coloring, as an instance.

(2) The MCSC problem has many practical applications in
data mining. In particular, we study the Minimum Rule Set
problem for rule learning. We also discuss applications in
converse k-clustering and frequent pattern summarization.

(3) To solve MCSC instances, we present a graph-based
generic algorithm CAG with several novel design ideas, whose
performance is justified by our experimental evaluation.

2. PRELIMINARIESANDRELATEDWORK
In this section we provide preliminaries on graph theory

and a review of related work in a very concise manner.

Preliminaries. A graph is complete if all of its vertices
are pairwise adjacent. A clique of a graph G = (V, E) is
a subset of V such that the induced subgraph is complete.
An independent set of G is a subset of V such that no two
vertices in the subset are connected in G. The independence
number of G, usually denoted by α(G), is the cardinality of
the largest independent set. Independent sets and cliques
are opposite in the sense that every independent set in G
corresponds to a clique in the complementary graph G.

We say V ′ ⊆ V is a dominating set if for all u ∈ V − V ′,
there is some v ∈ V ′ such that (u, v) ∈ E. A maximal
independent set, say V ′, is also a dominating set. If it is
not, there must be some u ∈ V − V ′ that is not adjacent
to any v ∈ V ′, then u can be added to V ′ to form a larger
independent set, but then V ′ is not maximal.

The Minimum Clique Partition (MCP) problem is to find
a partitioning of the vertices of a graph G into the minimum
number of disjoint vertex sets, each of which must be a clique
in G. That minimum number is called the clique partition
number of G and usually denoted by χ(G).

The well-known graph coloring problem is to use the min-
imum number of colors to color the vertices of a graph G
such that no adjacent vertices receive the same color. That
minimum number is called the chromatic number of G and
usually denoted by χ(G). Since the vertices of an indepen-
dent set can be safely colored with the same color, the graph
coloring problem precisely minimizes the number of disjoint
independent sets of G that form a partition of V .

Apparently, MCP is a dual problem of graph coloring. An

instance of the former on G is an instance of the latter on
G. Thus, we have χ(G) = χ(G).

Observation 1. α(G) ≤ χ(G).

The observation states that the clique partition number of
a graph is lower-bounded by its independence number. It is
rather straightforward since two vertices in an independent
set cannot appear together in a clique.

Related work. The traditional set covering problem [12]
finds the minimum number of subsets from a given collec-
tion of subsets that cover a given ground set. It is one of the
most fundamental algorithmic problems that has many vari-
ants, settings, and applications. The problem is NP-hard
and there is no constant factor approximation. It is approx-
imable within 1 + log n by a simple greedy algorithm [12],
which iteratively selects the subset that covers the largest
number of uncovered elements until the ground set is cov-
ered. This greedy algorithm essentially adopts a separate-
and-conquer approach as seen in most rule learners.

In the MCSC problem we study, the subsets are not ex-
plicitly given. Instead, a constraint is given and used to
qualify the subsets that can be used in a cover. The MCP
problem and many practical data mining applications can
be formulated as MCSC instances.

Graph coloring heuristics can be applied to complemen-
tary graphs to solve MCP instances. DSATUR [3] is one
of the most popular construction heuristics. In DSATUR, a
vertex with the largest number of different colors assigned
to adjacent vertices is chosen and assigned with the first
feasible color, where colors are pre-ordered. Ties are broken
favoring the vertex with the largest number of uncolored ad-
jacent vertices. DSATUR has a cubic runtime complexity.

In the past few decades, numerous rule learners have been
developed, such as the famous AQ family, CN2 and RIP-
PER [5]. Most of them follow a separate-and-conquer ap-
proach, which originated from AQ and still enjoys popular-
ity. The approach searches for a rule that covers a part of
the given (positive) examples, removes them, and recursively
conquers the remaining examples by learning more rules un-
til no examples remain. Most rule learners minimize model
complexity assuming the validity of Occam’s Razor.

Previous work related to converse k-clustering and fre-
quent pattern summarization will be discussed in Section 4.

3. THE MINIMUM CONSISTENT SUBSET
COVER PROBLEM

In this section, we introduce the Minimum Consistent
Subset Cover (MCSC) problem and study its properties,
which provide important insights for our algorithm design.

3.1 Definition
The MCSC problem finds the minimum number of con-

sistent subsets that cover a given set of elements, where a
subset is consistent if it satisfies a given constraint.

Definition 1. (Minimum Consistent Subset Cover) Given
a finite ground set X and a constraint t, find a collection C
of consistent subsets of X with

⋃
S∈C S = X such that |C|

is minimized, where a subset is consistent if it satisfies t.

We use a tuple (X, t) to denote an MCSC instance with
ground set X and constraint t. The consistent subset cover
number for (X, t), denoted by γ(X, t), is the minimum num-
ber of consistent subsets with respect to t that cover X.

Given (X, t), we say the constraint t is granular if {x}
is consistent with respect to t for any x ∈ X. Apparently,
with a granular constraint, (X, t) always has a non-empty
feasible region. Most reasonable MCSC formulations feature
granular constraints. For example, in the MCP problem, a
single vertex also forms a clique.

The set covering problem can be considered as an MCSC
instance where a subset is consistent if it is given. Consistent
subsets are not explicitly given in typical MCSC instances.
If we take a pre-processing step to generate all the consis-
tent subsets, then an MCSC instance becomes a set covering
instance. Unfortunately, as argued in [7], the generated col-
lection of subsets would be prohibitively large and this is
not a feasible approach to solve MCSC instances.

3.2 Properties
Covering problems have corresponding partitioning prob-

lems as special cases. Disallowing overlapping, partition-
ing problems are easier in the sense that they have smaller
search spaces. Algorithms for partitioning problems usually
work for the associated covering problems as well but typ-
ically generate solutions of larger sizes. However, finding
partitions can be an advantageous way of finding covers for
MCSC instances under certain conditions.

Definition 2. (anti-monotonic constraint) Given (X, t), we
say t is anti-monotonic if for any subset S ⊆ X that is con-
sistent, any S′ ⊆ S is also consistent.

For example, the MCP problem has an anti-monotonic
constraint since a subset of a clique is still a clique. As to be
shown, many practical data mining problems are also MCSC
instances with anti-monotonic constraints, such as the Min-
imum Rule Set and converse pairwise clustering problems.

Theorem 1. Given (X, t) where t is anti-monotonic, any
solution to (X, t) can be transformed into a solution to the
associated partitioning problem with the same cardinality.

