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1. Introduction

Much recent research has shown that systems of interacting software agents are a
useful basis for addressing issues of computational intelligence. Our best general theory
of interactions between agents is the mathematical theory of games, developed to a high
level since the seminal work of von Neumann and Morgenstern [29]. Von Neumann and
Morgenstern (VM for short) designed game theory as a very general tool for modelling
agent interactions. Experience has confirmed the generality of the formalism: computer
scientists, economists, political scientists and others have used game theory to model a
wide variety of scenarios that arise in economic, social, and political spheres.

Our aim is to represent the concepts of VM game theory in a logical formalism,
so as to enable computational agents to employ game-theoretical models and reasoning
for the interactions that they engage in. It turns out that the epistemic extension Le

of the situation calculus [14, section 7] is adequate for this task. We consider VM
games in which the agents can take at most countably many actions and in which the
agents’ payoff functions are continuous. We show that every such VM game G has
an axiomatization Axioms(G) in the situation calculus that represents the game in the
following strong sense: The game G itself is a model of Axioms(G), and all models of
Axioms(G) are isomorphic (that is, Axioms(G) is a categorical axiomatization of G). It
follows that the axiomatization is correct, in the sense that Axioms(G) entails only true
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assertions about the game G, and complete in the sense that Axioms(G) entails all true
assertions about the game G.

This result is interesting for a number of reasons. First, the result establishes that
the situation calculus is a very general language for representing multi-agent interac-
tions. Second, it shows how to construct a sound and complete set of situation calculus
axioms for a given application domain. For example, Bart et al. [2] give an extended
construction of such a set of axioms for a version of the board game “Clue” (see also
section 7). Third, it provides an agent designer with a general recipe for utilizing a
game-theoretic model of a given type of interaction (e.g., Prisoner’s Dilemma, Battle
of the Sexes, Cournot Duopoly [17]) and describing the model in a logical formalism.
Fourth, it opens up the potential for applying solution and search algorithms from games
research to multi-agent interactions [2,13,28]. Finally, game theory is a major mathemat-
ical development of the 20th century, and we expect that many of the general concepts
of game theory will prove fruitful for research into intelligent agents. For example, we
introduce a standard topological structure associated with games known as the Baire
topology. The Baire topology determines the large class of continuous payoff function,
which can be defined in the situation calculus in a natural way.

An attractive feature of VM game theory is that it provides a single formalism for
representing both multi-agent interactions and single-agent planning problems. This is
because a single-agent interaction with an environment can be modelled as a 2-player
game in which one of the players – the environment – is indifferent about the outcome of
the interaction. Thus our representation result includes planning problems as a special
case.

After establishing the expressive power of the situation calculus for representing
the structure of a multi-agent interaction, we consider agents’ reasoning about optimal
actions in the multi-agent system. We show how to define the game-theoretic notion of
a strategy, or policy, and introduce predicates describing which strategies are optimal in
a given environment and which strategy combinations form Nash equilibria.

The paper is organized as follows. We begin with the definition of a sequential
VM game. The following section introduces the situation calculus. Then we specify
the set of axioms Axioms(G) for a given game G, in two stages. First, we axiomatize
the structure of the agents’ interaction – roughly, what agents can do and what they
know when. Second, we show how to define continuous utility functions in the situation
calculus. For illustration we outline an extended application from previous work in
which we used the situation calculus to represent a variant of the board game “Clue”.
(Some readers may want to look over the discussion of Clue in section 7 before the more
abstract results in the main sections.) Finally, we define predicates for optimal strategies
and Nash equilibria in a game tree.

2. Sequential games

To represent a sequential multi-agent interaction, we need to capture three main
aspects:



O. Schulte, J. Delgrande / Representing von Neumann–Morgenstern games 75

1. Time: The fact that agents act at different times.

2. Knowledge: An agent has varying knowledge at different points in time.

3. Capacity: An agent can act in different ways at different times.

Game trees combine these three aspects in one mathematical structure. First, a
tree models different moments in time, as in the branching-time semantics for temporal
logic [27]. Second, an epistemic accessibility relation over nodes in the tree captures
which situations an agent can distinguish, as in the Kripke semantics for epistemic modal
logic [10]. Game theorists take epistemic accessibility to be a partition, corresponding
to the modal logic S5. Third, for each node in the game tree there is a set of associated
actions that represents which actions are possible at a given stage of the game. The
formal details are as follows.

2.1. Notation and definitions

Sequential games are also known as extensive form games or game trees. The
following definition is due to von Neumann, Morgenstern, and Kuhn; we adopt the for-
mulation of [17, chapter 11.1]. We begin with some notation for sequences. An infinite
sequence is a function from the positive natural numbers to some set; we denote infi-
nite sequences by the letter h and variants such as h′ or hi . A finite sequence of length
n is a function with domain 1, . . . , n, denoted by the letter s and variants. Almost all
the sequences we consider in this paper are sequences of actions. We denote actions
throughout by the letter a and variants. We write s = a1, . . . , an to indicate the finite se-
quence whose ith member is ai , and write h = a1, . . . , an, . . . for infinite sequences. If
s = a1, . . . , an is a finite sequence of n actions, the concatenation s ∗ a = a1, . . . , an, a

yields a finite sequence of length n + 1. We follow the practice of set theory and write
s′ ⊆ s to indicate that sequence s′ is a prefix of s (s′ ⊂ s for proper prefixes); likewise,
we write s ⊂ h to indicate that s is a finite initial segment of the infinite sequence h.
The term “sequence” without qualification applies both to finite and infinite sequences,
in which case we use the letter σ and variants.

Now we are ready to define a sequential game.

Definition 2.1 (von Neumann, Morgenstern, Kuhn). A sequential game G is a tuple
〈N,H, player, fc, {Ii}, {ui}〉 whose components are as follows.

1. A finite set N (the set of players).

2. A set H of sequences satisfying the following three properties.

(a) The empty sequence ∅ is a member of H .

(b) If σ is in H , then every initial segment of σ is in H .

(c) If h is an infinite sequence such that every finite initial segment of h is in H , then
h is in H .
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Each member of H is a history; each element of a history is an action taken by a
player. A history σ is terminal if there is no history s ∈ H such that σ ⊂ s. (Thus all
infinite histories are terminal.) The set of terminal histories is denoted by Z. The set
of actions available at a finite history s is denoted by A(s) = {a: s∗a ∈ H }.

3. A function player that assigns to each nonterminal history a member of N ∪ {c}.
The function player determines which player takes an action after the history s. If
player(s) = c, then it is “nature’s” turn to make a chance move.

4. A function fc that assigns to every history s for which player(s) = c a probability
measure fc(·|s) on A(s). Each probability measure is independent of every other
such measure. (Thus fc(a|s) is the probability that “nature” chooses action a after
the history s.)

5. For each player i ∈ N an information partition Ii defined on {s ∈ H : player(s) = i}.
An element Ii of Ii is called an information set of Player i. We require that if s, s′
are members of the same information set Ii , then A(s) = A(s′).

6. For each player i ∈ N a payoff function ui : Z → R that assigns a real number to each
terminal history.

An information set corresponds to what in many AI formalisms is called a “state”,
because an information set defines an agent’s complete knowledge at the point of making
a decision. The idea is that at a decision point, an agent has complete knowledge, or
“perfect information” (see section 8.1), if the agent knows the entire history of the game
up to the decision point. If the agent has incomplete knowledge, there are different ways
the game may have developed for all she knows, so her knowledge at the decision point
corresponds to a set of “indistinguishable” possible game histories.

2.2. An example

To illustrate how interactions between agents may be represented as game trees, we
adopt an abridged version of a scenario from [3]. We return to this example throughout
the paper. Consider servers on the internet. Each server is connected to several sources
of information and several users, as well as other servers. There is a cost to receiving and
transmitting messages for the servers, which they recover by charging their users. We
have two servers Srv1 and Srv2, and two users – journalists – U1 and U2. Both servers are
connected to each other and to user U1; server Srv2 also serves user U2. There are two
types of news items that interest the users: politics and showbiz. The various costs and
charges for transmissions add up to payoffs for the servers, depending on what message
gets sent where. For example, it costs Srv1 4 cents to send a message to Srv2, and it costs
Srv2 2 cents to send a message to U2. If U2 receives a showbiz message from Srv2 via
Srv1, he pays Srv1 and Srv2 each 6 cents. So in that case the overall payoff to Srv1 is
−4 + 6 = 2, and the overall payoff to Srv2 is −2 + 6 = 4. Bicchieri et al. describe the
charges in detail; we summarize them in figure 1.
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Figure 1. A game-theoretic model of the interaction between two internet servers, Srv1 and Srv2, with two
users.

