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Abstract

We present an algorithm for learning correla-
tions among link types and node attributes in
relational data that represent complex hetero-
geneous networks. The link correlations are
represented in a Bayes net structure. The cur-
rent state of the art algorithm for learning re-
lational Bayes nets captures only correlations
among entity attributes given the existence of
links among entities. The models described in
this paper capture a wider class of correlations
that involve uncertainty about the link struc-
ture. Our base line method learns a Bayes net
from join tables directly. This is a statistically
powerful procedure that finds many correla-
tions, but does not scale well to larger datasets.
We compare join table search with a hierarchi-
cal search strategy. A key challenge for rela-
tional learning that scales with data size is to
compute event counts in a relational database
(sufficient statistics), especially when these in-
volve negated relationships. We describe how
the fast Möbius transform provides a scalable
solution for this problem.

1 Introduction

Link analysis for heterogenous networks with multiple
link types is a challenging problem in network science.
We describe a method for learning a Bayes net that
captures simultaneously correlations between link types,
link features, and attributes of nodes. Previous work
on learning Bayes nets for relational data was restricted
to correlations among attributes given the existence of
links [19]. The larger class of correlations examined in
our new algorithms includes two additional kinds: 1

1. Dependencies between different types of links.
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2. Dependencies among node attributes given the ab-
sence of a link between the nodes.

Discovering such dependencies is useful for several ap-
plications.

Knowledge Discovery Dependencies provide valu-
able insights in themselves. For instance, a web
search manager may wish to know whether if user
searches for a video in Youtube for a product, they
are also likely to search for it on the web.

Relevance Determination Once dependencies have
been established, they can be used as a relevance
filter for focusing further network analysis only on
statistically significant associations. For example,
the classification and clustering methods of [21] for
heterogeneous networks assume that a set of “meta-
paths” have been found that connect link types that
are associated with each other.

Query Optimization The Bayes net model can also
be used to estimate relational statistics, the fre-
quency with which statistical patterns occur in the
database [20]. This kind of statistical model can be
applied for database query optimization [7].

Approach We consider three approaches to multiple
link analysis with Bayes nets.

Flat Search Apply a standard Bayes net learner to a
single large join table. This table is formed as fol-
lows: (1) take the cross product of entity tables.
(An entity table lists the set of nodes of a given
type.) (2) For each tuple of entities, add a rela-
tionship indicator whose value “true” or “false” in-
dicates whether a certain relationship holds among
the entities.

Hierarchical Search Conducts bottom-up search
through the lattice of table joins hierarchically.
Dependencies (Bayes net edges) discovered on
smaller joins are propagated to larger joins. The
different table joins include information about the
presence or absence of relationships as in the flat
search above. This is an extension of the current
state of the art Bayes net learning algorithm for
relational data [19].



Evaluation. We compare the learned models using
standard scores (e.g., Bayes Information Criterion, log-
likelihood). These results indicate that both flat search
and hierarchical search are effective at finding corre-
lations among link types. Flat search can on some
datasets achieve a higher score by exploiting attribute
correlations that depend on the absence of relationships.
Structure learning time results indicate that hierarchical
search is substantially more scaleable.

Contributions

1. To our knowledge this is the first application of
Bayes net learning to modelling correlations among
different types of links.

2. Extension of a lattice search strategy for link type
modelling, with a comparison to a flat search join
approach.

Paper Organization We describe Bayes net models
for relational data (Poole’s Parametrized Bayes Nets).
Then we present the learning algorithms, first flat search
then hierarchical search. We compare the models on four
databases from different domains.

2 Related Work
To our knowledge, there are no implementations of struc-
ture learning algorithms for directed graphical models
that consider correlations among different link types, let
alone together with node attributes. Such implementa-
tions exist, however, for other types of graphical models,
specifically Markov random fields (undirected models)
[2] and dependency networks (directed edges with cycles
allowed) [14]. Structure learning programs for Markov
random fields include Alchemy [2] and MLN-Booster et
al. [11]. Neither of these programs is able to return
a result on half of our datasets because they are too
large. For space reasons we restrict the scope of this
paper to directed graphical models and do not go fur-
ther into undirected model. For an extensive comparison
of the learn-and-join Bayes net learning algorithm with
Alchemy please see [19].