Proof. We give a constructive proof of the theorem. Sup-
pose we have a solution to (X, t) at hand which is a set of
overlapping consistent subsets. For each pair of consistent
subsets that overlap, we can simply assign the overlap to
any of the two and remove it from the other. Since t is anti-
monotonic, the consistent subset with the overlap removed
remains consistent. Then, we obtain a set of consistent sub-
sets of the same cardinality that form a partition of X.

Theorem 1 implies that for (X, t) where t is anti-monotonic,
optimal or good partitions are also optimal or good covers.
By targeting the simpler partitioning problem, we may de-
sign well-guided yet efficient search heuristics for (X, t).

In the following, we define the so-called consistency graph
for (X, t), based on which we connect the MCSC problem
to the MCP problem and derive lower-bounds for γ(X, t).

Definition 3. (consistency graph) Given (X, t), a consis-
tency graph for (X, t), Gc = (Vc, Ec), is a simple graph
where Vc = X, and there is an edge (u, v) ∈ Ec for a pair of
vertices u, v ∈ Vc if and only if {u, v} is consistent.

Observation 2. Given (X, t) where t is anti-monotonic, a
consistent subset forms a clique in Gc, where Gc is the con-
sistency graph for (X, t).

The observation is rather straightforward. Since t is anti-
monotonic, any pair of elements in a consistent subset must

also constitute a consistent subset and the two correspond-
ing vertices in Gc will share an edge connection.

The observation implies that a feasible solution to (X, t)
is also a feasible solution to the MCP instance on Gc, thus
the feasible region for (X, t) is a subset of the feasible re-
gion for the MCP instance, which implies that an optimal
solution to the MCP instance must be an optimal solution
to (X, t). Therefore, the consistent subset cover number
γ(X, t) is lower-bounded by the clique partition number
χ(Gc), which is further lower-bounded by the independence
number α(Gc) as we have discussed in the preliminaries.

Theorem 2. α(Gc) ≤ χ(Gc) ≤ γ(X, t), where Gc is the
consistency graph for (X, t) and t is anti-monotonic.

Based on Theorem 2, since α(Gc) is the size of a maximum
independent set in Gc, the size of any independent set must
be less than or equal to any feasible solution to the MCSC
(or MCP) problem. If the two are equal, then the solution is
optimal for both. This implication has been used to confirm
the optimality of some of our experimental results.

3.3 Extensions
In the following, we relax the conditions specified in the

properties established above so that they can be extended
to more applications. For example, converse k-center does
not come with an anti-monotonic constraint. The removal
of cluster centers may corrupt the consistency of clusters.

Definition 4. (pivot-anti-monotonic constraint) Given
(X, t), we say t is pivot-anti-monotonic if for any subset
S ⊆ X that is consistent, there exists a pivot element p ∈ S
such that S′ ∪ {p} is consistent for any S′ ⊆ S.

Example 1. Let us consider (X, t) for the converse k-center
problem, where t requires each cluster to have a radius no
larger than a given threshold. t is pivot-anti-monotonic with
cluster centers as pivots. As long as the center remains, any
sub-cluster of a consistent cluster remains consistent.

Obviously, if t is anti-monotonic, t must be pivot-anti-
monotonic as well. A consistent subset could have multiple
pivots. A pivot of a consistent subset may be present in
another as a non-pivot element. The concept of pivot can be
extended from a single element to a set of elements, however,
we keep the case simple in this study.

Theorem 3. Given (X, t) where t is pivot-anti-monotonic,
and given that S1∪S2 is consistent if S1 and S2 are consistent
subsets sharing the same pivot, any solution to (X, t) can
be transformed into a solution to the associated partitioning
problem with the same or smaller cardinality.

Proof. We give a constructive proof of the theorem. Sup-
pose we have a solution to (X, t) at hand which is a set of
overlapping consistent subsets. We first merge all the con-
sistent subsets sharing the same pivot resulting in a set of
consistent subsets such that no two of them share the same
pivot. Now, even if a pivot may still appear in an over-
lap of two consistent subsets, it is a pivot for one of them
but not both. We just need to make sure the pivot is as-
signed to the one that needs it. We assign all the non-pivot
elements in an overlap to either of the two overlapping con-
sistent subsets and remove them from the other. Since t
is pivot-anti-monotonic, the consistent subset with the non-
pivot elements removed remains consistent. Then, we get
a set of consistent subsets of (X, t) of the same or smaller
cardinality that form a partition of X.

We also define the so-called pseudo consistency graph for
(X, t), based on which a similar observation as in Obser-
vation 2 and a similar conclusion as in Theorem 2 can be
obtained by following similar arguments.

Definition 5. (pseudo consistency graph) Given (X, t), a
pseudo consistency graph for (X, t), G′

c = (V ′
c , E′

c), is a sim-
ple graph where V ′

c = X, and there is an edge (u, v) ∈ E′
c for

a pair of vertices u, v ∈ V ′
c if and only if there exists p ∈ X

such that {u, v, p} is consistent.

Observation 3. Given (X, t) where t is pivot-anti-monotonic,
a consistent subset forms a clique in G′

c, where G′
c is the

pseudo consistency graph for (X, t).

Theorem 4. α(G′
c) ≤ χ(G′

c) ≤ γ(X, t), where G′
c is

the pseudo consistency graph for (X, t) and t is pivot-anti-
monotonic.

In this paper we focus on MCSC instances with anti-
monotonic (or pivot-anti-monotonic) constraints. The the-
oretical results established above as well as our proposed
algorithm CAG can be applied to such instances. In the fol-
lowing, we introduce several practical data mining problems
that have MCSC formulations of this kind.

4. DATA MINING APPLICATIONS
In this section, we discuss several practical data mining

applications that can be formulated as Minimum Consistent
Subset Cover (MCSC) instances, in particular, the Mini-
mum Rule Set (MRS) problem for rule learning, converse
k-clustering, and frequent pattern summarization.

4.1 The Minimum Rule Set Problem
The MRS problem finds a disjunctive set of if-then rules

with the minimum cardinality that cover a given set of la-
beled examples completely and consistently. A rule covers
an example if the attribute values of the example satisfy the
conditions specified in the antecedent (if-part) of the rule.

Definition 6. (Minimum Rule Set) Given a set X of la-
beled examples of multiple classes, find a complete and con-
sistent set R of propositional rules for X, i.e., for each e ∈ X,
there exists some r ∈ RS that covers e and for each r ∈ RS,
all examples covered by r must have the same class label,
such that |RS| is minimized.