Figure 1 represents the structure of the interaction possibilities between the servers
and the users. We begin with the environment delivering a type of item to the first server.
If the chance p of each type of item arising is known among the players, the root node
r corresponding to the empty history ∅ would be a chance node (i.e., player(∅) = c)
with associated probability p. If the probability p is unknown, we would assign the root
node to an “environment” player (i.e., player(∅) = env) who is indifferent among all
outcomes (and whose payoff function hence need not be listed). Thus game theory offers
two ways of representing uncertainty about the environment, depending on whether the
probabilities governing the environment are common knowledge among the players or
not.

Every node in the tree represents a history in the game. The nodes belonging to
Srv1 are {a, b}, and its information partition is I1 = {{a}, {b}}. Thus Srv1 makes a de-
cision knowing what “action” nature took. Bicchieri et al. assume that the messages
sent from Srv1 to Srv2 are encoded so that Srv2 does not know which type of mes-
sage it receives. Therefore the information partition of Srv2 is I2 = {{c, d}}: Srv2 is
uncertain about what actions N took before the decision time for Srv1. If Srv2 knew
what type of news item it receives, its information partition would be I ′

2 = {{c}, {d}}.
The payoff functions are as illustrated, with server Srv1’s payoffs shown on top. Thus
u1(∅ ∗ Showbiz∗send Srv2∗send U2) = 2, and u2(∅∗Showbiz∗send Srv2∗send U2) = 4.

The game tree of figure 1 admits different interpretations from the one discussed so
far. For example, it also represents a situation in which the messages are not encoded, but
in which server Srv2 has to make a decision independent of what news item Srv1 sends it.
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In the latter case it would be more natural to reorder the game tree so that Srv2 chooses
first, then the environment, finally Srv1. But the insight from game theory here is that
as far as rational choice is concerned, we do not need to represent the “absolute” time
at which the players move, but what each player knows when she makes a move. From
this point of view, there is no important difference between a setting in which Player 1
chooses first, and then Player 2 chooses without knowing 1’s choice, as in figure 1, and
the setting in which both players choose simultaneously (cf. [17, p. 102]). Thus we can
model simultaneous action as equivalent to a scenario in which one player moves first,
and the other player does not know that player’s choice.

3. The situation calculus with infinite histories

Our presentation of the situation calculus follows [14]. To the foundational situ-
ation calculus axioms, we add elements for referring to infinite sequences of actions.
Our axiomatization result in section 4 employs the epistemic extension of the situation
calculus. We use mnemonic symbols for parts of the situation calculus according to their
intended meanings. It is important to keep in mind that these are merely symbols in a
formal language; it is the task of our axiomatization to ensure that the symbols carry
their intended meaning. To emphasize the distinction between syntactic elements and
their interpretations, we use boldface type to indicate a symbol in a formal language (al-
though conversely, we do not use boldface for all elements of the situation calculus). For
example, s denotes a part of the language of the situation calculus, whereas s refers to a
mathematical object, typically the intended denotation of s. Capitalization is relatively
arbitrary: constants are generally capitalized, while other terms and predicate symbols
(with notable exceptions K and Know) are not.

The situation calculus with infinite histories is a multi-sortal language that con-
tains, in addition to the usual connectives and quantifiers of first-order logic, at least the
following elements.

1. A sort action for actions, with variables a, a′ and constants ai .

2. A sort situation for situations, with variables s, s′.

3. A sort infhist for infinite sequences of actions, with variables h, h′ etc.

4. A sort objects for everything else.

5. A function do : action × situation → situation.

6. A distinguished constant S0 ∈ situation.

7. A binary relation �: situation × (situation ∪ infhist).
We use s � s′ as a shorthand for s � s′ ∧ ¬(s = s′), and similarly for s � h. The
intended interpretation is that � denotes the relation “extends” between sequences,
that is, � denotes ⊆ as applied to sequences viewed as sets of ordered pairs (cf.
section 2).
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8. A binary relation poss: action × situation, where poss(a, s) is intended to indicate
that action a is possible in situation s.

9. A predicate possible(s) and possible(h).

We adopt the standard axioms for situations (see [14]). Here and elsewhere in the
paper, all free variables are understood to be universally quantified.

¬s � S0, (1)

s � do(a, s′) ≡ s � s′, (2)

do(a, s) = do(a′, s′) → (a = a′) ∧ (s = s′). (3)

Axiom (3) ensures that every situation has a unique name, basically given by a sequence
of actions (cf. section 4). We adopt the second-order induction axiom on situations.

∀P.
[
P(S0) ∧ ∀a, s.P(s) → P

(
do(a, s)

)] → ∀s.P(s). (4)

A consequence of axiom (4) is that every situation corresponds to a finite sequence of
actions (cf. [25, section 3]).

Next we specify axioms that characterize infinite histories.

S0� h, (5)

s� h → ∃s′.s � s′ ∧ s′ � h, (6)

(s′� s ∧ s � h) → s′ � h, (7)

h = h′ ≡ (∀s.s � h ≡ s � h′), (8)

possible(h) ≡ ∀s � h.possible(s). (9)

The final two axiom says that the possible predicate defines which action sequences are
possible: an action sequence is possible if no impossible action is ever taken along it.

possible(S0), (10)

possible
(
do(a, s)

) ≡ possible(s) ∧ poss(a, s). (11)

4. Representing game forms in the situation calculus

The situation calculus is a natural language for describing games because its central
notion is the same as that of VM sequential games: a sequence of actions. We establish
a precise sense in which the situation calculus is appropriate for formalizing VM games:
every VM game G with countably many actions and continuous payoff functions has a
categorical axiomatization Axioms(G) in the situation calculus – an axiomatization that
describes all and only features of the game in question.

Let 〈N,H, player, fc, {Ii}, {ui}〉 be a sequential game G. We use F(G) to denote
the tuple 〈N,H, player, fc, {Ii}〉, called the game form of G [17, p. 201]. The game
form specifies what actions are possible at various stages of a game, but it does not tell
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us how the players evaluate the outcomes. In this section, we construct a categorical ax-
iomatization of a game form F with countably many actions A(F). Section 6 considers
axiomatizations of payoff functions.

4.1. A categorical axiomatization of a von Neumann–Morgenstern game form

Our construction proceeds as follows. We begin with a game-independent axiom
that captures the closure requirement of clause 2(c) of definition 2.1. Then we introduce
constants for players, actions, and situations, and assign each action constant ai a deno-
tation �ai�, which defines a denotation for situation constants. Then we specify a set of
axioms for the other aspects of the game in terms of the denotations of the action and
situation constants.

4.1.1. Completeness
Clause 2(c) of definition 2.1 requires that in a game tree, if every finite initial seg-

ment s of an infinite history h is one of the finite histories in the game tree, then h is
an infinite history in the game tree. This clause rules out, for example, a situation in
which for some action a and every n, the sequence an is part of the game tree, but the
infinite sequence aω is not. In such a situation we might think of the infinite sequence
aω as “missing” from the game tree, and view clause 2(c) as ruling out this kind of in-
completeness. (In topological terms, clause 2(c) requires that the Baire topology renders
a game tree a complete metric space; see section 6 and references there.) This notion of
completeness is topological and different from the concept of completeness of a logical
system. From a logical point of view, topological completeness is complex because it
requires quantification over sequences of situations, which we represent as certain kinds
of properties of situations as follows.

Let basis(P) stand for the formula P(S0); let inf (P) stand for ∀s.P(s) → ∃s′.s �
s′ ∧ P(s′); let closed(P) stand for ∀s, s′.(s′ � s ∧ P(s)) → P(s′); and finally let order(P)

stand for ∀s, s′.[(P(s) ∧ P(s′)) → (s � s′ ∨ s′� s)]. We use Seq(P) as abbreviation for
basis(P) ∧ inf (P) ∧ closed(P) ∧ order(P). The completeness axiom corresponding to
clause 2(c) is then the following:

∀P.Seq(P) → (∃h∀s.[P(s) ≡ s � h]). (12)

Axiom (12) says that for any infinite set P of finite action sequences (situations)
that is “sequence-like”, we have an infinite sequence h in the domain of the variable h
that has exactly the sequences in P as finite initial segments. Since the domain of h is
intended to be the set of infinite action sequences (see below in this section), this means
that all infinite action sequences appear in the intended model. Together with axiom (9),
this ensures that an infinite action sequence h whose initial segments are part of the game
tree (i.e., the initial segments are possible situations in the intended model) appears in
the intended model as a possible infinite game history.

