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Abstract

This paper presents an epistemological analysis of the search for new
conservation laws in particle physics. Discovering conservation laws has
posed various challenges concerning the underdetermination of theory
by evidence, to which physicists have found various responses. These
responses include an appeal to a plenitude principle, a maxim for in-
ductive inference, looking for a parsimonious system of generalizations,
and unifying particle ontology and particle dynamics. The connection
between conservation laws and ontological categories is a major theme in
my analysis: While there are infinitely many conservation law theories
that are empirically equivalent to the laws physicists adopted for the fun-
damental Standard Model of particle physics, I show that the standard
family laws are the only ones that determine and are determined by the
simplest division of particles into families.

1 Introduction: Conservation Laws and Underde-
termination

The underdetermination of belief by evidence is a central topic in epistemology,
as it is the point of departure for skeptical arguments against the possibility
of knowledge. One aim of the philosophy of science is to study underdeter-
mination as it arises in scientific practice. Such case studies refine our under-
standing by revealing different kinds of underdetermination. In addition, the
epistemological problems that scientists face are rich and complex, and since
scientists often confront them with success, the practice of science promises
to teach us much about effective strategies for responding to the challenge
of underdetermination. Moreover, a systematic philosophical analysis of the
relationship between theory and evidence in a scientific domain can clarify the
structure and the strength of the logic we find in practice.

In this paper I consider how physicists have resolved various problems of
underdetermination that arise in the search for a theory of reactions among
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elementary particles. One type of underdetermination is global underdetermi-
nation, which arises when even complete knowledge of all observational facts
does not determine the answer to the scientific question under investigation.
Global underdetermination is a concern in particle physics in at least two ways.
First, a possible reaction among elementary particles may never materialize,
in which case it will never be observed, and the observational facts may not
determine whether the reaction is possible or not. Second, for a given set of
(additive) conservation laws there are infinitely many different laws that are
consistent with exactly the same processes among elementary particles. Thus
even complete knowledge of all reactions ever to occur does not determine a
unique set of laws without further considerations.

Local underdetermination arises when finite data samples do not determine
the answer to a scientific question, even if complete knowledge of the infinitely
many observational facts would. Local underdetermination is closely related
to the classic problem of induction. An example of local underdetermina-
tion in particle physics is the issue of whether a reaction that has not been
observed yet will be observed in a future experiment. Since conservation prin-
ciples entail assertions about what reactions can and cannot be observed, the
local underdetermination of possible reactions means that finite data may not
determine which conservation principles make correct predictions.

The final type of underdetermination that I consider in this paper is the
underdetermination of particle ontology by empirical phenomena. One of the
goals of particle physics is to find a taxonomy for the particle zoo that relates
properties of particles to empirical phenomena. The main result of this paper
is that data about observed reactions among elementary particles determine
an essentially unique simplest combination of particle classes and conservation
laws. This finding supports and illustrates David Lewis’ observation that “laws
and natural properties get discovered together” [18, p.368].

This paper is not a historical account of the development of particle con-
servation laws from the 60s through the 80s. Instead I focus on some of the
epistemological issues that arose in the development of conservation laws. With
regard to historical and current practice, my study aims to be realistic, but
within a limited scope. It is realistic in that I consider laws of a form found
in actual particle theory—additive conservation laws—and I analyze actual
reaction data from particle accelerators. It is limited in various respects, such
as: (1) I leave aside other types of conservation laws (e.g., discrete spacetime
symmetries [35, 3, 36]). (2) I consider the formulation of conservation laws as
a topic on its own, rather than in combination with the development of quark
theory and the fundamental Standard Model of particle physics. (3) I do not
analyze attempts to derive inductively inferred conservation laws from more
fundamental principles—what Earman calls the search for “second-order laws”
[5]. Thus the view of additive conservation laws in this paper is closer to the
phenomenological approach of the 1950s and 1960s than to current theories
about conservation laws. As far as the history of particle theory is concerned,
my analysis is best viewed as pertaining to an early historical period of parti-
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cle research. Despite these limitations, my discussion captures enough aspects
of particle theory to raise and illuminate many philosophical questions about
the underdetermination of theory and ontology by evidence. Also, the fact
that the epistemological analysis matches the physicists’ inferences, as I show
below, indicates that my discussion captures much of the logic that guided the
discovery of selection rules in particle research.

The paper is organized as follows. In section 2 I outline the project of
discovering new conservation laws in particle physics, and the principles that
have guided this project as formulated by prominent practioners such as Nobel
Laureates Feynman and Cooper. Section 3 analyzes the logical structure of
additive conservation laws—what empirical predictions can they express, and
under what circumstances do different sets of laws make the same predictions?
Following the general principles of scientific inference examined in Section 2,
I formulate the maximally strict inference rule: posit conservation principles
that explain the nonoccurrence of as many unobserved particle reactions as
possible. Section 4 examines the status of the maximally strict inference rule.
This rule can be justified in terms of a general inductive epistemology whose
precept is that good inference rules serve the aims of inquiry (in the present
analysis, the aims of true and stable belief). The main finding of this section
is that given the particle reaction data that are currently available, physicists
adopted conservation laws that follow the maximally strict inference rule. As
there are infinitely many alternative law sets that are empirically equivalent to
those physicists adopted, the question arises what is special about the standard
laws. Section 5 answers this question by showing that the standard laws
correspond to a simple division of elementary particles into disjoint families,
and that they are essentially the only laws to do so. The enterprise of particle
physics raises some of the great themes of the philosophy of science: natural
laws, natural kinds, and simplicity. In the final section I comment on David
Lewis’ prominent views on these topics in the light of what my case study
shows about conservation laws in particle physics. More details about the
results of my analysis may be found in [28] and [31], including the proofs of
formal theorems.