As the most human-comprehensible classification tool, de-
cision rules play a unique role in both research and appli-
cation domains. In addition to data classification, rules can
also be used for the purpose of data description as deci-
sion trees [17]. Data description focuses on existing data
instead of unseen data as in classification, seeking to reduce
the volume of data by transforming it into a more compact
and interpretable form while preserving accuracy. For both
applications, simpler models are preferred. By the widely
applied principle of Occam’s Razor, simpler models tend to
generalize better to unseen data. From the understandabil-
ity point of view, simpler models provide more compact and
concise descriptions that are easier to comprehend.

Decision trees can be used to extract a set of mutually
exclusive rules [20]. The optimal decision tree problem has
been studied to induct a perfect tree that correctly clas-
sifies all the given examples with some objective optimized
(e.g., [16]). While various objectives have been investigated,
a common one is to minimize tree complexity, which can be

measured by the number of leaf nodes. The problem we
study, MRS, can be accordingly referred to as an optimal
rule set problem with an objective of the same kind.

Another popular measure for tree complexity is the total
number of tests (internal nodes), which corresponds to the
total number of conditions in a rule set. The two measures
tend to agree to each other. In the rule set case, fewer
number of rules usually lead to fewer number of conditions,
as demonstrated in our experimental study.

Most rule learners, e.g., the AQ family, CN2 and RIP-
PER [5], also implicitly reduce the complexity of rule sets
in order to achieve good generalization accuracy. However,
as pointed out by [11], the minimality of rule sets has not
been a “seriously enforced bias”, which is also evident in our
experimental comparison study.

The MCSC formulation. The MRS problem can be
formulated as an MCSC instance (X, t), where X is the
given example set and t requires a subset S ⊆ X to form a
consistent rule. In particular, S is consistent if its bounding
box contains no examples of other classes. Since any sin-
gle example forms a consistent rule, t is granular and (X, t)
has a non-empty feasible region. In addition, any rule that
covers a subset of the examples covered by a consistent rule
is also consistent, thus t is also anti-monotonic, and the re-
sults in Theorem 1 and Theorem 2 are directly applicable.
Recall that Theorem 2 gives α(Gc) ≤ χ(Gc) ≤ γ(X, t). In
the following, we present an additional MRS-specific result.

Lemma 1. Given (X, t) for the MRS problem, where X is
in d-dimensional space with d ≤ 2, a clique in Gc forms a
consistent subset of (X, t).

To prove the lemma, it suffices to prove the combination of
the bounding boxes of all pairs of vertices in a clique covers
the bounding box for the clique, which can be proved by
induction on the number of vertices. Due to the page limit,
we omit the full proof, which can be found in [6]. Based on
Lemma 1, the following theorem immediately follows.

Theorem 5. Given (X, t) for the MRS problem, where X
is in d-dimensional space with d ≤ 2, χ(Gc) = γ(X, t).

Lemma 1 and Theorem 5 do not hold for d > 2. We
construct a counter example for d = 3. Let X = {a, b, c, e}
where a = (2, 4, 5), b = (4, 3, 2), c = (7, 9, 4), and e =
(3, 5, 3). Let e be the only negative example. Since e is
not covered by the bounding box of any pair of examples in
S = {a, b, c}, S is a clique in Gc. However, e is covered by
the bounding box of S, thus S is not consistent.

Approximate models are useful for both data classification
(to avoid overfitting) and data description (to improve inter-
pretability) applications of decision rules. For efficiency, it
is desirable for rule learners to generate approximate mod-
els during the induction process, instead of post-processing,
while keeping its ability to generate perfect models. The
MCSC formulation of the MRS problem provides this flexi-
bility, where we can simply adjust t and allow each rule to
contain a maximum number of examples of other classes.
This constraint is anti-monotonic.

The RGB rule learner. By solving (X, t), we obtain a
solution to the MRS problem containing a set of bounding
boxes. The bounding boxes, which we call rectangles in the
following, are a special type of rules with all the attributional
conditions specified. To learn a set of compact rules (of
the same cardinality) for the MRS problem, we propose the

Algorithm 1 RGB

Input: X, t, and b: X is the example set, a set of multi-
class examples. t is a constraint requiring rules to be
consistent. b is a user-specified beam search width.

Output: R: a compact rule set with redundancy removed.
1: R ← CAG(X, t); //R stores a set of rectangle rules
2: for each r ∈ R
3: initialize b empty rules r′1, r

′
2, ..., r

′
b;

4: initialize b sets of examples E1, E2, ..., Eb;
5: while (E1 '= ∅ ∧ E2 '= ∅ ... ∧ Eb '= ∅)
6: for each r′i, choose the top b conditions from r, each

being added to r′i, to form b candidates that elimi-
nate the most examples from Ei;

7: choose the top b rules from the b× b candidates as
r′1, r

′
2, ..., r

′
b and update E1, E2, ..., Eb accordingly;

8: end while
9: r ← r′j suppose Ej = ∅ caused the loop to terminate;

10: end for

rectangle-based and graph-based algorithm RGB that takes
two steps. First, we focus on rectangle rules only and solve
the formulated MCSC instance. Then, we remove redundant
conditions in the rectangle rules. A condition is considered
redundant for a rule if its removal will not cause the inclusion
of any new examples of other classes or the exclusion of any
examples of the same class previously covered by the rule.

As shown in Algorithm 1, RGB first calls CAG (fully
explained in Section 5) for the MCSC instance (X, t) and
stores the set of learned rectangle rules in R. Then for each
r ∈ R, a general-to-specific beam search is performed to
remove redundant conditions. To explain the idea, we con-
sider a beam search of width 1. We initialize and maintain
a set of examples of other classes, the elimination set for
r, that need to be eliminated to achieve consistency. The
search starts with an empty rule, i.e., true, the most general
rule, and the conditions to add are chosen from the orig-
inal conditions in r. For the choice of condition to add, a
greedy approach is adopted favoring the condition excluding
the largest number of examples from the elimination set of
r. The search stops when the elimination set is empty.

Since the conditions to add are chosen from the original
conditions in the input rules, the extracted rules are more
general than their original ones. Since the consistency of
each rule is also guaranteed, the resulting compact rule set
R is complete and consistent. The runtime of RGB is dom-
inated by CAG, which we will discuss in Section 5.