Axiom (12) is independent of any particular game structure. Nonetheless we list
it as an axiom for game trees rather than as a general axiom characterizing infinite se-
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quences because the completeness requirement is part of the notion of a game tree, rather
than part of the notion of an infinite sequence. As we saw in section 3, the properties
of infinite sequences can be defined in first-order logic, whereas the completeness re-
quirement in the definition of a game tree requires second-order quantification. One
of our main motivations for treating infinite histories as (first-order) objects rather than
sequence-like sets or predicates of situations is that much of the reasoning about infi-
nite histories can be carried out in first-order logic, as long as it does not involve the
topological completeness of the space of infinite histories.

4.1.2. Players
We introduce a set of constants to denote players, such as {c, 1, 2, . . . , n}, and one

variable p ranging over a new sort players. In the server game with chance moves, we
add constants c, Srv1, Srv2. We introduce unique names axioms of the general form
i �= j, i �= c for i �= j . For the server game, we add c �= Srv1, c �= Srv2, S1 �= Srv2. We
also add a domain closure axiom ∀p.p = c ∨ p = 1 ∨ · · · ∨ p = n. In the server game,
the domain closure axiom is ∀p.p = c ∨ p = Srv1 ∨ p = Srv2.

4.1.3. Actions
We add a set of constants for actions. If there are finitely many actions a1, . . . , an,

we proceed as with the players, adding finitely many constants, unique names axioms
and a domain closure axiom. For example, in the server game, we may introduce names
ToU1, ToU2, ToSrv2, SendShow, SendPoli for each action and then include axioms
such as ToU1 �= ToU2, SendShow �= SendPoli, etc. However, with infinitely many
actions we cannot formulate a finite domain closure axiom. We propose a different so-
lution for this case. Just as the induction axiom (4) for situations serves as a domain
closure axiom for situations, we use a second-order induction axiom for actions to en-
sure that there are at most countably many actions in any model of our axioms. The
formal axioms are as follows.

We introduce a successor operation + : action → action that takes an action a
to the “next” action a+. We write a(n) as a shorthand for a0

+···+ where the successor
operation is applied n times to a distinguished constant a0 (thus a(0) = a0). The constants
a(n) may serve as names for actions. As in the case of finitely many actions, we introduce
unique names axioms of the form a(i) �= a(j) where i �= j . We adopt the induction axiom

∀P.
[
P(a0) ∧ ∀a.P(a) → P(a+)

] → ∀a.P(a). (13)

We assume familiarity with the notion of an interpretation or model (see for exam-
ple [4, chapter 9]).

Lemma 1. Let M = 〈actions,+, ��〉 be a model of axiom (13) and the unique names
axioms. Then for every a ∈ actions, there is one and only one constant a(n) such that
�a(n)� = a.
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Proof. (Outline). The unique names axioms ensure that for every action a, there are
no two constants a(n), a(n′) such that �a(n)� = �a(n′)� = a. To establish that there is
one such constant, use an inductive proof on the property of being named by a constant;
more precisely, use the induction axiom to show that for every action a ∈ actions, there
is some constant a(n) such that �a(n)� = a. �

Now choose a function �� that is a 1–1 and total assignment of actions in the game
form A(F) to action constants. For example, we may choose �SendShow� = Showbiz,
�ToSrv2� = send Srv2, �ToU1� = send U1, etc.

4.1.4. Situations
Let d̂o(a1, . . . , an) denote the result of repeatedly applying the do constructor to

the actions a1, . . . , an from the initial situation. Thus d̂o(a1, . . . , an) is shorthand for
do(a1, do(a2, . . . , do(an)))) . . .). We stipulate that d̂o(∅) = S0, so that if n = 0
then d̂o(a1, . . . , an) = S0. The constant expressions of the form d̂o(a1, . . . , an)

serve as our names for situations. We extend the denotation �ai� for actions to sit-
uations in the obvious way: �d̂o(a1, . . . , an)� = �a1� ∗ · · · ∗ �an�. For example,
�d̂o(SendShow, ToSrv2)� = Showbiz ∗ send Srv2. Note that �S0� = ∅.

4.1.5. Knowledge
To represent knowledge, we follow [14, section 7] and employ a binary rela-

tion K, where K(s, s′) is read as “situation s is an epistemic alternative to situa-
tion s′”. The relation K is intended to hold between two situation constants s, s′ just in
case s and s′ denote situations in the same information set. Thus, in the server game,
K(d̂o(SendShow, ToS2), d̂o(SendPoli, ToS2)) holds. As in [14, section 7], we use
Knows(φ, σ ) (informally, the agent knows that φ is true in situation σ ) to abbreviate
∀s, K(s, σ ) → φ[s], where φ has no situation arguments, and φ[s] extends each predi-
cate and term symbol with the situation argument s.

4.1.6. Triviality axioms
We add axioms to ensure that all functions of situations take on a “don’t

care” value ⊥ for impossible situations. For example, we would stipulate that
player(d̂o(SendShow, ToU1, ToU2)) = ⊥ holds.

Table 1 specifies the set of axioms Axioms(F ) for a VM game form F . For sim-
plicity, we assume that there are no chance moves in F (see below). We write I (s) to
denote the information set to which a finite game history s belongs (in F ). To reduce
notational clutter, the table denotes situation constants by symbols such as si , with the
understanding that si stands for some constant term of the form d̂o(a1, . . . , an).

4.2. Main result: The axiomatization of a given game form is categorical

Let F = 〈N,H, player, {Ii}〉 be a game form whose set of actions is A. In set-
theoretic notation, the set of all infinite sequences of actions is Aω, and we write A<ω



O. Schulte, J. Delgrande / Representing von Neumann–Morgenstern games 83

Table 1
The set Axioms(F) associated with a game form
F = 〈N,H, player, {Ii}〉 and a denotation func-
tion ��. Terms such as ai and sj stand for action

and situation constants, respectively.

Axiom set Constraints

i �= j i �= j

∀p.p = 1 ∨ · · · ∨ p = n
Actions: Unique Names See text
Domain Closure
poss(ai, sj) �ai� ∈ A(�sj �)
¬poss(ai, sj) �ai� /∈ A(�sj �)
player(sj ) = i player(�sj �) = �i�
player(sj ) = ⊥ �sj � /∈ H

K(si , sj ) I (�si�) = I (�sj �)
¬K(si , sj ) I (�si�) �= I (�sj �)

for the set of all finite action sequences. We say that the tree-like structure for F is the
tuple I (F ) = 〈N,A,A<ω,Aω,⊥, poss, possible,⊆, ∗, player′,K〉, where each object
interprets the obvious symbol (e.g., Aω is the sort for h, and ∗ interprets do), and

1. possible(s) ⇔ s ∈ H ,

2. K(s, s′) ⇔ I (s) = I (s′),

3. player′(s) = ⊥ if ¬possible(s); otherwise player′(s) = player(s).

The intended interpretation for the set of axioms Axioms(F ), defined via the deno-
tation function �� as described above, is the pair I = 〈I (F ), ��〉. We note that if two
interpretations are isomorphic, then the same sentences are true in both interpretations
[4, p. 191].

Theorem 4.1. Let F = 〈N,H, player, {Ii}〉 be a game form. Suppose that �� gives a
1–1 and onto mapping between action constants and Actions(F ).

1. The intended interpretation of Axioms(F ), defined via the denotation function ��, is
a model of Axioms(F ) and axioms (1)–(13).

2. All models of Axioms(F ) and axioms (1)–(13) are isomorphic.

Proof. (Outline.) Part 1. It is fairly straightforward to verify that the intended interpre-
tation for F – basically, the game tree – satisfies the general axioms and Axioms(F ).

For Part 2, the argument follows our construction as follows. Let M = 〈M, ��M〉
be a model of Axioms(F ) and axioms (1)–(13). We can show that M is isomorphic to
I = 〈I (F ), ��〉:
1. The domain closure and unique names axioms for the sorts player and action guar-

antee that there is a 1–1 mapping between A and N and the respective sorts player
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and action in M. More precisely, let nameM(p) be the constant i of sort player such
that �i�M = p, and define similarly nameM(a) for action a. Then the function f

defined by f (p) = �nameM(p)� takes an object of sort player in M to an object of
sort player in I , and f is a 1–1 onto mapping. Similarly for action objects.