3 Background and Notation
Poole introduced the Parametrized Bayes net (PBN) for-
malism that combines Bayes nets with logical syntax for
expressing relational concepts [15]. We adopt the PBN
formalism, following Poole’s presentation.

3.1 Bayes Nets for Relational Data

A population is a set of individuals. Individuals are
denoted by lower case expressions (e.g., bob). A popu-
lation variable is capitalized. A functor represents a
mapping f : P1, . . . ,Pa → Vf where f is the name of the
functor, and Vf is the output type or range of the func-
tor. In this paper we consider only functors with a finite
range, disjoint from all populations. If Vf = {T ,F}, the
functor f is a (Boolean) predicate. A predicate with

more than one argument is called a relationship; other
functors are called attributes. We use uppercase for
predicates and lowercase for other functors.

A Bayes Net (BN) is a directed acyclic graph (DAG)
whose nodes comprise a set of random variables and
conditional probability parameters. For each assign-
ment of values to the nodes, the joint probability is
specified by the product of the conditional probabili-
ties, P (child |parent values). A Parametrized random
variable is of the form f(X1, . . . , Xa), where the popu-
lations associated with the variables are of the appropri-
ate type for the functor. A Parametrized Bayes Net
(PBN) is a Bayes net whose nodes are Parametrized ran-
dom variables [15]. If a Parametrized random variable
appears in a Bayes net, we often refer to it simply as a
node.

3.2 Databases and Table Joins

We begin with a standard relational schema contain-
ing a set of tables, each with key fields, descriptive at-
tributes, and possibly foreign key pointers. A database
instance specifies the tuples contained in the tables of
a given database schema. A relational structure can
be visualized as a complex heterogeneous network [16,
Ch.8.2.1]: individuals are nodes, attributes of individ-
uals are node labels, relationships correspond to (hy-
per)edges, and attributes of relationships are edge la-
bels. Conversely, a complex heterogeneous network can
be represented using a relational database schema.

We assume that tables in the relational schema can be
divided into entity tables and relationship tables. This is
the case whenever a relational schema is derived from
an entity-relationship model (ER model) [23, Ch.2.2].
In our university example, there are two entity tables:
a Student table and a Course table. There is one rela-
tionship table Registered with foreign key pointers to the
Student and Course tables whose tuples indicate which
students have registered in which courses.

The functor formalism is rich enough to represent the
constraints of an ER schema by the following translation:
Entity sets correspond to types, descriptive attributes to
functions, relationship tables to predicates, and foreign
key constraints to type constraints on the arguments of
relationship predicates.

Table 1 shows a relational schema for a database re-
lated to a university. Figure 1 displays a small database
instance for this schema together with a Parametrized
Bayes Net (omitting the Teaches relationship for sim-
plicity.)

The natural table join, or simply join, of two or
more tables contains the rows in the Cartesian products
of the tables whose values match on common fields. In
logical terms, a join corresponds to a conjunction [23].

4 Bayes Net Learning With Link
Correlation Analysis

We outline the two methods we compare in this paper,
flat search and hierarchical search.



Figure 1: Database Table Instances: (a) Student , (b) Registered (c) Course. To simplify, we added the information
about professors to the courses that they teach. (d) The attribute-relation table Registered+ derived from Registered ,
which lists for each pair of entities their descriptive attributes, whether they are linked by Registered , and the
attributes of a link if it exists. (e) A Parametrized Bayes Net for the university schema.

Student(student id, intelligence, ranking)
Course(course id, difficulty , rating)
Professor (professor id, teaching ability, popularity)
Registered (student id, course id , grade, satisfaction)
Teaches(professor id , course id)

Table 1: A relational schema for a university domain.
Key fields are underlined. An instance for this schema
is given in Figure 1.