As a rule learner, RGB has many unique and/or desirable
properties. Unlike most existing methods, RGB does not
follow a separate-and-conquer approach, instead, all rules
are learned simultaneously. Unlike most existing bottom-up
methods that start the initial rule set with the example set,
RGB starts with a subset containing a maximal number of
examples such that no pair of them can co-exist in a single
consistent rule, which constitutes a maximal optimal partial
solution. Unlike many existing methods that learn a set of
rules for one class at a time, RGB naturally learns a set
of rules for all classes simultaneously. Unlike many existing
methods that can only learn either perfect models such as
early members of the AQ family, or approximate models
such as CN2 and RIPPER, RGB has the flexibility to learn
both without resorting to post-processing.

4.2 Converse k-clustering
k-clustering methods generate k clusters that optimize a

certain compactness measure, typically distance-based, that
varies among different clustering models. While some mea-
sures use the sum or average of (squared) distances as in
k-means and k-medoid [14], some measures use a single dis-
tance value, radius or diameter, as in k-center [21] and pair-
wise clustering [4]. The radius of a cluster is the maximum
distance between a fixed point (center) and any point in the
cluster, and the diameter is the maximum distance between
any two points in the cluster.

A known limitation of k-clustering is that the appropri-
ate number of clusters k is often hard to specify in advance,
and methods that try to automatically determine this num-
ber have been investigated [19]. As another approach to
address this limitation, alternative clustering models have
been explored. In converse k-clustering, a compactness mea-
sure is given as threshold, and the task is to minimize the
number of clusters k. Converse k-clustering models have
not received much attention in the data mining community.
However, in many applications a distance-based constraint
is easier to provide, based on domain knowledge, than the
number of clusters. For example, molecular biologists have
the knowledge that how similar a pair of sequences should
be so that the two proteins can be assumed sharing the same
functionality with high probability, or businessmen have the
knowledge that how similar two customers should be so that
they would have similar purchasing behaviors. The facility
location problem [15], extensively studied in the operations
research community, has the general goal of minimizing the
total cost of serving all the customers by facilities. One of
the problem formulations minimizes the number of located
facilities based on the pairwise distance knowledge of cus-
tomers, which is precisely a converse k-clustering model.

The converse k-center and converse pairwise clustering
models can both be formulated as MCSC instances. In such
an instance (X, t), X is the input data points for clustering
and t requires a cluster to satisfy the maximum radius or
diameter threshold constraint. As single distance measures,
radius and diameter are more intuitive for domain experts
to specify constraints than the more complex ones.

Both MCSC instances have granular constraints since sin-
gleton clusters satisfy any distance threshold. As explained
in Example 1, converse k-center has a pivot-anti-monotonic
constraint with cluster centers as pivots. For converse pair-
wise clustering, the constraint is anti-monotonic since any
sub-cluster of a cluster can only have an equal or smaller di-
ameter than the cluster. The results established in Section 3
apply to the two MCSC instances. Note that in converse k-
center, a union of two consistent clusters sharing the same
center is also consistent, thus the additional condition re-
quired by Theorem 3 is satisfied and the theorem applies.
In addition, we have the following observation.

Observation 4. Given (X, t) for the converse pairwise clus-
tering problem, we have χ(Gc) = γ(X, t).

Based on Observation 2, a consistent subset of (X, t) forms
a clique in the consistency graph Gc. On the other hand,
a clique in Gc must form a consistent subset, thus converse
pairwise clustering is equivalent to the MCP problem on
Gc. The same observation does not hold for the converse
k-center problem.

4.3 Pattern Summarization
Frequent pattern mining has been studied extensively for

various kinds of patterns including itemsets, sequences, and
graphs. While great progress has been made in terms of
efficiency improvements, interpretability of the results has
become a bottleneck to successful application of pattern
mining due to the huge number of patterns typically gen-
erated. A closely related problem is that there is a lot of re-
dundancy among the generated patterns. Interpretable and
representative summarization of large collections of patterns
has emerged as an important research direction.

As a first approach, maximal frequent patterns [9] and
closed frequent patterns [18] have been introduced. These
subsets of frequent patterns are more concise and allow to
derive all the frequent patterns. However, the patterns thus
generated are still too many to handle. As an alternative,
[10] finds the top-k frequent closed patterns of length no
less than a given threshold. While this approach effectively
limits the output size, the returned patterns are often not
representative of the entire collection of frequent patterns.
Moreover, these approaches fail to address the redundancy
problem.

Some recent work aims at finding a fixed number of pat-
terns representing the whole set of frequent patterns as well
as possible. In [1], the objective is to maximize the size of
the part of the input collection covered by the selected k
sets. [23] presents an approach that takes into account not
only the similarity between frequent itemsets, but also be-
tween their supports. Using a similarity measure based on
Kullback-Leibler divergence, they group highly correlated
patterns together into k groups.

Similar to the scenario for k-clustering, the appropriate
number k of patterns to summarize the set of frequent pat-
terns is often hard to specify in advance. However, the users
may have the domain knowledge that how similar a group
of patterns should be so that they can be represented as
a whole without losing too much information. In light of
this, some converse k-clustering models that can be formu-
lated as MCSC instances, converse k-center or converse pair-
wise clustering, appear to be very reasonable and promising
to provide concise and informative pattern summarizations.
Such clustering models generate clusters, i.e., groups of pat-
terns, with certain quality guarantee. In such a formulation,
the objective is to minimize the number of pattern groups
necessary to cover the entire collection of frequent patterns,
which is natural for the purpose of summarization since it
maximizes interpretability of the result representing the en-
tire collection and at the same time reduces redundancy. For
the radius or diameter threshold, standard distance func-
tions can be employed, such as the Jaccard’s coefficient for
itemsets or edit distance for sequential patterns.

5. THE GENERIC CAG ALGORITHM
In this section, we introduce a generic algorithm CAG

that works with consistency graphs and assignment graphs
to solve Minimum Consistent Subset Cover (MCSC) instances
featuring anti-monotonic constraints.

5.1 Overview
Given an MCSC instance (X, t) where the constraint t

is anti-monotonic, CAG starts by constructing a maximal
optimal partial solution from the consistency graph Gc, then
performs an example-driven specific-to-general search on a

dynamically maintained bipartite assignment graph Ga to
learn a set of consistent subsets with small cardinality.

The design of CAG has closely followed the insights pro-
vided in Section 3. From the definition of Gc and Theorem 2,
we know that any pair of vertices in an independent set of
Gc cannot appear in the same consistent subset. Thus a
maximal independent set of Gc, denoted by IS, constitutes
a maximal optimal partial solution to (X, t).