2. Given that every action in M has a unique action constant naming it, it follows from
axioms (1)–(4) that every situation in M has a unique situation constant naming it
(as before, we may write nameM(s)), which implies that there is a 1–1 onto mapping
between the situations in M and A<ω.

3. Axioms (5)–(8) ensure that every object in the sort infhist in M corresponds to an
infinite sequence of (nested) situations; axiom (12) ensures that for every such nested
infinite sequence of situations, there is some object h in infhist such that h extends
each situation in the sequence. Given the result of step 2, it follows that there is a 1–1
onto mapping between the sort infhist in M and Aω.

4. Since possM(a, s) holds in M iff poss(nameM(a), nameM(s)) is in Axioms(F ),
which is true just in case possI(�nameM(a)�, �nameM(s)�) holds in I , this map
constitutes a 1–1 onto mapping between the extensions of possM and possI . To-
gether with axioms (9)–(11), this ensures a 1–1 mapping between the extensions of
the possible predicate in each model.

5. We also have that playerM(s) = i iff player(nameM(s)) = nameM(i) is in
Axioms(F ), which holds just in case playerI(nameI(s)) = nameI(i), so the graphs
of the player function are isomorphic in each model.

6. By the same argument, the extensions of the K predicate are isomorphic in each
model.

So any model M of the axioms Axioms(F ) and axioms (1)–(13) is isomorphic to
the intended model I , which shows that all models of these axioms are isomorphic. �

It follows from theorem 4.1 that for each player i, the relation K from our ax-
iomatization is an equivalence relation on the situations at which i moves, because K
represents the information partition of Player i.

In order to represent chance moves, we need axioms characterizing real numbers;
we do not want to go into axiomatic real number theory here, since that topic is well
known and the issues are similar to those that we take up in section 6. A brief outline:
start with (second-order) axioms characterizing the real numbers. There are at most
countably many pairs (a, s) such that “nature” chooses action a in situation s with some
probability fc(a|s). Introduce a constant for each of these probabilities, and axioms
to ensure that the constant denotes the correct real numbers. Add axioms of the form
fc(a|s) = p whenever fc(�a�|�s�) = �p�, as well as appropriate triviality axioms for fc.
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5. Discussion and related work

We may evaluate a representation formalism such as the situation calculus with re-
spect to two dimensions: expressibility – what sort of domains can the formalism model?
– and tractability – how difficult is it to carry out reasoning in the formal language? Typ-
ically, there is a trade-off between these two desiderata. Our results so far indicate the
expressive power of the situation calculus. Because situation calculus axioms can rep-
resent so many and such varied models of agent interactions, we cannot guarantee in
general that the axiomatization for a given game tree is decidable, let alone tractable.
An important research topic is what classes of games have tractable representations in
the situation calculus (see section 9 below). To quote David Poole, “by having a rich
representation we can discuss the complexity of various restrictions and build approxi-
mation algorithms” [19, section 1.2].

To illustrate this point, we note that in extant applications of the situation calculus,
the poss predicate typically has an inductive definition in terms of what actions are pos-
sible in a situation given what fluents hold in the situation, and then what fluents obtain
as a consequence of the actions taken. (These inductive definitions are often called “state
successor axioms”. We give examples in section 7.) By contrast, game theory deals with
a set of histories, without any assumptions about how that set may be defined. The ab-
sence of state successor axioms for fluents in our axiomatization reflects the generality of
VM games for representing many different types of environment. For example, we may
distinguish between static and dynamic environments [22, chapter 2.4]. An environment
is dynamic for an agent “if the environment can change while an agent is deliberating”.
In a dynamic environment, a frame axiom that says that a fluent will remain the same un-
less an agent acts to change it may well be inappropriate. For example, if an agent senses
that a traffic light is green at time t , it should not assume that the light will be green at
time t + 1, even if it takes no actions affecting the light. Hence a VM model of this
and other dynamic environments cannot employ a simple frame axiom (cf. [20]). Thus
restricting axiomatizations to frame axioms leads to less generality than game theory
offers (but to more tractability as well).

We have followed [14] in introducing a binary relation K(s, s′) between situations.
One difference between our treatment and that of Levesque et al. is that they allow
uncertainty about the initial situation; they introduce a predicate K0(s) whose intended
interpretation is that the situation s may be the initial one, for all the agent knows. It is
possible to extend game-theoretic models to contain a set of game trees – often called
a “game forest” – rather than a single tree. A game forest contains several different
possible initial situations, one for each game tree, just as the approach of [14] allows
different possible initial situations. Game theorists use game forests to model games of
incomplete information in which there is some uncertainty among the players as to the
structure of their interaction [17].

Another difference is that Levesque et al. use the binary relation K to represent
the knowledge of a single agent. Mathematically the single relation K suffices for our
axiomatization, even in the multi-agent setting, because the situations are partitioned
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according to which player moves at them. In effect, the relation K summarizes a number
of relations Ki defined on the situations at which Player i moves. To see this, define
Ki(s, s′) ⇔ (player(s) = player(s′) = i) ∧ K(s, s′). Then Ki represents a partition of
Player i’s nodes. From the point of view of the epistemic situation calculus, the difficulty
with this is that Player i’s knowledge is defined by the Ki relation (and hence by the K
relation) only at situations at which it is Player i’s turn to move. Thus if player(s) = i,
what another Player j knows at s is undefined and so we cannot directly represent, for
example, what i knows about j ’s knowledge at s. To represent at each situation what
each player knows at that situation we would require a relation Ki for all players that
is a partition of all situations. In terms of the game tree, we would require that the
information partition Ii of Player i constitutes a partition of all nodes in the game tree,
rather than just those at which Player i moves. The general point is that VM game
trees leave implicit the representation of what a Player j knows when it is not her turn
to move. This may not pose a difficulty for humans using the apparatus of VM game
theory, but if we want to explicitly represent the players’ knowledge at any situation, we
require additional structure, such as information partitions comprising all nodes in the
game tree (see section 7 for an illustration).

Other logical formalisms have been developed to represent classes of games. For
example, Parikh’s game logic uses dynamic logic to represent zero-sum games of perfect
information [18] (see also [9]). Poole’s independent choice logic is a formalism for
simultaneous move, or matrix, games [19, section 3.3], and the dynamic independent
choice logic has resources to describe the components of a game tree [19, section 5.5].
The construction in this paper is different because it aims for almost complete generality
with respect to the class of representable game trees, and because it focuses on the notion
of a sequence of actions central to both game theory and the situation calculus.

6. Defining continuous payoff functions in the situation calculus

It remains to define the payoff functions ui : Z → R that assign a payoff for player i

to each terminal history. To simplify, we assume in this section that all terminal histories
are infinite. This is no loss of generality because we can define the payoff from a finite
history s as the payoff assigned to all infinite histories extending s, where all histories
extending s share the same payoff (see section 8.3). There are in general uncountably
many infinite histories, so we cannot introduce a name for each of them in a countable
language. Moreover, payoff functions in infinite games can be of arbitrary complex-
ity [15], so we cannot expect all such functions to have a definition in the situation
calculus. In economic applications, continuous payoff functions typically suffice to rep-
resent agents’ preferences. Our next step is to show that all continuous payoff functions
have a definition in the situation calculus provided that we extend the situation calculus
with constants for rational numbers. Before we formally define continuous functions, let
us consider two examples to motivate the definition.
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Example 1. In a common setting, familiar from Markov decision processes, an agent re-
ceives a “reward” at each situation [24, chapter 3]. Assuming that the value of the reward
can be measured as a real number, an ongoing interaction between an agent and its envi-
ronment gives rise to an infinite sequence of rewards r1, . . . , rn, . . . . A payoff function u

may measure the value of the sequence of rewards as a real number. A common measure
is the discounted sum: We use a discount factor δ with 0 < δ < 1, and define the payoff
to the agent from an infinite sequence of rewards by u(r1, . . . , rn, . . .) = ∑∞

i=1 δiri .
For instance, suppose that the agent’s task is to ensure the truth of a certain fluent,
for example that ison(light, s) holds. We may then define the reward fluent function
reward(s) = 1 ≡ ison(light, s) and reward(s) = 0 ≡ ison(light, s) so that the agent re-
ceives a reward of 1 if the light is on, and a reward of 0 otherwise. Then for an infinite
history h we have an infinite sequence of rewards r1, . . . , rn, . . . consisting of 0’s and
1’s. If the agent manages to keep the light on all the time, reward(s) = 1 will be true in
all situations, and its total discounted payoff is

∑∞
i=1 δi × 1 = δ/(1 − δ).