2 Conservation Laws and Underdetermination in
Particle Physics

I use the term “global underdetermination” to refer to a situation with two
possible worlds in which our experience is exactly the same [14]. This scenario
is familiar in philosophy. For instance, Descartes’ Meditations described two
worlds in which our experience is the same, one in which an evil demon pro-
duces our illusions, and another in which our perceptions reflect reality. In
particle physics, the possibility of global underdetermination arises in a more
pedestrian manner. Consider a possible physical process such as p→ π0 + e+,
the decay of a proton into a pion and a positron. Is it possible that the laws of
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physics permit this process, yet we never observe it? If yes, then global under-
determination arises: there are two physically possible worlds, one in which
p → π0 + e+ is a possible process, another in which the process is forbidden,
yet our total evidence in each may be the same. This possibility may seem
unlikely, and indeed particle physicists have explicitly ruled it out.

There is an unwritten precept in modern physics, often facetiously
referred to as Gell-Mann’s totalitarian principle, which states that
‘anything which is not prohibited is compulsory’. Guided by this
sort of argument we have made a number of remarkable discoveries
from neutrinos to radio galaxies. [1]

So the scenario I sketched above cannot happen: If p→ π0 + e+ is not for-
bidden, then by Gell-Mann’s Totalitarian principle, the process must eventu-
ally occur. Kenneth Ford states a succinct version of the Totalitarian principle
that emphasizes the role of conservation laws: “everything that can happen
without violating a conservation law does happen” [8, p.82], Ford’s emphasis.
The next section elaborates on the importance of conservation laws in the
search for the laws of particle dynamics.

If the concerns of global underdetermination are met, the total findings of
an unbounded course of inquiry would settle all questions about what particle
reactions are possible. However, at a given stage of inquiry, physicists will
have explored but a finite amount of phenomena and gathered but a finite
number of observations. Thus the challenge remains of how to generalize from
the evidence available in the short run. As there are an infinite number of
particle theories logically consistent with a finite amount of data, we face a
problem of local underdetermination.

As Richard Kane astutely observes, the Totalitarian Principle not only de-
fuses global underdetermination, but also carries implications for the direction
of research and theory in particle physics [12]:

What is interesting is that, in committing themselves to plenitude
in this restricted form, modern physicists are committing them-
selves to the principle that what never occurs must have a sufficient
reason or explanation for its never occurring.

Thus the Totalitarian Principle implies an explanatory strategy: to focus
on reactions that do not occur as the primary explananda. If we recall Ford’s
conservation law version of the Totalitarian Principle, the strategy is to find
quantities that are conserved in reactions known to be possible, but not con-
served in problematic reactions that fail to be observed. Nobel Laureate Leon
Cooper testifies to the importance of conservation principles, in particular se-
lection rules (a type of conservation law that I will discuss in detail presently)
[2, p.458].

In the analysis of events among these new particles, where the
forces are unknown and the dynamical analysis, if they were known,
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is almost impossibly difficult, one has tried by observing what does
not happen to find selection rules, quantum numbers, and thus the
symmetries of the interactions that are relevant.

These sources make clear that the emphasis on conservation principles has
been a great help to physicists in their search for a theory of partice reactions.
Much of this paper is concerned with working out exactly how. The assump-
tion that conservation principles are adequate for describing particle dynamics
rules out many logically possible particle worlds and thus amounts to a sub-
stantive empirical background assumption that limits skeptical possibilities.
To see why that is so, we need to study the logical structure and predictive
import of conservation principles in some detail.

3 The Logic of Additive Conservation Laws

This section introduces additive conservation principles and discusses their
status in the fundamental Standard Model of Particle Physics and recent ex-
tensions of the Standard Model. An analysis follows of how the focus on
additive conservation principles can resolve local underdetermination.

3.1 Conservation Laws in Particle Physics

A particle is an object that obeys the rules of quantum mechanics for a point
with well-defined mass and charge [20, Ch.1.1],[3]. Physicists refer to par-
ticles that are neither atoms nor nuclei as ‘elementary’ particles.1 Several
kinds of conservation principles in particle physics describe what reactions
among elementary particles are possible: General conservation principles such
as conservation of energy, momentum and electric charge, discrete space-time
symmetries such as parity and CPT, and so-called numeric or additive conser-
vation principles [35, 36]. My analysis considers the last kind of conservation
principle, also known as a selection rule [20, p.36]. A selection rule intro-
duces a quantity and assigns a value for that quantity to each known elemen-
tary particle. Table 1 lists five such quantities, namely electric charge, baryon
number, electron number, muon number and tau number; it specifies what
value each of the 22 listed common particles has for a given quantity [35].
These quantities are the same for each kind of particle in all reactions (unlike,
say, momentum). From now on, I will use the term “quantity” to refer to such
process-invariant, or time-invariant, properties of particles. In this paper I
consider only conservation principles that involve process-invariant quantities.
To fix some notation, the fact that particle p carries x units of quantity q will
be denoted by q(p) = x. For instance, if C denotes electric charge, we have
C(e−) = −1.

1except for the proton, which is considered an elementary particle although it is the
nucleus of the hydrogen atom.
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Particle Charge (C) Baryon# (B) Tau# (T) Electron# (E) Muon# (M)
1 Σ− -1 1 0 0 0
2 Σ+

1 -1 0 0 0
3 n 0 1 0 0 0
4 n 0 -1 0 0 0
5 p 1 1 0 0 0
6 p -1 -1 0 0 0
7 π+ 1 0 0 0 0
8 π− -1 0 0 0 0
9 π0 0 0 0 0 0
10 γ 0 0 0 0 0
11 τ− -1 0 1 0 0
12 τ+ 1 0 -1 0 0
13 ντ 0 0 1 0 0
14 ντ 0 0 -1 0 0
15 µ− -1 0 0 0 1
16 µ+ 1 0 0 0 -1
17 νµ 0 0 0 0 1
18 νµ 0 0 0 0 -1
19 e− -1 0 0 1 0
20 e+ 1 0 0 -1 0
21 νe 0 0 0 1 0
22 νe 0 0 0 -1 0

Table 1: Some Common Particles and Quantum Number Assignments
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A reaction conserves a quantity just in case the total sum of the quantity
over the reagents is the same as the total sum over the products. For example,
the reaction p + p → p + p + π0 conserves Baryon number, since the Baryon
total of the reagents is 2×Baryon#(p) = 2× 1, and the Baryon total of the
products is 2×Baryon#(p) + Baryon#(π0) = 2× 1 + 0.