4.1 Flat Search

The basic idea for flat search is to apply a standard
propositional or single-table Bayes net learner to a single
large join table. To learn correlations between link types,
we need to provide the Bayes net with data about when
links are present and when they are absent. To accom-
plish this, we add to each relationship table a link in-
dicator column. This columns contains T if the link is
present between two entities, and F if the link is absent.
(The entities are specified in the primary key fields.) We
add rows for all pairs of entities of the right type for the
link, and enter T or F in the link indicator column de-
pending on whether a link exists or not. We refer to
relationship tables with a link indicator column as ex-
tended tables. Extended tables are readily computed
using SQL queries. If we omit the entity Ids from an
extended table, we obtain the attribute-relation ta-
ble that lists (1) all attributes for the entities involved,
(2) whether a relationship exists and (3) the attributes
of the relationship if it exists. If the attribute-relation
table is derived from a relationship R, we refer to it as
R+.

The attribute-relation table is readily defined for a set
of relationships: take the cross-product of all populations
involved, and add a link indicator column for each rela-

tionship in the set. For instance, if we wanted to exam-
ine correlations that involve both the Registered and the
Teaches relationships, we would form the cross-product
of the entity types Student ,Course,Professor and build
an attribute-relation table that contains two link indi-
cator columns Registered(S,C) and Teaches(P ,C ). The
full join is the attribute-relation table for all relation-
ships in the database.

The flat search Bayes net learner takes a standard
Bayes net learner and applies it to the full join table to
obtain a single Parametrized Bayes net. The results of
[17] can be used to provide a theoretical justification for
this procedure; we outline two key points. (1) The full
join table correctly represents the sufficient statistics of
the database: using the full join table to compute the
frequency of a joint value assignment for Parametrized
Random Variables is equivalent to the frequency with
which this assignment holds in the database. (2) Maxi-
mizing a standard single-table likelihood score from the
full join table is equivalent to maximizing the random se-
lection pseudo likelihood. The random selection pseudo
log-likelihood is the expected log-likelihood assigned by
a Parametrized Bayes net when we randomly select indi-
viduals from each population and instantiate the Bayes
net with attribute values and relationships associated
with the selected individuals.

4.2 Hierarchical Search

Khosravi et al. [19] present the learn-and-join structure
learning algorithm. The algorithm upgrades a single-
table Bayes net learner for relational learning. We de-
scribe the fundamental ideas of the algorithm; for further
details please see [19]. The key idea is to build a Bayes
net for the entire database by level-wise search through
the table join lattice. The user chooses a single-table
Bayes net learner. The learner is applied to table joins of



size 1, that is, regular data tables. Then the learner is ap-
plied to table joins of size s, s+1, . . ., with the constraint
that larger join tables inherit the absence or presence of
learned edges from smaller join tables. These constraints
are implemented by keeping a global cache of forbidden
and required edges. Algorithm 1 provides pseudocode
for the previous learn-and-join algorithm (LAJ) [18].
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Figure 2: A lattice of relationship sets for the University
schema of Table 1. Links from entity tables to relation-
ship tables correspond to foreign key pointers.

To extend the learn-and-join algorithm for link analy-
sis, we replace the natural join in line 7 by the extended
join (more precisely, by the attribute-relation tables de-
rived from the extended join). The natural join contains
only tuples that appear in all relationship tables. Com-
pared to the extended join, this corresponds to consid-
ering only rows where the link indicator columns have
the value T . When the propositional Bayes net learner
is applied to such a table, the link indicator variable ap-
pears like a constant. Therefore the BN learner cannot
find any correlations between the link indicator variable
and other nodes, nor can it find correlations among at-
tributes conditional on the link indicator variable being
F . Thus the previous LAJ algorithm finds only correla-
tions between entity attributes conditional on the exis-
tence of a relationship. In sum, hierarchical search with
link correlations can be described as follows.

1. Run the previous LAJ algorithm (Algorithm 1) us-
ing natural joins.

2. Starting with the constraints from step 1, extend
them with the LAJ algorithm where extended joins
replace natural joins. That is, for each relationship
set shown in the lattice of Figure 2, apply the single-
table Bayes net learner to the extended join for the
relationship set.