Example 2. Suppose that the agent’s job is to ensure that a certain condition never oc-
curs. Imagine that there is an action dropContainer(s) and the agent’s goal is to ensure
that it never takes this action. We may represent this task specification with the following
payoff function: u(h) = 0 if there is a situation s ⊂ h such that do(dropContainer, s)
holds, and u(h) = 1 otherwise. It is impossible to define this payoff function as a
discounted sum of bounded rewards.

The special character of the 0-1 payoff function u stems from the fact that if
dropContainer is true at situation s, the payoff function “jumps” from a possible value
of 1 to a determinate value of 0, no matter how many times beforehand the agent man-
aged to avoid the action. Intuitively, the payoff to the agent is not built up incrementally
from situation to situation. Using concepts from topology, we can formalize this intu-
itive difference with the notion of a continuous payoff function. To that end, we shall
introduce a number of standard topological notions. Our use of topology will be self-
contained but terse; a text that covers the definitions we use is [21].

Let A,B be two topological spaces. A mapping f :A → B is continuous if for
every open set Y ⊆ B, its preimage f −1(Y ) is an open subset of A. Thus to define the
set of continuous payoff functions, we need to introduce a system of open sets on Z, the
set of infinite histories, and R, the set of real numbers. We shall employ the standard
topology on R, denoted by R.

The Baire topology is a standard topology for a space that consists of infinite se-
quences, such as the set of infinite game histories. It is important in analysis, game
theory [15], other areas of mathematics, and increasingly in computer science [7,8]. Let
A be a set of actions. Let [s] = {h: s ⊂ h} be the set of infinite action sequences that
extend s. The basic open sets are the sets of the form [s] for each finite sequence (situ-
ation) s. An open set is a union of basic open sets, including again the empty set ∅. We
denote the resulting topological space by B(A).

For each rational q and natural number n > 0, define an open interval O(q, n)

centered at q by O(q, n) = {x: |x − q| < 1/n}. Let Eu(q, n) = u−1(O(q, n)). Since
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u is continuous, each set Eu(q, n) is an open set in the Baire space and hence a union of
situations. So the function u induces a characteristic relation intervalu(s, q, n) that holds
just in case [s] ⊆ Eu(q, n). In other words, intervalu(s, q, n) holds iff for all histories
h extending s the utility u(h) is within distance 1/n of the rational q. In the example
with the discontinuous payoff function above, intervalu(s, 1, n) does not hold for any
situation s for n > 1. For given any situation s at which the disaster has not yet occurred,
there is a history h ⊃ s with the disaster occurring, such that u(h) = 0 < |1 − 1/n|.
Intuitively, with a continuous payoff function u an initial situation s determines the value
u(h) for any history h extending s up to a certain “confidence interval” that bounds
the possible values of histories extending s. As we move further into the history h,
with longer initial segments s of h, the “confidence intervals” associated with s become
centered around the value u(h).1

The following theorem exploits the fact that the collection of these intervals as-
sociated with situations uniquely determines a payoff function. Assume that constants
for situations, natural numbers and rationals have been defined along with a relation
intervalu such that intervalu(s, q, n) is true just in case intervalu(�s�, �q�, �n�) holds.

Theorem 6.1. Let A be a set of actions, and let u :B(A) → R be a continuous function.
Let payoff be the axiom ∀h, n.∃s � h.intervalu(s, u(h), n). Then

1. u satisfies payoff, and

2. if u′ :B(A) → R satisfies payoff, then u′ = u.

Proof. For part 1, let a history h and a number n be given. Clearly u(h) ∈ O(u(h), n),
so h ∈ Eu(u(h), n) = u−1(O(q, n)). Since Eu(u(h), n) is an open set, there is a sit-
uation s ⊂ h such that [s] ⊆ Eu(u(h), n). Hence intervalu(s, u(h), n) holds and s

witnesses the claim.
For part 2, suppose that u′ satisfies the axiom payoff in a model, such that for all

histories h, numbers n, there is a situation s ⊂ h satisfying intervalu(s, u′(h), n). We
show that for all histories h, for every n, it is the case that |u(h) − u′(h)| < 1/n, which
implies that u(h) = u′(h). Let h, n be given and, by part 1, choose a situation s ⊂ h

satisfying intervalu(s, u′(h), n). By the definition of the relation intervalu, it follows that
h ∈ Eu(u

′(h), n) = u−1(O(u′(h), n)). So u(h) ∈ O(u′(h), n), which by the definition
of O(u′(h), n) implies that |u(h) − u′(h)| < 1/n. Since this holds for any history h and
number n, the claim that u(h) = u′(h) follows. �

We conclude this section with two remarks: First we observe that if a VM game G

has only a finite set of histories, any utility function u is continuous, so theorem 6.1

1 Another example of a discontinuous payoff function is average reward, sometimes used in place of the
discounted sum [24, chapter 6.7]. Given an infinite sequence of rewards r1, . . . , rn, . . . , the average
reward at time n is given by an = ∑n

i=1 ri/n. Then define u(r1, . . . , rn, . . .) = limn→∞ an provided
that this limit exists. For any finite time n, if all the rewards rn+1, . . . received after n differ from an by
more than ε, it will be the case that u(r1, . . . , rn) differs from an by more than ε. So average reward is
not a continuous payoff function in the Baire topology. (We owe this example to David Poole.)



O. Schulte, J. Delgrande / Representing von Neumann–Morgenstern games 89

guarantees that payoff functions for finite games are definable in the situation calculus.
Second our discussion assumed that the payoff function u is defined for any infinite ac-
tion sequence. In a game tree, it is defined only for possible action sequences. Impossi-
ble action sequences are easily accommodated by the axiom ¬possible(h) → u(h) = ⊥
using the “don’t care” constant ⊥, and restricting the axiom payoff so that it applies only
to action sequences h such that possible(h) holds.

7. An application: Axioms for a variant of “Clue”

Our results so far demonstrate that the situation calculus is an appropriate formal-
ism for representing game-theoretic structures; they show that for a large class of games,
the situation calculus can supply axioms characterizing the game structure exactly (cat-
egorically). This section outlines the representation of a fairly complex parlour game
to illustrate what such axiomatizations are like, and to give a sense of the usefulness of
the situation calculus in describing game structures. The discussion indicates how the
situation calculus can take advantages of invariances and localities present in an envi-
ronment to give a compact representation of the environmental dynamics. We show how
a state successor axiom can define memory assumptions like the game-theoretic notion
of perfect recall in a direct and elegant manner.

In previous work, we have studied a variant of the well-known board game “Clue”,
which we call MYST. For our present purposes, a brief informal outline of MYST suf-
fices; for more details we refer the reader to [2], [1]. In particular, we will not go into the
details here of defining formally the terms of our language for describing MYST. The
game MYST begins with a set of cards c1, . . . , cn. These cards are distributed among a
number of players 1, 2, . . . , k and a “mystery pile”. Each player can see her own cards,
but not those of the others, nor those in the mystery pile. The players’ goal is to guess the
contents of the mystery pile; the first person to make a correct guess wins. The players
gain information by taking turns querying each other. The queries are of the form “do
you hold one of the cards from C?”, where C is a set of cards. If the queried player
holds none of the cards in C, he answers “no”. Otherwise he shows one of the cards
from C to the player posing the query. In what follows, we discuss some aspects of the
axiomatization of MYST; a fuller discussion is [2], and [1] offers a full set of axioms.

Table 2 shows the fluents we discuss below together with their intended meaning.
A central fluent in our axiomatization is the card holding fluent holds(i, cx, s), read as
“Player i holds card x in situation s”. We write holds(0, cx, s) to denote that card x is in

Table 2
Three fluents used to axiomatize MYST.

Fluent Meaning

holds(i, cx, s) Player i holds card x

askPhase(s) A query may be posed
Know(i,φ, s) Player i knows that φ
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the mystery pile in situation s. In MYST, as in Clue, cards do not move around. This is
a static, invariant aspect of the game environment that the situation calculus can capture
concisely in the following successor state axiom:

holds(i, cx, s) ≡ holds
(
i, cx, do(a, s)

)
.