The conservation of the quantities electric charge, baryon number, tau
number, electron number and muon number that are shown in Table 1 is part
of the Standard Model that takes the quarks as building blocks of particles
and was elaborated by particle physicists in decades of research [9, 2, 35, 19, 3].
For brevity, I will sometimes abbreviate these quantities as C,B, T,E, M .

A comment is in order regarding the current status of these conservation
laws. Since the recent discovery that neutrinos have nonzero mass (1998-
2000), there has been extensive activity in extending the Standard Model of
particle physics on the basis of new experimental data [34, 3]. Briefly, the
nonzero mass of neutrinos permits quantum-mechanical effects that violate
traditional conservation laws such as muon number. For instance, in “neutrino
oscillation” a muon neutrino turns into a tau neutrino, which clearly violates
muon number conservation. Particle theory implies that such violations occur
very rarely, but nonetheless there seems to be sufficient evidence that they
do occur in nature. The picture that seems to be emerging is that some of
the conservation laws of the Standard Model such as muon or baryon number
conservation are partial symmetries that hold only “approximately”, that is
with very rare exceptions. There are complex current debates in particle
theory about the best way to extend the Standard Model to account for these
new phenomena. My aim in this paper is not to describe possible extensions
of the Standard Model. Instead, I will focus on the pre-1998 Standard Model
and the particle phenomena that it covers, where the quantities listed in Table
1 are universally conserved. It is possible to carry out the following analysis
for a model with partial symmetries and approximate conservation laws. The
results would be essentially the same, and the extra complications do not lead
to new epistemological insights.

3.2 Selection Rules and Local Underdetermination

Let us see how the use of conservation principles can resolve local underde-
termination. Suppose that other resources from physical theory, known con-
servation principles, etc., do not suffice to answer the question of how many
pions can be produced in a collision of two protons. Suppose further that
the answer must lie with conservation principles governing collisions of two
protons. Now if we observe the reaction p + p → p + p + π0, we infer that
whatever conservation principles govern collisions of two protons, the pion π0

must carry 0 of any conserved quantity, because clearly the two protons on
the left and on the right put the same weight into the conservation balance.
But if the pion π0 carries 0 of every conserved quantity, then two protons may
produce any number of pions without violating a conservation law. Thus after
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observing one reaction such as p + p → p + p + π0 that produces pions, we
can deduce that any number of pions can be produced in a collision of two
protons—which is what current particle theory tells us [8, p.82].

So if one reaction is possible (such as p + p → p + p + π0), then selection
rules must permit other reactions as well (such as p+p→ p+p+π0+π0). Thus
focusing on conservation principles allows us to infer that certain unobserved
reactions are possible. For a given set of observed reactions R there will be
a set R′ of reactions that are entailed by the observed data R in the sense
that any set of selection rules consistent with the reactions R must also be
consistent with the reactions R′. I shall refer to the reactions R′ entailed by a
data set R as the least generalization of R.

If our goal is to explain the nonoccurrence of unobserved reactions, we
would seek a set of selection rules that rule out as many unobserved reactions
as possible. Let us say that such a set of selection rules is maximally strict
for the observed reactions R. In other words, a set of selection rules Q is max-
imally strict for observed reactions R just in case the reactions that conserve
all quantities in Q form the least generalization of R. The next proposition
asserts that, for any set of observed reactions R, there are infinitely many
maximally strict sets of conservation laws.

Proposition 1 Let R be any set of observed reactions. Then there are in-
finitely many maximally strict sets of conservation laws, each of which allows
exactly the least generalization of R.

Here are the intuitive reasons why the proposition holds. The key obser-
vation is that we can think of particle reactions that are allowed by a given
set of selection rules as forming a linear space. For example, given two re-
actions r and r′ that are consistent with a given set of selection rules Q, we
can “add” r and r′ to obtain the reaction r + r′ that is also consistent with
Q. To illustrate, both the neutron decay n → p + e− + νe and muon decay
µ+ → e+ + νe + νµ conserve all standard quantities. Hence so does their sum,
which is the collision n + µ+ → p + e− + νe + e+ + νe + νµ. The least gener-
alization of a given set of reactions R is the least linear space containing R;
that is, the least generalization comprises the reactions that can be generated
as linear combinations of reactions in R.

How can we find a set of selection rules that is consistent with exactly
the least generalization of the reactions R? The answer is to note that the
set of quantities that are conserved in the reactions R forms another linear
space (technically, this linear space is the orthogonal complement of R). For
example, given the standard model quantities Baryon Number and Electric
Charge, we can define their sum Baryon-Charge to be the quantity that as-
signs to every particle the sum of its Baryon Number and its Electric Charge.
To illustrate, the Baryon-Charge of the proton p is 1+1 = 2. It is not hard to
see that Baryon-Charge is conserved in every reaction that conserves Baryon
Number and Electric Charge. In other words, Baryon-Charge is redundant
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given Baryon# and Electric Charge. In general, a linear combination of con-
served quantities will also be conserved, but does not add any more constraints
on particle reactions.