Algorithm 1 Pseudocode for previous Learn-and-Join
Structure Learning for Lattice Search.

Input: Database D with E1, ..Ee entity tables, R1, ...Rr

Relationship tables,
Output: Bayes Net for D
Calls: PBN: Any propositional Bayes net learner that ac-
cepts edge constraints and a single table of cases as input.
Notation: PBN(T,Econstraints) denotes the output DAG
of PBN. Get-Constraints(G) specifies a new set of edge
constraints, namely that all edges in G are required, and
edges missing between variables in G are forbidden.

1: Add descriptive attributes of all entity and relationship
tables as variables to G. Add a Boolean indicator for
each relationship table to G.

2: Econstraints = ∅ [Required and Forbidden edges]
3: for m=1 to e do
4: Econstraints += Get-Constraints(PBN(Em , ∅))
5: end for
6: for m=1 to r do
7: Nm := natural join of Rm and entity tables linked to

Rm

8: Econstraints += Get-Constraints(PBN(Nm, Econ-
straints))

9: end for
10: for all Ni and Nj with a foreign key in common do
11: Kij := join of Ni and Nj

12: Econstraints += Get-Constraints(PBN(Kij , Econ-
straints))

13: end for
14: return Bayes Net defined by Econstraints.

5 Evaluation

All experiments were done on a QUAD CPU Q6700 with
a 2.66GHz CPU and 8GB of RAM. The LAJ code and
datasets are available on the world-wide web [10]. We
made use of the following single-table Bayes Net search
implementation: GES search [1] with the BDeu score as
implemented in version 4.3.9-0 of CMU’s Tetrad package
(structure prior uniform, ESS=10; [22]).

Methods Compared We compared the following
methods.

LAJ The previous LAJ method without link correla-
tions (Algorithm 1).

LAJ+ The new LAJ method that has the potential
to find link correlations (Algorithm 1 with the ex-
tended join instead of natural join).

Flat Applies the single-table Bayes net learner to the
full join.

Performance Metrics We report learning time, log-
likelihood, Bayes Information Criterion (BIC), and the
Akaike Information Criterion (AIC). We write

L(Ĝ,d)

for the log-likelihood score, where Ĝ is the BN G with its
parameters instantiated to be the maximum likelihood



Dataset #tuples
University 662
Movielens 1585385
Mutagenesis 1815488
Hepatitis 2965919
Small-Hepatitis 19827

Table 2: Size of datasets in total number of table tuples.

Dataset Flat LAJ+ LAJ
University 1.916 1.183 0.291
Movielens 38.767 18.204 1.769
Mutagenesis 3.231 3.448 0.982
Small-Hepatitis 9429.884 8.949 10.617

Table 3: Model Structure Learning Time in seconds.

estimates given the dataset d, and the quantity L(Ĝ,d)

is the log-likelihood of Ĝ on d.
The BIC score is defined as follows [1; 17]

BIC (G,d) = L(Ĝ,d)− par(G)/2× ln(m)

where the data table size is denoted by m, and par(G)
is the number of free parameters in the structure G. The
AIC score is given by

AIC (G,d) = L(Ĝ,d)− par(G).

BIC and AIC are standard scores for Bayes nets [1].
AIC is asympotically equivalent to selection by cross-
validation, so we may view it as a closed-form approxi-
mation to cross-validation, which is computationally de-
manding for relational datasets.

Datasets We used one synthetic and three benchmark
real-world databases, with the modifications described
by Schulte and Khosravi [19]. See that article for more
details.
University Database. We manually created a small
dataset, based on the schema given in Table 1. The
dataset is small and is used as a testbed for the correct-
ness of our algorithms.
MovieLens Database. A dataset from the UC Irvine
machine learning repository. The data are organized in
3 tables (2 entity tables, 1 relationship table, and 7 de-
scriptive attributes).
Mutagenesis Database. A dataset widely used in ILP
research. It contains two entity tables and two relation-
ships.
Hepatitis Database. A modified version of the
PKDD’02 Discovery Challenge database. The data are
organized in 7 tables (4 entity tables, 3 relationship ta-
bles and 16 descriptive attributes). In order to make the
learning feasible, we under sampled Hepatitis database
to keep the ratio of positive and negative link indicator
equal to one.