Another fact that remains invariant across situations, and that is crucial to reasoning
about MYST, is that every card is held by exactly one player or the mystery pile. We
may express this with two separate axioms.

Exclusiveness holds(i, cx, s) → ∀j �= i.¬holds(j, cx, s).
If Player i holds card cx, then no other Player j (or the mystery pile) holds cx. If the
mystery pile holds card cx, then cx is not held by any player.

Exhaustiveness
∨p

i=0 holds(i, cx, s).
Every card is held by at least one player (or the mystery pile).

It is straightforward to specify preconditions for actions in MYST. For example,
consider asking queries, one of the main actions in this game. We write asks(i, q) to
denote that Player i takes the action of asking query q. The fluent askPhase(s) expresses
that the situation s is in an “asking phase”, that is, no query has been posed yet. Then
the precondition for asking a query is given by

poss
(
asks(i, Q), s

) ≡ askPhase(s) ∧ player(s) = i.

We use Know(i,φ, s) to denote that Player i knows φ in situation s.2 Players gain
information by observing the results of queries. For example, if Player 1 shows card 3
to Player 2, then Player 1 comes to know that Player 2 holds card 3. Using a fluent
shows(j, i, cx), this effect is a consequence of the following knowledge axiom:

Know
(
i, holds(j, cx, s), do

(
shows(j, i, cx), s

))
.

Indeed, the fact that Player 1 holds card 3 becomes common knowledge between the
two players after Player 1 shows card 3 to Player 2. We use a common knowledge fluent
indexed by a set of players to express this principle. The same fluent allows us to capture
the fact that in MYST, after Player 1 shows card 3 to Player 2 in response to query q, it
becomes common knowledge among all players that Player 1 has some card matching
the query (for more details, see [2, section 3; 1]). This illustrates that the situation
calculus together with epistemic logic provides resources to capture some quite subtle
differential effects of actions on the knowledge and common knowledge of agents.

In our analysis of strategic reasoning in MYST, we assume that agents do not forget
facts once they come to know them. This is part of the game-theoretic notion of perfect

2 Know(i,φ, s) abbreviates ∀s.Ki(s′, s) → φ[s′]; see the discussion in section 4.
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recall.3 We may render this assumption about the memory of the players by the following
axiom for the knowledge fluent:

Know(i,φ, s) → Know
(
i,φ, do(a, s)

)

for a sentence φ. Note that this definition of perfect recall relies on the fact that an agent’s
knowledge is defined even when it is not her turn to move, whereas in the traditional
game tree, the agent’s knowledge is explicitly specified only when it is her turn to move
(cf. section 5). This is an example of how the situation calculus provides resources for
describing agent’s knowledge that go beyond those offered by VM game trees, which in
this case allow us to give a straightforward inductive definition of perfect recall.

8. Game-theoretic reasoning

After representing what agents know about their interaction in the axiomatization
of a game tree, the next step is to describe optimal strategies in the multi-agent system. In
this section, we show how to define in the situation calculus the most prominent solution
concept of game theory, namely Nash equilibrium, as well as an important refinement
of Nash equilibrium called subgame-perfect equilibrium. Though we do not go into the
details, the axioms we give below are such that adding them to a categorical axiomati-
zation of a game tree yields a categorical set of axioms, one that has only isomorphic
models.

8.1. Strategies and Nash equilibria

We begin with the concept of a strategy as defined by game theorists [17, chap-
ter 11.1]. (Strategies correspond to “policies” in the theory of Markov Decision
Processes; [24, chapter 3]). We introduce two new sorts, siti and strategyi . The
sort siti contains the situations belonging to Player i; in terms of our axiomatization,
player(s) = i for all situations s ∈ siti . The variables si , s′

i range over the sort siti .
A strategy for Player i is a function πi : siti → action; the sort strategyi contains the
strategies for Player i. In a 2-player game, the variables π1,π

′
1 range over strategies for

Player 1 and the variables π2,π
′
2 range over strategies for Player 2; in a general n-player

game we have variables of the form π i for each player i.
To reduce notational clutter, free variables should be read as universally quantified,

as before. Moreover, occurrences of a subscript i indicate an axiom schema in which
the constants 1..n referring to the players may take the place of i. For example, in a
2-player game, a statement of the form P(π i) → Q(π i) is equivalent to ∀π1.P(π1) →
Q(π1) ∧ ∀π2.P(π2) → Q(π2).

3 For a formal definition of perfect recall in game theory, see [17]. The game-theoretic definition requires
that an agent should not only remember facts, but also her actions. This can be represented in the epistemic
extension Le of the situation calculus by requiring that Ki(s, s′) does not hold whenever situations s, s′
differ with respect to an action by agent i.
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Not all functions πi : siti → action represent feasible strategies in a game tree.
First, a feasible strategy cannot prescribe moves that are impossible in a given situation.
Second, game theory assumes that an agent’s action depends on an agent’s knowledge; in
terms of the game tree, if a strategy π assigns action a to history s and history s′ is in the
same information set as s, then π also assigns action a to history s′ [17, chapter 11.1].
We introduce a predicate valid and stipulate the following axiom to ensure that valid
applies only to feasible strategies:

valid(π i) ≡ ∀si.
[(∃a.poss(a, si) → poss(π i(si), si)

)
∧ (∀s′

i.K(si, s′
i) → π i(si) = π i(s′

i)
)]

.

The first conjunct says that if a strategy π i assigns action π i(si) to situation si, then π i(si)

is possible. However, a qualification is necessary because at some situations no action
is possible (cf. section 4 – these are leaves, or situations that don’t correspond to any
nodes in the game tree). So a valid strategy has to prescribe possible actions only when
some possible action is available. The second conjunct captures the requirement that the
agent’s knowledge determines the agent’s choice: if two situations are indistinguishable
for the agent (i.e., if K(s, s′) holds), then the agent chooses the same action at both. As
David Poole puts it, “it [the robot] can only condition its action choices on what it senses
. . . and what it remembers” [20, section 2.8].

In what follows, we treat 2-player games; the generalization to n-player games
is obvious. We define the play sequence associated with a pair of strategies, one for
each player. To attain some useful generality, we consider the play sequence that re-
sults when two strategies are “started” in a particular situation s. Thus we introduce
another sort play : strategy1 × strategy2 × situation → infhist. The intended meaning
of play(π1,π2, s) = h is that starting in situation s, if strategy π1 and strategy π2

are executed, then the resulting sequence of actions is h. Axiomatically, the value of
play(π1,π2, s) is defined as follows.

(s′� s) → (
s′� play(π 1,π 2, s)

)
,(

do(a, s′) �� s
) → [(

do(a, s′) � play(π 1,π 2, s)
) ≡ [

s′ � play(π 1,π 2, s)

∧ (
player(s′)= 1 → π1(s′)= a

) ∧ (
player(s′)= 2 → π2(s′)= a

)]]
.

The first axiom says that s and any situation preceding s is part of the infinite action
sequence play(π1, π2, s); that is, play begins with the actions in the history s. The second
axiom asserts that if a situation s∗ follows a situation s′, then s∗ is part of play(π1, π2, s)

iff:

1. s′ is part of the play sequence, and

2. the action leading from s′ to s∗ is the one prescribed by π1 or by π2, depending on
which player moves at s′.

It is clear from the definition that for every situation s′, the two axioms determine
whether or not s′ ⊂ play(π1, π2, s). So because an infinite action sequence h is uniquely
determined by the set of situations that are initial segments of h (by axiom (8)), it follows
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that the two axioms given associate a unique action sequence play(π1, π2, s) to each
triple π1, π2, s.

Next we define the payoff to each player that results when two strategies are paired
in situation s, which is just their utility from the resulting action sequence:

Ui(π1,π2, s) = ui

(
play(π 1,π 2, s)

)
.

For the notion of Nash equilibrium we need the concept of a best reply.

bestReply1(π1,π2, s) ≡ ∀π ′
1.valid(π ′

1) → U1(π1,π 2, s) � U1(π
′
1,π2, s),

bestReply2(π1,π2, s) ≡ ∀π ′
2.valid(π ′

2) → U2(π1,π 2, s) � U2(π1,π
′
2, s).

A pair of strategies (π1, π2) forms a Nash equilibrium in a game overall just in
case each strategy is a best response to the other. The payoff from two strategies in the
overall game is just the result of starting in the initial situation S0. Thus we have

nash(π1,π 2) ≡ valid(π 1) ∧ valid(π 2)

∧ bestReply1(π1,π2, S0) ∧ bestReply2(π1,π2, S0).