A maximally strict set of conservation laws is a set that contains as
many irredundant laws as possible. Each law adds a constraint on how nature
may behave, so the more irredundant laws a theory contains, the stricter it
is. Given that linear combinations of quantities are redundant, what we seek
is a maximal set of linearly independent quantities; in linear algebra terms,
a basis for the space of quantities conserved in the reactions R. Figure 1
illustrates these facts. It is easy to see that the space of conserved quantities

R

linear combinations of R conserved quantities = R!  

Q = q1, q2, …, qk

the smallest generalization of

observed reactions R

a maximally strict set Q of

conservation laws for R

Figure 1: The least generalization of observed reactions R is to predict that all
and only linear combinations of the data R are possible. The set of quantities
that are conserved in all the reactions R forms a linear space, the orthogonal
complement R⊥. Any set of conservation laws Q that corresponds to a basis for
R⊥ allows precisely the least possible generalization of the observed reactions
R.

has infinitely many bases. For example, we can multiply Baryon Number
by 2 to form the quantity 2B defined by 2B(p) = 2 × B(p). For instance,
the proton carries two units of 2B since it carries one of B. Now we can
replace the conservation of Baryon Number B by the conservation of 2B and
obtain a predictively equivalent theory that is consistent with exactly the same
reactions. More formally, the set of quantities {2B,M,E, T} is predictively
equivalent to the set {B,M,E, T}. Similarly, we could replace B by 3B, 4B,
etc. Formal statements and proofs of these results may be found in [28] and
[31].

Given the emphasis that physicists have placed on explaining what does
not occur (cf. Section 2), our analysis so far suggests the following inductive
rule for generalizing from observed data to a set of conservation laws: always
adopt a set of conservation laws that are maximally strict. I refer to this rule
as the maximally strict rule (MSR for short).

There are two basic questions we may ask about the maximally strict
rule. 1) the epistemologist’s question: what sort of justification is there for
the maximally strict rule, for example in terms of more general epistemic
principles? 2) the naturalist’s question: do maximally strict theories match
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what we find in scientific practice? I discuss these questions in the next section.

4 Inferring Conservation Laws: Methodological Anal-
ysis and Comparison With Practice

This section examines the status of the maximally strict inference rule, first
from the point of view of general inductive methodology, second in terms of
agreement with scientific practice.

4.1 Means-Ends Justification of the Maximally Strict Infer-
ence Rule

In a previous article [28] I discussed the status of the maximally strict rule
from the point of view of an inductive epistemology based on means-ends
analysis. I review here the main results of the investigation of the MSR rule.
The basic tenet of means-ends analysis is that good inference methods are
those that attain the goals of inquiry. Means-ends epistemology examines
a number of standards of empirical success, such as reliable convergence to
the truth, fast convergence, and stable convergence [14, 27, 11]. To keep
matters simple, let us consider two aims: reliable and stable convergence to a
theory that makes correct predictions. The notion of reliable convergence to
a correct theory stems from a Peircean vision of empirical success in which
science may err in the short run, but corrects itself and eventually settles
on the truth. Reichenbach’s well-known vindication of induction is in this
spirit: he showed that the posits of his straight rule come arbitrarily close
to the true limiting relative frequency of an event, if that limit exists [25,
26]. Putnam generalized Reichenbach’s idea to develop a general theory of
inductive inference [21, 23], which has grown into a mathematical subject
known as Formal Learning Theory [11, 14, 30].

Assume that some set of additive conservation laws is predictively equiva-
lent for the totality of all reactions ever to be observed. Then the maximally
strict rule is guaranteed to eventually arrive at a predictively adequate theory,
and thus satisfies the Peirce-Reichenbach-Putnam ideal of empirical inquiry
[28, 31]. A venerable philosophical tradition supports the idea that stable
belief is a significant epistemic good. Since Plato’s Meno, philosophers have
been familiar with the idea that stable true belief is better than unstable true
belief. Epistemologists such as Sklar have advocated principles of “epistemic
conservatism” [33]. Kuhn tells us that a major reason for conservatism in
paradigm debates is the cost of changing scientific beliefs [16]. In this spirit,
means-ends epistemologists, starting with a seminal paper of Putnam’s [22],
have examined inductive methods that minimize the number of times that
they change their theories before settling on their final conjecture [14, 27].

It turns out that the means-ends criteria of reliable convergence to the
right answer and minimizing theory changes single out the maximally strict
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rule. I record this fact in the following proposition.

Proposition 2 Assume that there is a set of selection rules that correctly
predicts which processes among n known particles occur. The maximally strict
rule is the only inference rule that satisfies the following two aims:

1. The rule is guaranteed to eventually settle on a set of conservation laws
that correctly predicts which reactions can and cannot occur; and

2. the rule changes its predictions at most n times.

The demonstration is in [28, Sec.7]. This result warrants a few comments.
(1) The maximally strict rule changes its mind only when its most recent
conservation law theory is falsified (as neutrino oscillation falsifies the conser-
vation of muon number, Sec. 3), so it is also the case that the MSR is the only
rule whose predictions are falsified at most n times (under the assumptions
of the proposition). (2) The proposition illustrates the philosophically impor-
tant point that criteria of inductive success can strongly constrain empirical
conjectures in the short run. Elsewhere I have shown that the same inductive
goals select the generalization “all emeralds are green” over all “emeralds are
grue” in a Goodmanian Riddle of Induction [27].

Thus it appears that means-ends analysis matches scientists’ methodolog-
ical practice, in the sense that means-ends analysis directs inductive inquiry
to adopt maximally strict conservation law theories, which corresponds to the
principle of explaining as many unobserved reactions as possible. In the next
sections I examine how the inferences of the maximally strict rule compare
with the theories physicists have developed in response to the currently avail-
able data. There are several steps in this project. First, to collect from the
literature a suitable set of known reactions for applying the maximally strict
method. Second, to compute a maximally strict set of conservation principles.
Third, to determine whether the laws C,B,M,E, T shown in Table 1 form a
maximally strict set for the observed reactions.