5.1 Results

Learning Times Table 3 provides the model search
time for each of the link analysis methods. This does
not include the time for computing table joins since
this is essentially the same for all methods (the cost of
the full join). On the smaller and simpler datasets, all
search strategies are fast, but on the medium-size and
more complex datasets (Hepatitis, MovieLens), hierar-
chical search is much faster due to its use of constraints.
Adding prior knowledge as constraints could speed the
structure learning substantially.

University BIC AIC log-likelihood # Parameter
Flat -17638.27 -12496.72 -10702.72 1767

LAJ+ -13495.34 -11540.75 -10858.75 655
LAJ -13043.17 -11469.75 -10920.75 522

MovieLens BIC AIC log-likelihood # Parameter
Flat -4912286.87 -4911176.01 -4910995.01 169

LAJ+ -4911339.74 -4910320.94 -4910154.94 154
LAJ -4911339.74 -4910320.94 -4910154.94 154

Mutagenesis BIC AIC log-likelihood # Parameter
Flat -21844.67 -17481.03 -16155.03 1289

LAJ+ -47185.43 -28480.33 -22796.33 5647
LAJ -30534.26 -25890.89 -24479.89 1374

Hepatitis BIC AIC log-likelihood # Parameter
Flat -7334391.72 -1667015.81 -301600.81 1365357

LAJ+ -457594.18 -447740.51 -445366.51 2316
LAJ -461802.76 -452306.05 -450018.05 2230

Table 4: Performance of different Searching Algorithms
by dataset.

Statistical Scores As expected, adding edges be-
tween link nodes improves the statistical data fit: the
link analysis methods LAJ+ and Flat perform bet-
ter than the learn-and-join baseline in terms of log-
likelihood on all datasets shown in table 4, except for
MovieLens where the Flat search has a worse score. On
the small synthetic dataset University, flat search ap-
pears to overfit whereas the hierarchical search methods
are very close. On the medium-sized dataset MovieLens,
which has a simple structure, all three methods score
similarly. Hierarchical search finds no new edges involv-
ing the single link indicator node (i.e., LAJ and LAJ+
return the same model).

The most complex dataset, Hepatitis, is a challenge for
flat search, which seems to overfit severely with a huge
number of parameters that result in a model selection
score that is an order of magnitude worse than for hier-
archical search. Because of the complex structure of the
Hepatitis schema, the hierarchical constraints appear to
be effective in combating overfitting.

The situation is reversed on the Mutagenesis dataset
where flat search does well: compared to attribute-only
search, it manages to fit the data better with a less
complex model. Hiearchical search performs very poorly
compared to flat search (lower likelihood yet many more
parameters in the model). Investigation of the models



shows that the reason for this phenomenon is a special
property of the Mutagenesis dataset: whereas generally
relationships are sparse—very few pairs of entities are ac-
tually linked—in Mutagenesis most entities whose type
allows a link are linked. As a result, we find strong cor-
relations between attributes conditional on the absence
of relationships. The LAJ+ algorithm is constrained so
that it cannot add Bayes net edges between attribute
nodes at its second stage, when absent relationships are
considered. As a result, it can represent attribute corre-
lations conditional on the absence of relationships only
indirectly through edges that involve link indicators. A
solution to this problem would be to add a phase to the
search so that we first learn edges between attributes
conditional on the existence of relationships, then condi-
tional on their nonexistence. The last phase then would
consider edges that involve relationship nodes. We ex-
pect that with this change, hierarchical search would be
competitive with flat search on the Mutagenesis dataset
as well.