Harrenstein et al. define formulas in propositional dynamic logic describing Nash equi-
libria [9]. Unlike our axiomatization, their work applies only in games of perfect in-
formation. In game-theoretic terms, a game tree T has perfect information if every
information set I is a singleton. In terms of our axiomatization of game trees using the
epistemic situation calculus, we may define a game tree T to have perfect information
iff ∀s, s′.K(s, s′) → s = s′ is true in the natural model associated with the game tree (cf.
section 4). Figure 3 shows a game tree with perfect information.

Harrenstein et al. consider an important special class of Nash equilibria known as
subgame perfect equilibria [23; 17, chapter 6.2]. Subgame perfect equilibria are those
strategy pairs (π1, π2) that are best replies to each other at every information set that is
a subgame. A finite history s is the root of a subgame of a game tree T just in case for
every information set I of T , either

1. all members of I are descendants of s, or

2. no members of I are descendants of s.

In a game of perfect information, every history s is the root of a subgame. We in-
troduce a predicate spNash that applies to pairs of strategies forming a subgame perfect
equilibrium in a game of perfect information.

spNash(π1,π2) ≡ valid(π 1) ∧ valid(π 2)

∧ [∀s.possible(s)

→ (
bestReply1(π 1,π 2, s) ∧ bestReply2(π 1,π 2, s)

)]
.

8.2. Example: The Prisoner’s Dilemma

As a simple example of the concepts defined so far, consider the well-known Pris-
oner’s Dilemma in which two persons are arrested for a crime. They are separated, and



94 O. Schulte, J. Delgrande / Representing von Neumann–Morgenstern games

Table 3
Payoffs for the Prisoner’s Dilemma.

Player 1/Player 2 Don’t confess Confess

Don’t confess −1, −1 −4, 0
Confess 0, −4 −3, −3

Figure 2. Sequential version of Prisoner’s Dilemma.

each told that if they both confess each will receive three years in prison. Further, if
neither confesses, each will be sentenced to one year in jail on a technicality. If one
confesses and the other does not, then the confessor will be set free, and the evidence
subsequently given will send the other to prison for four years. Table 3 summarizes these
payoffs.

Each agent can take one of two actions, Confess or dontConfess. Figure 2 gives
a game tree representing the game. Vertices are labelled by situation; thus for example
situation S3 is the situation arrived at following the action sequence do(dontConfess,
do(dontConfess, S0)).4 Player 1 is assumed to make the first “move”, followed by
Player 2. However, in a strategic game like the Prisoner’s Dilemma, the implicit as-
sumption is that neither player is aware of the other’s moves, or that the players move
simultaneously (cf. section 2). Hence for Player 2, situations S1 and S2 are indistinguish-
able, and so Player 2’s information partition is I2 = {{S1, S2}} and K(S1, S2) holds. The
strategies for Player 1 are:

π1
1 : S0 → dontConfess,

π2
1 : S0 → confess.

4 Recall that there is only one situation constant, S0. In the example, S4 should be taken as abbreviating
the term do(dontConfess, do(dontConfess, S0)) and not as a constant in the object language.
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There are four strategies for Player 2:

π1
2 : S1 → dontConfess

S2 → dontConfess

π2
2 : S1 → dontConfess

S2 → confess

π3
2 : S1 → confess

S2 → dontConfess

π4
2 : S1 → confess

S2 → confess.

We derive that π1
2 and π4

2 are the only valid strategies for Player 2. Further we can derive
that, for example,

play
(
π 1

1,π
1
2, S0

) = do
(
dontConfess, do(dontConfess, S0)

)
and

play
(
π 2

1,π
2
2, S0

) = do
(
dontConfess, do(confess, S0)

)
.

We also have that bestReply1(π
1
1,π

4
2, S0) and bestReply2(π

1
1,π

4
2, S0) are true, and

this along with valid(π 1
1) and valid(π 4

2) allows us to conclude nash(π1
1,π

4
2); that is

(confess ∗ confess) is a play sequence followed in a Nash equilibrium. It can be proven
that this is the only instance of nash.

8.3. Backward induction and minimax search

The classic backward induction procedure due to Zermelo is an algorithm for com-
puting optimal strategies in a finite game of perfect information [30]. Intuitively, back-
ward induction starts at the leaves of the tree and chooses an optimal action a at each
penultimate history h. Then backward induction replaces each history h by the leaf
h ∗ a, yielding a tree whose height is reduced by 1, and repeats the process. In zero-
sum games, backward induction is essentially the well-known minimax search algorithm
[22, chapter 5.2]. In a game with perfect information, the result of backward induction
coincides with the outcomes of subgame-perfect equilibria [17, proposition 99.2]. Thus
our definition of subgame perfect equilibrium implicitly defines the result of backward
induction. We now define backward induction more directly by recursively assigning a
value to situations for each player as well as “best moves”. We introduce a predicate
leaf that applies to situations representing leaves in the game tree. Two properties define
leaves:

1. no move is possible at a leaf, and

2. the leaf itself is a possible situation (cf. axiom (11)).

Thus:

leaf(s) ≡ possible(s) ∧ ∀a.¬poss(a, s).
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Next we employ a function valuei : situation → real ∪{⊥} that assigns a value for
Player i to situations. For a given situation s, the number valuei(s) is the payoff to
Player i that would result if both players follow backward induction starting in situa-
tion s. At a leaf s, the value of s for Player i is just the payoff at s. Inductively, if s is
not a leaf, valuei (s) is the value of s to Player i that results when some optimal action
a is executed at s, that is valuei (s) = valuei(do(a, s)) where a is a move that maxi-
mizes the payoff for the player moving in situation s. In general games with imperfect
information, there may not be a maximizing move, in which case we set valuei (s) = ⊥,
indicating that backward induction does not yield a value for situation s. (Even in games
with perfect information, backward induction may not yield a unique value if there are
ties among outcomes. However, Zermelo showed that in zero-sum games like chess,
backward induction assigns a unique value to each node in the game tree; see [17, chap-
ter 1.6].) Formally, we employ the following axioms characterizing the value function.
First, we introduce a predicate bestMove that applies to maximizing moves in a given
situation.

bestMove(a, s) ≡ [
poss(a, s) ∧ player(s) = i

∧ ∀a′.poss(a′, s) → valuei(do(a, s)) � valuei(do(a′, s))

∧ ∀a.poss(a, s) → valuei(do(a, s)) �= ⊥]
.

Informally, this axiom says that a possible action a is a best move in situation s,
given a value function valuei for Player i moving at s, iff the situation do(a, s) that
results from choosing move a yields a value that is at least as high as that from any
other possible action a′. In order for bestMove(a, s) to hold, valuei (do(a′, s)) must be
a real number (i.e., well-defined by backward induction) for all possible moves a′. The
next axioms stipulate that at a nonleaf s, backward induction yields a definite value for
Player i just in case it yields the same value no matter what best move is chosen at s.

¬leaf(s) → [
valuei(s) = x ≡ ∃a.

(
bestMove(a, s)

∧ ∀a′.bestMove(a′, s) → valuei(do(a′, s)) = x
)]

,

¬leaf(s) → [
valuei(s) = ⊥ ≡ ¬∃a.

(
bestMove(a, s)

∧ ∀a′.bestMove(a′, s) → valuei(do(a′, s)) = valuei(do(a, s))
)]

.

These conditions on the valuei function define the results of backward induction
given an assignment of values to leaves. One way to specify an assignment of values to
leaves is to employ names for the situations that are leaves (cf. section 4) and add ax-
ioms that give the payoffs at the leaves. Alternatively, in terms of the utility functions ui

defined for infinite histories, it is possible to specify valuei (s) for a leaf by adding the ax-
iom [∀x.∀h.(ui(h) �= ⊥ ∧ s � h) → ui(h) = x] → valuei (s) = x. This axiom says that
if all infinite histories beginning with a situation s assign utility x for Player i (whenever
the utility is defined, i.e., whenever possible(h) holds – see section 6), then the value for
situation s is x.
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Figure 3. Prisoner’s Dilemma, sequential version with perfect information.

For an example, consider a sequential variant of the Prisoner’s Dilemma. In this
case, Player 1 decides first whether or not to confess. Prisoner 2 observes her choice and
then decides. Figure 3 illustrates this variant; the one difference is that now Player 2’s
information partition is I2 = {{S1}, {S2}}. We derive leaf(l) for l ∈ {S3, S4, S5, S6}. For
situation S1, we can derive

poss(confess, S1) ∧ player(S1) = 2 ∧ ∀a′.poss(a′, S1)

→ value2
(
do(confess, S1)

)
� value2

(
do(a′, S1)

)
.