4.2 Collecting Particle Reaction Data

To facilitate computational analysis, we need to supply reaction data in elec-
tronic format. The most readily available kind of reaction data are decays of
particles, since they are listed with each particle. For instance, decay modes
are listed in the Annual Review of Particle Physics, an authoritative publica-
tion that summarizes the current state of knowledge in the field every year
[6]. The data set includes a decay mode for each of the 182 particles that has
one. This list comprises all particles except for γ, e−, e+, p, p, νe, νe, νµ, νµ, ντ , ντ .
For example, for the upsilon1S particle whose symbol is Υ(1S), I listed the
decay mode Υ(1S) → µ+ + µ−. In all, my data set includes 205 observed
reactions, 199 of which are decays listed in the Review. Typically, the data
include the most probable decay listed in the Review of Particle Physics. The
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additional reactions are important processes listed in textbooks. The com-
plete particle database is posted in Excel format at [29]; more discussion and
justification for focusing on decay modes may be found in [28, 31, 32].

4.3 Applying the Maximally Strict Inference Rule to Current
Particle Data

After translating current particle data into vector format, we can run a pro-
gram that produces a maximally strict set of conservation principles for this
data.2 As we saw in Section 3, finding a maximally strict theory is equivalent
to finding a basis for the orthogonal complement of the given reaction data.
Although for a human this is a formidable task, fortunately it is a well-studied
problem in computational linear algebra [13], and efficient programs for solv-
ing it are available that can analyze even an extensive set of reaction data
in minutes. The next step is to compare the set of conservation principles
produced by the program with the Standard Model laws C,B,M,E, T . With
the aid of the computer, it is simple to check that the two sets of laws span the
same linear space and hence are empirically equivalent, that is, consistent with
exactly the same reactions. This computation establishes that the combined
laws C,B,M,E, T form a maximally strict theory for the current data.

Finding 1 Let D be the particle reaction data described in Section 4.2. The
combination of laws asserting the conservation of electric charge, baryon num-
ber, tau number, electron number and muon number, forms a maximally strict
set of conservation laws for the reaction data D.

The finding answers the naturalist’s question in the affirmative: The pre-
dictions made by the laws we find in the Standard Model are exactly those
mandated by the maximally strict inference rule. According to Proposition 1,
there are infinitely many sets of conservation laws that are empirically equiv-
alent to the standard set—any basis spanning the same linear space will do.
So even if local underdetermination is resolved by the directive to make max-
imally strict predictions, global underdetermination arises because there are
many sets of laws that make the same (maximally strict) predictions. Among
the infinitely many selection rules that make the same predictions as the set
C,B,M,E, T , is there something special about this set?

5 Underdetermination and Particle Families

Naturally this question occupied particle physicists. Feynman thought the
answer would lie in the fact that quantities such as Baryon number would
turn out to relate to physical phenomena other than as a conserved quantity:
“If charge is the source of a field, and baryon number does the same things in
other respects it ought to be the source of a field too. Too bad that so far it

2A trace of a program run is posted at [29].
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does not seem to be, it is possible, but we do not know enough to be sure”[7,
p.67]. Omnes devotes a chapter to deriving selection rules in his graduate text
on particle physics. He gives “once and for all” a procedure for assigning these
numbers [20, Ch.2]. He does not address the question of whether his procedure
uniquely determines a set of quantum numbers, although he comments that
various aspects of the number assignments are arbitrary. Williams remarks,
commenting specifically on the conservation of lepton number (the sum M +
E + T ): “this lepton number conservation is arbitrary and has no basis in
more fundamental ideas” [35, p.285].

One of the main considerations that led physicists to these laws is that they
correspond to ontological categories that find an independent interpretation
and support in the Standard Model that takes the quarks as building blocks
of particles. The term family conservation law for the conservation of baryon,
electron, muon, and tau number reflects the connection between selection rules
and particle ontology [35]. The idea that natural laws have a special connection
to ontology has a long standing in philosophy; often the idea is expressed by the
thesis that natural laws refer to fundamental ontological categories or natural
kinds [15, p.6]. In this section and the next I pursue the connection between
conservation laws and ontology to see how it affects the underdetermination
of conservation principles.

The four quantities Baryon#, Electron#, Muon#, Tau# illustrated in
Table 1 have the following interpretation in terms of particle families. First,
the particle world is divided into Baryons and non-Baryons. Every non-Baryon
receives Baryon# 0. Each Baryon that is regular matter is assigned Baryon#
1 (e.g., the proton p); each Baryon that is anti-matter is assigned Baryon#
-1, and usually its symbolic name is marked by an overline, like for instance
the antiproton p. Similarly Electron# represents the Electron family, which
comprises the particles e−, e+, ve, νe: all other particles receive Electron# 0,
the two electron type particles e− and νe Electron# 1, and the antiparticles
e+ and νe receive Electron# -1, as illustrated in Table 1. Muon Number
similarly represents the muon particle family µ, µ, νµ, νµ and Tau# the tau
particle family τ, τ , ντ , ντ .

This section examines the underdetermination of particle taxonomy by
reaction data. I establish two new theorems in linear algebra showing that a
division of particles into disjoint families is, under quite general conditions,
uniquely determined by reaction data. Then I apply these results to arrive at
the main finding of the case study in this paper: the available reaction data
did uniquely determine the Standard Model particle families comprising the
baryons and the three lepton generations tau, electron and muon.