Each vertex in IS forms a singleton consistent subset,
represented by a so-called condensed vertex in an assignment
graph Ga. The rest of the vertices in Ga are called element
vertices. Ga is defined such that there is an edge between
an element vertex u and a condensed vertex v if and only
if u can be assigned to v while maintaining the consistency
of v. Since a maximal independent set is also a dominating
set as discussed in the preliminaries of Section 2, there is an
edge for each u connecting to some v in the initial Ga.

Element vertices are processed in a sequential manner and
assigned to condensed vertices. With the growth of con-
densed vertices, some element vertices would get isolated
and new condensed vertices have to be created for them.
Upon completion, Ga becomes edge-free with all vertices as-
signed, and the set of condensed vertices, each representing
a consistent subset, constitute a solution for (X, t).

The dynamically maintained Ga provides the necessary
information based on which effective evaluation measures
can be designed to guide the search by deciding which ele-
ment vertex is the next to be assigned to which condensed
vertex. For example, with the least degree first criterion, we
can process first the element vertex with the least degree
since it is the most likely one to get isolated.

Note that CAG actually returns a partition of X. As ar-
gued in Section 3, a solution to a partitioning problem is
also a feasible solution to its corresponding covering prob-
lem. Also due to Theorem 1 and Theorem 3, partitioning
does not cause the increase of solution size compared to
covering under certain conditions. In addition, partitioning
problems have much smaller search spaces and the search
can be better guided.

Also note that under anti-monotonic constraints, if a sub-
set S ⊆ X is not consistent, S′ ⊇ S cannot be consistent.
Thus such inconsistent S does not need to be considered
and the search space can be significantly pruned. Our as-
signment graph Ga maintains consistency of all condensed
vertices after each assignment transaction allowing CAG to
work in a pruned search space.

In contrast to the most-seen separate-and-conquer ap-
proach, e.g., the greedy algorithm [12] for set covering and
most existing rule learners, CAG adopts a less greedy example-
driven strategy to learn consistent subsets simultaneously.
In summary, the construction of initial optimal partial solu-
tion, the use of assignment graph, and the example-driven
simultaneous learning strategy are the three novel design
ideas that account for the good performance of CAG.

5.2 Assignment graph
In the following, we define and explain assignment graphs,

a unique element of CAG that helps to guide the search.

Definition 7. (assignment graph) In a bipartite assign-
ment graph Ga = (Ua ∪ Va, Ea), Ua contains a set of ele-
ment vertices and Va contains a set of condensed vertices
each representing a consistent subset. (u, v) ∈ Ea if and
only if u ∈ Ua, v ∈ Va, and v ∪ {u} is consistent.

In CAG, Ga is dynamically maintained showing all the
feasible choices for the next assignment. Each condensed
vertex is essentially a set of vertices condensed together. In
order to maintain the consistency of subsets, an element ver-
tex u can be assigned to some condensed vertex v only via
an edge connection between them. However, each assign-
ment may cause some edges to disappear in Ga. For those
isolated element vertices (with degree of 0), new condensed
vertices have to be created. Each creation may introduce
some new edges to Ga.

Figure 1 (c) shows an initial Ga and (d)-(f) show its dy-
namic evolvement along the assignment process, for which
we will provide further explanations later in this section.

Observation 5. While a vertex assignment may cause mul-
tiple edge gains or losses in Ga, it can cause at most one edge
gain or loss for any single element vertex.

The observation holds because all the gained or lost edges
have to be incident to the condensed vertex involved in an
assignment, and any element vertex shares at most one edge
with a condensed vertex. The implication of the observation
is that if an element vertex has a degree of more than two,
it will not become isolated after the next assignment.

Evaluation measures. In the following, we show how
the information embedded in Ga can help to guide the search
by answering important questions in the assignment process:
Which element vertex is the next to be assigned? Which
condensed vertex should it be assigned to? In principle, the
element vertex with the least degree should be considered
first since it is most likely to get isolated. Also based on
Observation 5, element vertices with degree more than two
will stay “safe” after such an assignment. Thus, a least
degree first criterion can be used to choose the next element
vertex to be assigned.

In addition, we want to keep as many edges as possible in
Ga since they are the relational resources for the assignment
of element vertices. Edges have different degrees of impor-
tance. In general, a gained or lost edge is more important if
it is incident to an element vertex with a smaller degree in
Ga. We design a measure, weighted edge gain, that reflects
the influence of an assignment transaction on Ga.

In the following, we define weg(uu) and weg(uv). weg(uu)
is the weighted number of edges that can be added to Ea if u
is chosen to become a new condensed vertex. In such cases,
u is assigned to itself, which happens only when d◦(u) = 0,
where d◦(u) denotes the degree of u in Ga. weg(uv) is the
weighted number of edges that would get lost (an edge loss is
just a negative gain) if u is assigned to v via edge (u, v) ∈ Ea.
For weg(uu), the weight for each possibly added edge is

1
d◦(u′)+1 where we use d◦(u′) + 1 because d◦(u′) can be 0
and for that case, the weight should be the largest, i.e., 1.
For both measures, different weighting schemes can be used.

weg(uu) =
∑

∀u′ ∈Ua s.t. {u′,u} is consistent

1
d◦(u′) + 1

weg(uv) =
∑

∀u′ s.t. (u′,v)∈Ea ∧ v∪{u′,u} is inconsistent

−1
d◦(u′)

Once u, the next element vertex to be assigned, is chosen,
a largest weg(uv) first criterion can be used to decide which
condensed vertex v that should take u so as to keep as many
weighted edges as possible.

We also define the following measure weg(u) that mea-
sures the influence on Ga if u is chosen as the next element
vertex to be assigned. The associated largest weg(u) first
criterion can be used alone for the choice of u. It can also
be used as a tie-breaking mechanism for the least degree first
criterion in choosing u.

weg(u) =






weg(uu) if d◦(u) = 0
weg(uv) where v =
argmax∀ v′ s.t. (u,v′)∈Ea{weg(uv′)} otherwise

In the formula, for d◦(u) = 0, weg(u) = weg(uu). For
other cases, weg(u) is the largest weg(uv) value considering
all the condensed vertices adjacent to u in Ga, indicating
the best assignment choice for u.

5.3 Generic CAG
We have explained the working principles of CAG in the

overview. In the following we present the algorithm and
explain it in more details.