6 Computing Relational Sufficient
Statistics

The learning algorithms described in this paper rely on
the availability of the extended relational tables R+ (see
Figure 1). Our current implementation constructs this
tables using standard joins. While this was sufficient for
our experiments, the cross-products carry a quadratic
costs for binary relations, and therefore do not scale to
large datasets. Moreover, the hierarchical search requires
joins of the extended tables. In this section we describe
a “virtual join” algorithm that computes the required
data tables without the quadratic cost of materializing
a cross-product.

Our starting point is the observation that a statisti-
cal learning algorithm like a Bayes net learner does not
require an enumeration of individuals tuples, but only
sufficient statistics [8; 17]. Consider a list of relationship
nodes R1, R2, . . . , Rm, and attribute nodes f1, . . . , fj .
For example, in Figure 3 we have m = 2, j = 1 and
f1 = gender(X ). The sufficient statistics for this set of
random variables are the database probabilities

PD(R1 = b1, R2 = b2, . . . , Rm = bm; f1 = v1, . . . , fj = vj)
(1)

where the bi values are Boolean and each vj is from
the domain of fj . Bayes net algorithms can construct a
Bayes net when provided with a table as input that lists
these sufficient statistics. In what follows, we suppose
that there are r possible assignments of the form shown
in Equation (1) and therefore r sufficient statistics to be
specified.

So long as a database probability involves only positive
relationships, the computation is straightforward. For
example, in PD(gender(X ) = M ,Friend(X ,Y ) = T ),
the value #D(gender(X ) = M ,Friend(X ,Y ) = T ), the
count of friendship pairs (x, y) where x is male and the
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Figure 3: (a) A Bayes net with two relationship nodes.
(b) An illustrative trace of the lattice Möbius transform
(see text).

Friend relationship is true, can be computed by regular
table joins or optimized virtual joins [24].

Computing joint probabilities for a family containing
one or more negative relationships is harder. A naive ap-
proach would explicitly construct new data tables that
enumerate tuples of objects that are not related. How-
ever, the number of unrelated tuples is too large to make
this scalable (think about the number of user pairs who
are not friends on Facebook). In their work on learn-
ing Probabilistic Relational Models with existence un-
certainty, Getoor et al. provided a subtraction method
for the special case of estimating a joint probability with
only a single negated relationship [5, Sec.5.8.4.2]. They
did not treat parameter learning with multiple negated
relationships, which we consider next.

6.1 Statistics With Multiple Negated
Relationships: The Fast Möbius
Transform

The general case of multiple negative relationships can
be efficiently computed using the fast Möbius trans-
form (FMT), or Möbius transform for short. We com-
pute the r joint probabilities (1) by first computing the r
Möbius parameters of the joint distribution, then using
the lattice Möbius transform to transform the Möbius
parameters into the desired joint probabilities. Figure 4
provides an overview of the computation steps. Because
the Möbius parameters involve probabilities for events
with positive relationships only, they can be estimated
directly from the data. We next define the Möbius pa-
rameters, then explain the FMT.

Let B = B1, . . . , Bm be a set of binary random vari-
ables with possible values 0 or 1, and P be the joint
distribution that specifies 2m probabilities, one for each
possible assignment of values to the m binary variables.
For any subset B ⊆ B of the variables, let P (B = 1) de-
note the probability that the variables in B are assigned
the value 1, leaving the value of the other variables un-
specified. The Möbius parameters of the distribution
P are the values P (B = 1) for all subsets B ⊆ B[4,
Sec.3]. There are 2m Möbius parameters for m binary
variables, with 0 ≤ P (B = 1) ≤ P (B = 1) ≤ P (∅ =
1) = 1.
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Figure 4: Computation of joint probabilities in a rela-
tional database. (1) Estimate Möbius parameters us-
ing standard table join operations. (2) Transform the
Möbius parameters into joint probabilities. Only the
first step involves data access.

If we fix the values v1, . . . , vj of the attribute atoms,
the sufficient statistics correspond to a joint distribution
over m Boolean relationship random variables:

P (R1 = ·, R2 = ·, . . . , Rm = ·; f1 = v1, . . . , fj = vj).

We refer to the Möbius parameters of this joint distri-
bution as the Möbius parameters for the attribute
values v1, . . . , vj .