Thus we derive bestMove(confess, S1); similarly we derive bestMove(confess, S2).
Player 2’s uniquely best move in either S1 or S2 is to confess. Given ¬leaf(S1), we
obtain value2(S1) = 0; analogously we get value2(S2) = −3. Similarly, we obtain that
value1(S1) = −4 and value1(S2) = −3. So for S0, we derive bestMove(confess, S0),

and value1(S0) = −3. Hence under backward induction, the result of the perfect infor-
mation game is no different than in the Nash equilibrium of the original simultaneous
move game. We can also derive that spNash(π2

1,π
4
2) holds.

8.4. Mixed strategies

Game theorists consider two ways of introducing stochastic elements into an
agent’s behaviour. First, an agent may choose a strategy with a certain probability at
the beginning of the game and then execute it. The result is called a mixed strategy.
Second, in each situation an agent might choose an action with a certain probability.
In game theory, such strategies are called behavioural strategies; they correspond to
stochastic policies in Markov Decision Processes. A well-known theorem of Kuhn’s
states that in games with perfect recall, the two notions of randomizing are equivalent
in the sense that the same distributions over game outcomes can be achieved with both
mixed and behavioural strategies [17, proposition 214.1]. Game theorists focus mainly
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on mixed strategies; for example, Nash’s celebrated existence theorem states that in any
finite game (with a finite game tree), there is an equilibrium in mixed strategies [16]. In
what follows we define Nash equilibrium for mixed strategies.

Game theorists use the term pure strategy to distinguish the kind of deterministic
strategies that we have discussed so far (that is, the sorts strati) from mixed strategies.
A mixed strategy for Player i is a probability distribution over pure strategies for Player i.
Correspondingly, we introduce a sort mixi : strategyi → [0, 1] with variable pi ranging
over mixi .

A valid mixed strategy satisfies the standard axioms for probability measures. If
there are infinitely many pure strategies (as is typically the case with infinite game trees),
the probability axioms may require second-order logic and introduce complications that
detract from our main goal of representing game-theoretic reasoning. To avoid such
complications, we will assume that the game under consideration has n pure strategies
for Player 1 and m pure strategies for Player 2. Let π 1

1, . . . ,π
n
1 be names for the valid

strategies of Player 1. Similarly we introduce names π 1
2, . . . ,π

m
2 for the pure strategies

of Player 2. We assume domain closure and unique names axioms for these constants
like those in section 4.

For each Player i, the valid mixed strategies are those satisfying the standard prob-
ability axioms. Therefore we define the valid mixed strategies of Player 1 by the axiom

valid(p1) ≡ ∀π1.p1(π1) � 0 ∧
n∑

j=1

p1(π
j
1) = 1.

Similarly for Player 2, valid(p2) ≡ ∀π2.p2(π 2) � 0 ∧ ∑m
j=1 p2(π

j
2) = 1. The expected

value for Player i from a pair of mixed strategies (p1, p2) is the sum of all possible pay-
offs to Player i weighted by the probability of obtaining that payoff. On the assumption
that the mixed strategies p1 and p2 are probabilistically independent, the probability of a
pure strategy combination (π1, π2) is given by p1(π1) × p2(π2). So the expected utility
to Player 1 when the game is started in situation s is defined by

eU1(p1, p2, s) =
j=n,k=m∑
j=1,k=1

p1
(
π

j
1

) × p1
(
πk

2

) × U1
(
π

j
1,π

k
2, s

)
.

Similarly eU2(p1, p2, s) = ∑j=n,k=m
j=1,k=1 p1(π

j
1) × p1(π

k
2) × U2(π

j
1,π

k
2, s). The notions of

best reply and Nash equilibrium now may be defined as above, with expected utility in
place of payoff.

bestReply1(p1, p2, s) ≡ ∀p′
1.valid(p1) → eU1(p1, p2, s) � eU1(p′

1, p2, s),

bestReply2(p1, p2, s) ≡ ∀p′
2.valid(p2) → eU2(p1, p2, s) � eU2(p1, p′

2, s).

Thus we have the following definition of Nash equilibrium for mixed strategies.

nash(p1, p2) ≡ valid(p1) ∧ valid(p2)

∧ bestReply1(p1, p2, S0) ∧ bestReply2(p1, p2, S0).



O. Schulte, J. Delgrande / Representing von Neumann–Morgenstern games 99

The definition of subgame perfection is as before with mixed in place of determin-
istic strategies.

9. Conclusion

Von Neumann–Morgenstern game theory is a very general formalism for repre-
senting multi-agent interactions that encompasses single-agent decision processes as a
special case. Game-theoretic models of many multi-agent interactions from economics
and social settings are available, and the general mathematical theory of VM games is
one of the major developments of the 20th century. The situation calculus is a natural
language for describing VM games; we established a precise sense in which the situa-
tion calculus is well-suited to representing VM games: a large class of VM games has
a sound and complete (categorical) set of axioms in the situation calculus. This result
underscores the expressive power of the situation calculus. Moreover, we showed that
the situation calculus also allows us to formalize aspects of game-theoretic reasoning and
decision-making, such as the concepts of Nash equilibrium and backward induction. The
connection between the situation calculus and game theory suggests fruitful applications
of game-theoretic ideas to planning and multi-agent interactions. We considered in par-
ticular the use of the Baire topology for defining continuous utility functions, and the
representation of concurrent actions. Conversely, the logical resources of the situation
calculus, such as state successor axioms, allow us to exploit invariants in the dynamics
of some environments to provide a more compact representation of their dynamics than
a game tree. The calculus also enables us to describe and reason about strategic knowl-
edge in the object language. For example, we can define predicates such as “BestMove”
and “NashEquilibrium” that describe optimal actions (cf. [6]).

We see two main avenues for further research. First, it is important to know what
types of VM games permit compact and tractable axiomatizations in the situation calcu-
lus. Without restrictions on the possible game forms F , there is no bound on the com-
putational complexity of an axiomatization Axioms(F ). There are a number of plausible
subclasses of games that might have computationally feasible representations in the sit-
uation calculus. An obvious restriction would be to consider finite game trees, which
have first-order categorical axiomatizations in the situation calculus. A weaker finitude
requirement would be that each agent should have only finitely many information sets.
As we noted in section 2, an information set corresponds to what in many AI formalisms
is called a “state”, because an information set defines an agent’s complete knowledge
at the point of making a decision. Games in which the agent has only finitely many
information sets closely correspond to Markov Decision Processes in which the possi-
ble states of an agent are typically assumed to be finite. Several authors have noted the
utility of the situation calculus for defining Markov Decision Processes [6,20], and the
research into compact representations of Markov Decision Processes (cf. [5]) may well
apply to compact representations of game trees as well.

Another approach would be to begin with a decidable or tractable fragment of the
situation calculus, and then examine which classes of game trees can be axiomatized in a
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given fragment. There are results about computable fragments of the situation calculus,
even with the second-order induction axiom, such as the fragment presented in [26]. The
main restrictions in this result are the following:

1. There are only finitely many fluents F1, . . . , Fn;

2. each fluent F is unary, that is of the form F(s), like our askPhase fluent in section 7;

3. the truth of fluents in situation s determines the truth of fluents in a successor situation
do(a, s) by state successor axioms of a certain restricted form.

Our experience with MYST, and more generally the literature on Markov Decision
Processes, suggests that assumptions 1 and 3 hold in many sequential decision situations;
we plan to explore in future research the extent to which restriction 2 can be relaxed, and
how epistemic components such as the relation K(s, s′) affect computational complexity.

A second topic for further research is to implement game-theoretic reasoning as
proving theorems about optimal actions from a specification of the structure of the en-
vironment or multi-agent system (cf. [11,12,19,20]). Such implementations can draw
on our axiomatization of optimal strategies and Nash equilibria. On the theoretical side,
standard techniques from logic could be applied to determine the complexity of this rea-
soning in a given environment. ([2] contains some complexity results for our model of
Clue.) On the practical side, theorem proving techniques may yield efficient implemen-
tations of decision and game theoretic reasoning.

In sum, the combination of logical techniques, such as the situation calculus, and
the advanced decision-theoretic ideas that we find in game theory provides a promising
foundation for analyzing planning problems and multi-agent interactions.
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