Algorithm 2 generic CAG

Input: (X, t): an MCSC instance.
Output: Va: a set of condensed vertices representing a set

of consistent subsets that cover X.
1: initialize Ga = (Ua ∪ Va, Ea);
2: while (Ua '= ∅)
3: choose u ∈ Ua;
4: if (d◦(u) = 0) then
5: Va ← Va ∪ {u};
6: Ua ← Ua\{u};
7: Ea ← Ea ∪ {(u, u′)} for each u′ with u′ ∈ Ua and

{u, u′} is consistent;
8: else
9: choose v ∈ Va;

10: v ← v ∪ {u};
11: Ua ← Ua\{u};
12: Ea ← Ea\{(u, u′)} for each u′ with (u′, v) ∈ Ea

and v ∪ {u, u′} is inconsistent;
13: end if
14: end while

CAG starts by initializing the assignment graph Ga using
a maximal independent set of Gc (line 1). Then, the element
vertices are processed in a sequential manner (line 2). For
each assignment, a decision is made on which u ∈ Ua is the
next element vertex to be assigned (line 3). After u is chosen,
if it has a degree of 0 (line 4), a new condensed vertex has to
be created for u (line 5) and u will be removed from Ua (line
6). At this moment, Ea needs to be updated (line 7). Some
element vertices (that are connected to u in Ec) may be able
to connect to the newly added condensed vertex u resulting
in creation of some new edges. If u is not an isolated vertex
(line 8), another decision is to be made on which v ∈ Va

should take u (line 9). After the assignment of u to v (lines
10, 11), Ea also needs to be updated (line 12). Because
of the assignment of u to v, some element vertices, say u′,
that previously connected to v would lose the connection if
v ∪ {u, u′} is inconsistent. Upon completion, Ua = ∅ and
Ea = ∅. The set of condensed vertices Va corresponds to a
set of consistent subsets together covering X.

Initializing Ga. One way of initializing Ga is to derive
the consistency graph Gc for (X, t) first then find a maximal
independent set IS of Gc using some known heuristic, e.g.,

Greedy-IS introduced in [13]. With IS obtained, we let
Va = IS, Ua = Vc\IS, and (u, v) ∈ Ea if and only if u ∈ Ua,
v ∈ Va and (u, v) ∈ Ec.

In some cases, e.g, for the MCP problem, Gc is identical to
the input graph. In other cases, Gc needs to be derived and
this takes O(|X|2tp) time where tp denotes the consistency
checking time for a pair of vertices in X. This is because each
pair in X needs to be checked for consistency. To improve
efficiency, we provide another way of initializing Ga without
actually deriving Gc. Initially, Va and Ea are empty and
Ua = X. For each u ∈ Ua, we check each v ∈ Va and if v∪{u}
is consistent, we add edge (u, v) into Ea. If no edge can be
added, we add u into Va. Upon completion, Va also contains
a maximal independent set IS of Gc. This procedure takes
O(|IS||X|tp). Note that usually |IS| , |X|.

Choosing u and v. By varying the decision making
schemes, i.e., how to choose u (line 3) and v (line 9), the
generic CAG can have different instantiations that are suit-
able for different applications. By default, we use the least
degree first criterion to choose u with the largest weg(u) first
criterion for tie-breaking. Also, we use the largest weg(uv)
first criterion to choose v.

With the default scheme, the time spent in choosing u
would be on calculating weg(u) for tie-breaking. As an ap-
proximation, we adopt a sampling technique. We only con-
sider a constant number of element vertices with the tied
least degree and for each of them, say u, we only consider a
constant number of element vertices for consistency check-
ing, each of which, say u′, connects to some condensed ver-
tex v that is adjacent to u in Ga. This sampling technique
works well because the least degree first criterion greatly re-
duces the number of vertices in consideration in calculating
weg(u). Therefore, the runtime for the choice of u is O(tc),
where tc is the consistency checking time for v∪{u, u′} given
that v ∪ {u} and v ∪ {u′} are consistent.

For the choice of v, the calculation of weg(uv) is part of
the calculation of weg(u) and thus it takes O(tc) as well.

Updating Ga. By varying the Ga updating mechanisms
(lines 7 and 12), the generic CAG can be adapted to different
applications. These applications have different constraints
requiring different consistency checking mechanisms.

In line 7, the edge set Ea of Ga is updated after an isolated
element vertex u becomes a new condensed vertex. This
may introduce some new edges to Ea. Note that line 7 will
be executed no more than |Va| − |IS| times where Va here
represents its final stage after CAG terminates, thus the
total time spent on line 7 is at most O((|Va| − |IS|)|X|tp).

In line 12, the edge set Ea of Ga is updated after an ele-
ment vertex u is assigned to a condensed vertex v. This may
cause the loss of some edges incident to v. Each such update
could take a worst case runtime of O(|X|tc). To reduce the
runtime, we adopt a late update strategy that significantly
improves efficiency without sacrificing much performance.
This is based on the observation that the edge update oper-
ations do not have an impact on the assignment process if
the corresponding element vertices are not considered in the
next assignment. Given the least degree first criterion, we
only need to perform edge update for those element vertices
with the least (or small) degrees since they are likely to be
considered in the next assignment. This late update strat-
egy would leave some extra edges in Ga that should have
been removed. However, these edges will be removed sooner
or later when their corresponding member vertices get closer

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

a d

e

f

b

c

a

b

c

d

e

f

d

f

a

b

{ }c

.

.

.f

a

b

{ }e

{ }c

{ }e,d

.

.

a

b

{ }c

{ }e,d,f

{ }c,b,a

{ }e,d,f

(a) (b) (c)

(d) (e) (f)

.

. ..

.

...

Figure 1: Running example.

and closer to be chosen along the assignment process. There-
fore, by checking consistency for a constant number of ver-
tices connected to v, we only spend O(tc) time for this up-
date without sacrificing much performance.

Time complexity. As we have explained previously,
initializing Ga (line 1) takes O(|IS||X|tp). The update of
Ga for the d◦(u) = 0 case (line 7) takes in total O((|Va| −
|IS|)|X|tp) time. Together they take O(|Va||X|tp) time.

In each iteration, the choice of u (line 3), the choice of v
(line 9) and the update of Ga for the d◦(u) '= 0 case each
takes tc time. There are O(|X|) iterations and thus together
they take O(|X|tc) time.

Overall, the worst case runtime is O(|Va||X|tp + |X|tc).
In general, |Va| , |X| as can be observed from our experi-
mental results in Table 1.

The consistency checking time tp and tc are different for
different mechanisms and different applications. For the
MCP problem and the converse pairwise clustering problem,
both tp and tc are constant. Thus, the worst case runtime
for the two problems is O(|Va||X|).

For the MRS problem, both tp and tc are O(|X|) for the
brute-force consistency checking mechanism, which can be
improved to log time on average by employing indexing tech-
niques. The worst case runtime for the MRS problem is
O(|Va||X|2). With the help of indexing, the average case
runtime is O(|Va||X| log |X|).