5.1 Particle Reaction Data Determine Particle Families In Prin-
ciple

The partition of particles into baryons, and the muon, electron and tau types
is not necesssary for a predictively adequate conservation theory: it is easy to
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produce theories that are equivalent to the standard laws but do not incor-
porate these distinctions. For a very simple example, suppose we form a new
quantity q defined as the vector sum of baryon number and muon number,
such that each particle p carries an amount of q the sum of its baryon and
muon numbers (in symbols, q(p) = B(p)+M(p)). Now replace baryon number
by q, which results in the law set {C, q, M, E, T}. This set is empirically equiv-
alent to the standard rules, in that a reaction r conserves all quantities just in
case r conserves all quantities in the set; but no conservation law in the new
set corresponds to the family of baryons. A skeptic with nominalist leanings
(sometimes called a “conventionalist” [4, Sec.4]) may point to such examples
as evidence that ontological categories such as “baryon” have no reality in na-
ture, but are imposed by us to explain the particle reaction phenomena, while
equally good (i.e., predictively equivalent) explanations are available that do
not employ these categories.

There is a reply to the nominalist: what is better about the standard fam-
ily laws compared to the gerrymandered ones is that they divide the particle
world into disjoint categories. Laws based on disjoint categories have several
virtues. (1) They satisfy the intuition that the laws of nature should be based
on fundamental distinctions among the objects in the world. (2) They can
be interpreted as asserting that particles of one kind do not transform into
particles of another, which seems physically meaningful. (3) They define on-
tological categories that may point to and receive support from independent
ontologies. For example, in the quark model of particles the baryons turn out
to be exactly the particles composed of three quarks.

Fair enough, says the nominalist. But surely we can imagine an alternative
set of disjoint categories, different from the baryon, muon etc. categories, with
corresponding conservation laws that are predictively equivalent to the stan-
dard selection rules? I will show that the answer is no: What the nominalist
says he can imagine is in fact logically impossible. Say that a particle p car-
ries a quantity q if q(p) $= 0. A set of quantum numbers {q1, . . . , qj} forms a
family set if no particle carries two quantities; formally, if qi(p) = 0 whenever
qj(p) $= 0, for all i $= j. Given a family set of quantities, the carriers of the
quantities form disjoint particle families. The standard quantities {Baryon#,
Muon#, Electron#, Tau#} form a family set. For example, the proton carries
1 unit of baryon number, but 0 of the muon, electron and tau numbers. In the
debate with the nominalist, the issue is how many family sets in addition to
the standard particle families there might be. The surprising answer is that
if there is any predictively adequate family set, then all predictively adequate
family law sets define the same particle ontology.

Theorem 3 Let Q,Q′ be any two predictively equivalent combinations of laws,
with associated quantities. If both Q and Q′ are family sets, then they define
the same particle families as carriers of their quantities. It follows that if
Q′ is any family set of laws that is predictively equivalent to the conservation
of baryon number, tau number, electron number and muon number, then Q′
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defines the same particle families as these laws (namely the baryons and the
three lepton generations tau, electron and muon).

The proof is in [31, 32]. The basic argument runs as follows. Consider two
conservation theories, Q,Q′ that are predictively equivalent (i.e., consistent
with exactly the same reactions) such that Q and Q′ are family sets. The
structure of vector spaces requires that it must be possible to translate Q into
Q′. However, the proof shows that if one family set Q can be translated into
another Q′, then the particle families corresponding to Q must be the same
as those for Q′.

The theorem addresses both global and local underdetermination. For
global underdetermination, consider the set of all reactions ever to occur in
the course of nature; denote this set by Total . If this set is predicted correctly
by a family law set Q, in the sense that Q permits exactly the reactions in
Total , then all other family law sets Q′ that permit exactly the reactions in
Total define the same particle families. In other words, the total reaction
phenomena Total determine a unique set of particle families. For local under-
determination, suppose we have particle accelerator data D, and there is some
family law set Q that is maximally strict for D. Then the proposition implies
that all other maximally strict family conservation theories for D define the
same families. In other words, the reaction data D and the maximally strict
rule together determine the division of particles into disjoint families, without
recourse to other considerations or a more general ontological model (such as
the Standard Model).

The theorem establishes a subtle interplay between the contingent and the
necessary. It need not be the case that there is any partition of particles into
families that corresponds to empirically adequate conservation laws. But given
that there is such a partition, it is unique. In terms of the joints metaphor,
there need not have been any empirically adequate way of carving up nature,
but given that there is one, the cuts are uniquely determined.

5.2 Particle Reaction Data Determine the Standard Particle
Families in Practice

Our results so far show how the logical structure of additive conservation
laws resolves the underdetermination of theory by evidence in general; let
us now consider how they apply to our case study. Consider the reaction
data that were consistent with the conservation of Charge, Baryon#, Tau#,
Electron#, and Muon# and led to the adoption of these conservation laws;
this data includes the data set D described in Section 4.2. Theorem 3 suggests
that if there is a maximally strict family set of laws for the reaction data D,
then the corresponding particle families would be uniquely determined. But
the theorem does not directly apply to the law set Charge, Baryon#, Tau#,
Electron#, and Muon#, because this is not a family law set: the carriers of
electric charge include, for instance, many baryons, such as the proton.
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However, as Feynman pointed out (cf. Section 5), charge is different from
the other additive conservation laws in that it is the source of a field and relates
to other dynamic phenomena. Thus we can view the charge of a particle
as being determined independently. Moreover, the law of the conservation
of electric charge was well established in physics long before the study of
subatomic particles. So for the project of finding new conserved quantities
for the subatomic world, the conservation of the C quantity can be taken as
given. The reason why this observation is important is that Theorem 3 can
be generalized to show that if Q is any set of laws, predictively equivalent to
Charge, Baryon#, Tau#, Electron#, and Muon#, and of the form (electric
charge + a set of family laws), then Q defines the same particle families as
baryon number, tau number, electron number and muon number (namely the
baryons and the three lepton generations tau, electron and muon). A fuller
desription of this result with proofs may be found in [31, 32].