Example. For the Bayes net of Figure 3 (Top), fix the
attribute condition gender(X ) = W . The four Möbius
parameters for this attribute condition are

P (gender(X ) = W )

P (Friend(X ,Y ) = T ; gender(X ) = W )

P (Follows(X ,Y ) = T ; gender(X ) = W )

P (Friend(X ,Y ) = T ,Follows(X ,Y ) = T ; gender(X ) = W )

6.2 The Fast Möbius Transform

The Möbius extension theorem entails that the joint
probabilities can be computed from the Möbius parame-
ters [12, Sec.4.4.2.1]. The Möbius Transform is an opti-
mal algorithm for carrying out this computation, using
the local update operation.

P (R = F ,R) = P (R)− P (R = T ,R) (2)

where R is a conjunction of relationship specifications,
possibly with both positive and negative relationships.
The equation holds for any fixed set of attribute condi-
tions f1 = v1, . . . , fj = vj . Eq. 2 generalizes the subtrac-
tion trick: the joint probabilities on the right hand side
each involve exactly one less false relationship than the
joint probability on the left.

Algorithm 2 The Möbius transform for computing suf-
ficient statistics with link uncertainty.

Input: database D; a set of nodes divided into
attribute nodes f1, . . . , fj and relationship nodes
R1, . . . , Rm.
Output: joint probability table specifying the data fre-
quencies for each joint assignment to the input nodes.

1: for all attribute value assignments f1 :=
v1, . . . , fj := vj do

2: initialize the table: set all relationship nodes to
either T or ∗; find joint frequencies with data
queries.

3: for i = 1 to m do
4: Change all occurrences of Ri = ∗ to Ri = F .
5: Update the joint frequencies using (2).
6: end for
7: end for

Figure 4 illustrates the control flow for computing suf-
ficient statistics. The FMT initializes the Möbius pa-
rameter values with frequency estimates from the data
(top table). It then goes through the relationship nodes
R1, . . . , Rm in order, at stage i replacing all occurrences
of Ri = ∗ with Ri = F , and applying the local update
equation to obtain the probability value for the modified
row. At termination, all ∗ values have been replaced by
F and the table specifies all joint frequencies (bottom
table).

Complexity Analysis For big data analysis, the key
property of the FMT is that it accesses only existing
links, never nonexisting links. The number of updates
is O(m× r) [9]. If the number m of relationship nodes
is small enough to be treated as a constant, the number
of updates is therefore proportional to the number r of
sufficient statistics.2

So far we have discussed the Möbius transform for
a single fixed list of random variables. The Möbius
transform could be applied dynamically during learn-
ing or off-line prior to learning. A pre-computation ap-
proach is attractive for analyzing large heterogeneous
networks because it separates the problem of comput-
ing event frequencies/counts from the problem of statis-
tical model selection. (Moore and Lee present a clas-
sic pre-computation approach for single-table data [13]).
Moreover, pre-computing sufficient statistics for the en-
tire database could take advantage of the lattice struc-
ture illustrated in Figure 2 to reuse computation results
as much as possible.

7 Conclusion

We described different methods for extending relational
Bayes net learning to correlations involving links. Sta-

2For general m, the problem of computing a sufficient
statistic in a relational structure—a joint probability of the
form (1)—is #P-complete [3, Prop.12.4].



tistical measures indicate that Bayes net methods suc-
ceed in finding relevant correlations. There is a trade-off
between statistical power and computational feasibility
(full table search vs constrained search). Hierarchical
search often does well on both dimensions, but needs
to be extended to handle correlations conditional on the
absence of relationships.

A key issue for scalability is that most of the learning
time is taken up by forming table joins, whose size is the
cross product of entity tables. These table joins provide
the sufficient statistics required in model selection. To
improve scalability, computing sufficient statistics needs
to be feasible for cross product sizes in the millions or
more. A possible solution may be the virtual join meth-
ods that compute sufficient statistics without material-
izing table joins, such as the Fast Möbius Transform [20;
24].
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