Running example. In Figure 1, we provide a running
example demonstrating how CAG works on a set covering
instance (X, t). By definition, (X, t) does not have an anti-
monotonic constraint since we are allowed to use the given
subsets, not their subsets, in covering X. However, if S′ is
a subset of some given subset S ⊆ X, S′ can be considered
“consistent” since it can always be replaced by S. Thus, our
generic algorithm CAG is perfectly applicable.

In the figure, the (X, t) instance is given in (a). We can
see that the greedy algorithm will select all the three given
subsets. For clarity, we also show Gc for (X, t) in (b), where
we can identify a maximal IS containing c and e. (c) is the
initial Ga with c and e as the condensed vertices.

Now we start the assignment process. Both d and f have
the least degree of 1, but assigning d to {e} would not cause
any edge loss, thus d is chosen and assigned to {e}, and (d)
shows the updated Ga. Next, f is chosen and assigned to
{e, d}, and (e) shows the updated Ga. We can see that Ga

lost two edges since neither a nor b can join {e, d, f} while

maintaining its consistency, i.e., {e, d, f, a} and {e, d, f, b}
are inconsistent. Afterwards, a and b are assigned to {c}
and (f) shows the final Ga, where both Ua and Ea are empty
and Va contains the condensed vertices corresponding to the
consistent subsets that cover X.

Solving converse k-center. Given (X, t) for the con-
verse k-center problem, we have explained previously that t
is pivot-anti-monotonic. Also, (X, t) satisfies the additional
condition specified in Theorem 3, that is, two consistent sub-
sets of (X, t) sharing the same pivot can merge into a single
consistent subset. Based on the theoretical study, we can
use the following approach to solve (X, t). First, we apply
CAG where we use the pseudo consistency graph G′

c in-
stead of Gc to derive Ga. Then we assign the needed pivots
to the learned condensed vertices to obtain consistent sub-
sets. Then we can obtain a partition of X by following the
constructive method described in the proof of Theorem 3.

6. EXPERIMENTAL EVALUATION
To experimentally evaluate the performance of CAG, we

have considered two MCSC applications, the Minimum Rule
Set (MRS) and Minimum Clique Partition (MCP) problems.
For the MRS problem, we compared CAG with a popular
rule learner AQ21 [22], the latest release of the famous AQ
family, on UCI datasets [2]. In this series of experiments,
RGB achieved about 40% reduction in the number of rules
and 30% reduction in the number of conditions.

Observation 2 and Theorem 2 show that the MCP prob-
lem is related to all the MCSC instances within the scope of
this study. The converse pairwise clustering problem, which
can also be applied to frequent pattern summarization, is
equivalent to the MCP problem on the consistency graph.
Since MCP is a dual problem of graph coloring, many well-
known graph coloring heuristics and benchmarks set up an
ideal platform to evaluate the performance of CAG. The
comparison partner we chose, DSATUR [3], is among the
most popular ones with top performance. Experiments on
over 100 DIMACS benchmarks [8] showed that CAG out-
performed DSATUR in general, and in particular for the 70
hard datasets, CAG used 5% fewer cliques on average.

6.1 MRS results
RGB is our proposed rule learner that first calls CAG to

learn a set of rectangle rules and then extracts compact rules
with redundant conditions removed. Our comparison part-
ner, AQ21 [22], is the latest release of the famous AQ family.
Other popular rule learners such as CN2 and RIPPER do
not return perfect rule sets. Since most rule learners follow
a separate-and-conquer approach originated from AQ, the
performance of AQ21 can well represent the performance of
most rule learners.

Although RGB can work on both numerical and categor-
ical data in principle, we have focused on numerical data in
this implementation since rectangle rules provide good gen-
eralization on numerical attributes only. Thus, 21 numerical
datasets without missing values were chosen from the UCI
repository [2] for this series of experiments.

Table 1 presents the results. The columns in the table are
dataset, ins (number of instances), dim (dimensionality), cla
(number of classes), AQ21 (AQ21 results), RGB (RGB re-
sults), and reduction (reduction achieved by RGB compared
to AQ21, where reduction = AQ21 result − RGB result

AQ21 result).

For the columns AQ21 and RGB, rul and con indicate the
total number of rules and conditions respectively. The rul
and con reductions are given under the reduction column.
In addition, the columns |Ec|, |IS| and cliques indicate the
edge set size, the maximal independent set size and the num-
ber of cliques of Gc discovered by RGB respectively.

From Table 1 we see that RGB achieved 37.1% and 30.8%
averaged reductions over AQ21 in terms of the total num-
ber of rules and conditions respectively. In the last row of
the table, the reductions were calculated for the averaged
number of rules and conditions, where we see that RGB
achieved 44.2% and 51.4% reductions over AQ21 in terms
of the averaged number of rules and conditions respectively.

Consistent to Theorem 2, although many results are not
optimal, each dataset in Table 1 exhibits the same trend,
that is, |IS| ≤ cliques ≤ RGB rul ≤ AQ21 rul. As discussed
in Section 3, Theorem 2 can help to confirm the optimality
of MCSC results. In Table 1 we can see that the IS, cliques
and RGB results for datasets balance-scale, glass, and iris
are optimal. Also, the IS and cliques results for ionosphere,
new-thyroid, sonar, vowel, waveform, and wine are optimal.

In addition, we studied the trend of reduction by varying
data complexity measured by ins, |Ec| and dim. While the
detailed results can be found in [6], in summary, the reduc-
tions in rul and con both increase with the increase of data
complexity, which also confirms that the two model com-
plexity measures for rule sets, number of rules and number
of conditions, are consistent with each other.

6.2 MCP results
The MCP problem is a dual problem of graph coloring.

Algorithms for graph coloring (MCP) can be applied to com-
plementary graphs to return solutions to the MCP (graph
coloring) problem. In this series of experiments, we have
used DSATUR [3] as our comparison partner. DSATUR is
among the most popular construction heuristics for graph
coloring with top performance reported in the literature.

The experiments were performed on DIMACS benchmarks
[8], for some of which the optimal solutions are known. We
divide the benchmarks into two categories: easy and hard.
As the rule of thumb for the division, those datasets with
optimal solutions relatively easy to obtain are considered
easy; otherwise hard. We used 35 easy and 70 hard datasets
for our experiments. Due to the page limit, we only provide
a summary of the results in Table 2. From the table we
can see that out of the 35 easy datasets, DSATUR found 33
while CAG found all the 35 optimal solutions.