The next finding records that if we take the conservation of electric charge
as our starting point, the actual reaction data described previously uniquely
determine the {B,M,E, T} families.

Finding 2 Let D be the particle reaction data described in Section 4.2. Let
Q be any family set of conservation laws such that the combination of Q and
electric charge is maximally strict for the reaction data D from particle physics.
Then Q defines the same particle families as the Standard Model laws, namely
baryons and the three lepton generations tau, electron and muon.

Figure 2 illustrates this result. The finding holds for the following reasons.
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Quantum#1 Quantum#2 Quantum#3 Quantum#4

Any alternative family set with 4 quantum numbers

Figure 2: Given the law of conservation of electric charge, any maximally strict
set of laws that partitions the particle world into disjoint categories employs
the same categories as the standard family conservation laws.
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From Finding 1 we know that the laws asserting the conservation of electric
charge, baryon number, tau number, electron number and muon number, form
a maximally strict set of conservation laws for the reactions D. So if Q plus
electric charge is maximally strict for the reaction data D, then Q plus electric
charge makes exactly the same predictions as the set of laws corresponding
to the conservation of electric charge, baryon number, tau number, electron
number and muon number. Then the generalization of Theorem 3 described
above implies that the two sets of laws must respectively define the same
particle families.

From the point of view of local underdetermination and inductive infer-
ence, Finding 2 gives strong guidance to finding a maximally strict conserva-
tion theory: it suggests to start with electric charge and its conservation as
given, and then search for family laws that 1) correspond to disjoint ontolog-
ical categories, and 2) in combination with electric charge yield a maximally
strict theory. It turns out that the parsimony of a set of selection rules guides
an inference method towards a simple ontology: A computer program that
searches for a maximally parsimonious and strict set of selection rules redis-
covers exactly the rules posited by physicists [31, 32]. “Parsimony” in this
context means rules that assign quantities whose absolute values are as small
as possible (e.g., 0 rather than -1, or -1 rather than 3).

I conclude my case study by comparing my algorithmic derivation of selec-
tion rules and particle families with the historical progress of particle theory.
One difference with the historical development is that often ontological cate-
gories were epistemically prior to reaction data. For example, if one arranges
elementary particles by mass, there is a large gap between the lightest baryon
(the proton) and the heaviest non-baryon particle (baryon number was also
called “heavy particle number”). So the category of baryons suggests itself in-
dependently of reaction data; the baryon number quantity can be derived from
this category, and then its conservation checked against the available reaction
data. This is the kind of procedure that Feynman referred to as a “quick way
of guessing at the laws of nature” [7, p.67]. In contrast, in the perspective
of my analysis particle families are epistemically posterior to reaction data,
because they are discovered by analyzing the reaction data, not posited first
and then checked against the data. The historical reliance on considerations
and measurements in addition to reaction data, such as the masses of parti-
cles, would suggest that particle families cannot be discovered from reaction
data alone, but must be derived from other sources. The surprising and novel
result of my analysis is that this is not so; this new insight is what motivates
developing a method that begins with reaction data to find particle families.
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6 Discussion: Induction, Laws, Simplicity, and Nat-
ural Kinds in Particle Physics

My analysis has touched on some of the great themes in the philosophy of
science as they pertain to conservation laws in particle physics. In this section
I take a broader perspective and place my findings in the context of more
general discussions in the philosophy of science. To recapitulate, we found
that for our dataset, the Standard Model of particle physics features the set
of conservation laws that yield the best generalizations about particle dynam-
ics and the simplest particle taxonomy with the smallest number of particle
families. The operative notion of ontological simplicity in my analysis has
basically two aspects: first, number—to employ as few ontological categories
as possible (in our case four not counting charge), and second, overlap—to
find as many particle families as possible that are disjoint, that is, categories
whose boundaries do not overlap.

Lewis on Laws, Kinds and Simplicity. David Lewis uses the term
“natural property” for the properties that “physicists discover in the course
of discovering laws” [18, p.365]. As the distinction between natural kinds and
natural properties is not important for my purposes, I will mostly follow Lewis
in referring to natural properties. . Many philosophers have noted connections
between induction, laws and natural kinds or properties. Quine asked “what
tends to confirm an induction?” [24, p.155] and held that “the answer lies
in similarity” [24, p.157], “which is immediately definable in terms of kind;
for, things are similar when they are two of a kind”. Goodman’s thesis that
valid generalizations are the law-like ones is well-known. He also suggests that
law-likeness involves natural kinds [10]. A connection between natural laws
and natural kinds has been widely accepted by philosphers after Goodman.
Kornblith encapsulates the view as follows [15, p.6].

On the account of science which began to emerge from these au-
thors [Putnam, Boyd, Field and a “host of others”], it is the busi-
ness of science to discover the real causal structure of the world;
what this means, in a word, is the discovery of natural kinds and
the causal relationships among them.

In his book “Counterfactuals”, David Lewis’ account of natural laws is, roughly,
that a natural law is a member of the system of true generalizations that makes
an ideal trade-off between simplicity and information content [17]. Our case
study suggests a promising synthesis of Lewis’ analysis with the traditional
connection between laws and natural kinds: if a key ingredient of the simplic-
ity of a system of generalizations is ontological simplicity, then Lewis’ account
of laws makes a connection with ontology. Let me elaborate this idea.

Suppose we add to Lewis’ account of laws the thesis that an important
part of the simplicity of a system of generalizations is ontological simplicity.
Specifically, consider the following two theses:
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1. A law is a member of the simplest system of empirically adequate gen-
eralizations, where ontological simplicity is an important aspect of sim-
plicity.