Table 2: MCP results
category # datasets DSATUR CAG

easy 35 33 (optimal) 35 (optimal)
hard 70 41 (36 tied) 65 (36 tied)

The optimal solutions for many hard datasets are not
known. Table 2 reports the winning times of the two meth-
ods. From the table we can see that out of the 70 hard
datasets, DSATUR won 41 times while CAG won 65 times
where they tied for 36 datasets. To more accurately capture
their performance difference, for each dataset, we calculated
the reduction of cliques achieved by CAG using the formula
reduction = DSATUR result − CAG result

DSATUR result . Then, we calcu-
lated the averaged reduction over the 70 hard datasets to
obtain a value of 4.99%, meaning that CAG used about 5%
fewer cliques than DSATUR on average for each dataset.

Table 1: MRS results
dataset ins dim cla AQ21 |Ec| |IS| cliques RGB reduction

rul con rul con rul con

balance-scale 625 4 3 154 577 31578 153 153 153 676 0.006 -0.172
bupa 345 6 2 66 344 22149 12 19 38 224 0.424 0.349
car 1728 6 4 66 343 386152 55 57 57 340 0.136 0.009
diabetes 768 8 2 112 744 142994 10 18 57 420 0.491 0.435
ecoli 336 7 8 36 128 13569 22 24 28 131 0.222 -0.023
glass 214 10 6 6 7 5921 6 6 6 9 0.000 -0.286
haberman 306 3 2 73 198 6425 48 52 55 214 0.247 -0.081
ionosphere 351 34 2 25 172 33058 4 4 11 57 0.560 0.669
iris 150 4 3 10 26 3562 7 7 7 19 0.300 0.269
letter 15000 16 26 1160 15701 3751964 137 221 552 6684 0.524 0.574
new-thyroid 215 5 3 10 33 12196 6 6 7 31 0.300 0.061
page-block 5473 10 5 112 687 11754498 28 37 60 369 0.464 0.463
satimage 4435 36 6 212 4379 1784464 17 20 99 1316 0.533 0.669
segment 2310 19 7 49 382 374323 13 15 27 183 0.449 0.521
sonar 208 60 2 11 186 10761 2 2 5 79 0.545 0.575
spambase 4601 57 2 118 2292 4686024 33 38 64 1286 0.458 0.439
vehicle 846 18 4 109 1133 80643 13 15 55 478 0.495 0.578
vowel 990 10 11 76 583 43164 20 20 47 367 0.382 0.370
waveform 5000 21 3 266 4989 4164798 6 6 107 2347 0.598 0.530
wine 356 13 3 7 29 5324 3 3 4 17 0.429 0.414
yeast 2968 8 10 250 1740 136416 66 117 194 1606 0.224 0.077

average 139.4 1651.1 1307142.0 31.5 40 77.8 802.5 0.371 0.308
reduction 0 0 0.442 0.514

We did not compare the runtime partly because CAG and
DSATUR work on different graphs, G and G, and the com-
plexities of the two graphs are opposite to each other. How-
ever, we note that while DSATUR has a cubic runtime [3],
for the MCP problem, CAG has a subquadratic runtime of
O(|Va||X|), where |Va| , |X| (|Va| = cliques and |X| = ins)
as can be observed from Table 1.

7. CONCLUSION
In this paper, we introduced and studied the Minimum

Consistent Subset Cover (MCSC) problem, which general-
izes the set covering problem and has many practical data
mining applications in the areas of rule learning, converse k-
clustering, and frequent pattern summarization. For MCSC
instances with anti-monotonic constraints, our generic al-
gorithm CAG was provided in accordance with the theo-
retical insights featuring many novel design ideas, e.g., the
construction of maximal optimal partial solution, the use
of dynamically maintained bipartite assignment graph, and
the example-driven simultaneous learning strategy. Our ex-
perimental evaluation on benchmark datasets justified the
performance of CAG.

For future work, we would like to further explore and ex-
perimentally evaluate the MCSC applications on converse
k-clustering and frequent pattern summarization. We are
also interested in seeking other data mining applications
that can be formulated as MCSC instances and solved by
our proposed CAG search framework.

8. REFERENCES
[1] F. Afrati, A. Gionis, and H. Mannila. Approximating a

collection of frequent sets. SIGKDD’04.
[2] C. Blake and C. Merz. UCI repository of machine learning

databases. 1998.
[3] D. Brelaz. New methods to color the vertices of a graph.

Communications of the ACM, 22(4):251–256, 1979.

[4] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Increm-
ental clustering and dynamic information retrieval. STOC’97.

[5] J. Furnkranz. Separate-and-conquer rule learning. Artificial
Intelligence Review, 13(1):3–54, 1999.

[6] B. J. Gao. Hyper-rectangle-based discriminative data
generalization and applications in data mining. Ph.D. Thesis.
Simon Fraser University, 2006.

[7] B. J. Gao and M. Ester. Turning clusters into patterns:
Rectangle-based discriminative data description. ICDM’06.

[8] D. B. Graphs. http://mat.gsia.cmu.edu/coloring02/index.html.
[9] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen.

Data mining, hypergraph tranversals, and machine learning.
PODS’97.

[10] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k
frequent closed patterns without minimum support. ICDM’02.

[11] S. J. Hong. R-MINI: An iterative approach for generating
minimal rules from examples. TKDE, 9(5):709–717, 1997.

[12] D. Johnson. Approximation algorithms for combinatorial
problems. JCSS, 9:256–278, 1974.

[13] D. Johnson. Worst-case behavior of graph-coloring algorithms.
SEI CGTC’74.

[14] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[15] J. Krarup and P. Pruzan. The simple plant location problem:
survey and synthesis. EJOR, 12:36–81, 1983.

[16] A. Kulkarni and L. Kanal. An optimization approach to
hierarchical classifier design. IJCPR’76.

[17] S. Murthy. Automatic construction of decision trees from data:
A multi-disciplinary survey. DMKD, 2:345–389, 1998.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. ICDT’99.

[19] D. Pelleg and A. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. ICML’00.

[20] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[21] C. Toregas, R. Swain, C. Revelle, and L. Bergman. The
location of emergency service facilities. Operations Research,
19:1363–1373, 1971.

[22] J. Wojtusiak, R. Michalski, K. Kaufman, and J. Pietrzykowski.
Multitype pattern discovery via AQ21: A brief description of
the method and its novel features. Technical Report, MLI
06-2, George Mason University, 2006.

[23] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset
patterns: A profile-based approach. SIGKDD’05.