2. A natural property/kind is one that appears in the ontologically simplest
system of empirically adequate generalizations.

Our case study illustrates both theses. In particular for 2), we saw that the
standard particle families are the ones that correspond to the ontologically
simplest maximally strict set of conservation laws. The two theses imply a con-
nection between laws and natural properties or kinds. For by Thesis 1), laws
will tend to to be ontologically simple empirically adequate generalizations.
And by Thesis 2), ontologically simple empirically adequate generalizations
involve natural properties. If the maximally simple system S of empirically
adequate generalizations is also the ontologically simplest one, as in our case
study, then it follows from 1) and 2) that the properties appearing in S are
also natural properties. Figure 3 illustrates these connections.

empirical adequacy

simplicity

laws

ontological simplicity

natural kinds

Figure 3: To illustrate the thesis that natural kinds are those that appear
in the ontologically simplest empirically adequate system of generalizations.
Ontological simplicity is a component of simplicity, which connects Lewis’
simplicity-based account of natural laws with ontology. Our case study shows
that the four Standard Model particle families Baryon, Electron, Muon, and
Tau correspond to the ontologically simplest system of conservation laws for
the given particle reaction data.

In a later article “New Work for a Theory of Universals”, Lewis adds onto-
logical considerations to his account of laws: for a given axiom set representing
a system of generalizations, he stipulates that the primitive vocabulary of the
axioms must refer only to natural properties [18, p.368]. Lewis’ suggestion
seems to assume a notion of natural property that is independent of empirical
adequacy and of simplicity, and uses this independent notion to restrict the
range of systems of generalizations that may count as laws. My proposal in
contrast defines both the concept of law and that of natural property in terms
of empirical adequacy, simplicity, and ontological simplicity.

On both views, “laws will tend to be regularities involving natural prop-
erties” and “the scientific investigation of laws and of natural properties is a
package deal” [18, p.368]. Both views also agree that “in putting forward as
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comprehensive theories that recognise only a limited range of natural proper-
ties, physics proposes inventories of the natural properties instantiated in our
world” [18, p.364]. My approach has an important advantage for understand-
ing scientific discovery: Lewis’ account does not address how scientists should
go about finding natural properties (what Daly terms the “epistemological
question” [4, Sec.2]), whereas on my proposal scientists can find natural prop-
erties by seeking a predictively adequate theory that is ontologically simple,
as shown in Section 5.2 and [31]. In our case study, the difference is that
while Lewis’ account explains why the conservation of baryon, muon, electron
and tau number count as laws of nature given the natural particle families
comprising baryons, muon-type particles, electron-type particles and tau-type
particles, his account does not entail that physicists may go about discovering
these categories by pursuing ontologically simple laws as they have done.

7 Conclusion

Many physicists and philosophers have emphasized the importance of con-
servation laws. In his address as president of the PSA, John Earman said
that

Philosophers of science have barely scratched the surface of the
topic of laws, symmetries, and symmetry breaking. What I find
most attractive about this topic is that it brings into fruitful in-
teraction issues from metaphysics, from mathematics and physics,
from the philosophy of scientific methodology, and from founda-
tions of physics. [5, p.1240].

My case study is an example of the rich interaction that Earman describes.
I examined some of the newer conservation laws that particle physicists intro-
duced for the realm of subatomic particles. I considered additive conservation
laws that assign an amount of some quantity q to each particle, and are satis-
fied in a reaction if the sum total of q among the reagents is the same as the
sum total among the products. An example of a classical additive conserva-
tion law is the conservation of electric charge; a well-known new conservation
law is the conservation of baryon number. The search for conservation laws
has shown how the available evidence can help science find the truth despite
concerns about the underdetermination of theory by evidence. A plenitude
principle—Gell-Mann’s “totalitarian principle”—asserts that the course of in-
quiry is sufficient to eventually bring into actuality all particle interactions
that are physically possible, at least given enough experimental attention and
resources. Conversely, if a process fails to be realized experimentally, there
should be a conservation law that explains its nonoccurrence. This leads to
a principle for inductive inference: When given a list of reaction data, find
conservation laws that explain the absence of as many unobserved processes
as possible. The question arises whether the laws that physicists actually
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adopted conform to this principle. With the aid of a computer program, I
confirmed that the answer is yes: a standard set of additive conservation laws
rules out as many unobserved reactions as possible. However, my analysis
also shows that there are infinitely many other sets of predictively equivalent
conservation laws. Thus particle physics faces a problem of global underdeter-
mination: how to select a theory from a set of alternatives that make exactly
the same predictions. In the case of conservation laws, it is possible to resolve
the underdetermination by connecting laws with ontology: the standard set of
laws correspond to a grouping of elementary particles into disjoint categories
(i.e., the baryon, muon, electron and tau families). A nominalist might expect
that these ontological categories themselves would be underdetermined by the
data, but an analysis of the logic of additive conservation laws shows that this
is not so: Any set of laws that (1) explains the absence of as many unobserved
processes as possible, and (2) employs disjoint ontological categories, must
agree with the ontology of the standard set of laws. In this case, two prob-
lems are easier than one, because seeking a theory that reconciles ontology
and dynamics constrains the alternatives more than considering ontology or
dynamics in isolation.

We have encountered a number of standard themes from the philosophy
of science in the course of this study: a plentitude principle, global under-
determination, the problem of induction, laws, simplicity and natural kinds.
All these issues arise in practice, and physicists deal with them, albeit often
implicitly as part of their research work rather than explicitly formulating
the challenges as philosophical issues. Sometimes the solution is to appeal
to a general principle, such as a plenitude principle, sometimes to pursue the
implications of context-specific assumptions, such as the logic of additive con-
servation principles. It is by studying the interplay of general principles and
specific assumptions that we can see how scientists resolve the underdetermi-
nation of theory by evidence.
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