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Abstract. We describe a new deep generative architecture, called
Dynamic Gated Graph Neural Networks (D-GGNN), for extracting a
scene graph for an image, given a set of bounding-box proposals. A scene
graph is a visually-grounded digraph for an image, where the nodes rep-
resent the objects and the edges show the relationships between them. AQ1

Unlike the recently proposed Gated Graph Neural Networks (GGNN),
the D-GGNN can be applied to an input image when only partial rela-
tionship information, or none at all, is known. In each training episode,
the D-GGNN sequentially builds a candidate scene graph for a given
training input image and labels additional nodes and edges of the graph.
The scene graph is built using a deep reinforcement learning framework:
states are partial graphs, encoded using a GGNN, actions choose labels
for node and edges, and rewards measure the match between the ground-
truth annotations in the data and the labels assigned at a point in the
search. Our experimental results outperform the state-of-the-art results
for scene graph generation task on the Visual Genome dataset.

Keywords: Gated Graph Neural Networks · Scene graph generation

1 Introduction: Scene Graph Generation

Visual scene understanding is one of the most important goals in computer
vision. Over the last decade, there has been great progress in related tasks such
as image classification [10,14,29], image segmentation [19], object detection [24],
and image caption generation [12,31,33,35]. However, understanding a scene
is not just recognizing the individual objects in the scene. The relationships
between objects also play an important role in visual understating of a scene.

To capture objects and their relationships in a given scene, previous work
proposed to build a structured representation called scene graph [13,15,20]. A
scene graph for an image is a visually-grounded labeled digraph, where the nodes
represent the objects and the edges show the relationships between them (see
Fig. 1). The visual information represented by a scene graph is useful in appli-
cations such as visual question answering [30] and fine-grained recognition [36].
This paper presents a new neural architecture that generates a scene graph for
a given image.
c© Springer Nature Switzerland AG 2019
C. V. Jawahar et al. (Eds.): ACCV 2018, LNCS 11366, pp. 1–17, 2019.
https://doi.org/10.1007/978-3-030-20876-9_42
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2 M. Khademi and O. Schulte

An effective scene graph generation model needs to consider visual contextual
information as well as domain priors. For example, if we know that a node has
an incoming edge from another node which represents a man and the type of
the edge is riding, then the type of the node is likely horse or bicycle.
Clues from the relational context can be represented by leveraging models such
as the recently proposed Gated Graph Neural Networks (GGNN) [16], which
can learn a latent feature vector (embedding, representation) for each node from
graph-structured inputs. However, to apply the GGNN model, the structure
of the input digraph and the type of each edge must be known, whereas the
structure and edge-types must be inferred in the scene graph generation task. In
this work, we propose a new deep generative architecture, called Dynamic Gated
Graph Neural Networks (D-GGNN), to perform this inference. Unlike GGNN,
the D-GGNN can be applied to an input image to build a scene graph, without
assuming that the structure of the input digraph is known.

In each training episode, the D-GGNN constructs a candidate graph structure
for a given training input image by sequentially adding new nodes and edges. The
D-GGNN builds the graph in a deep reinforcement learning (RL) framework. In
each training step, the graph built so far is the current state. To encode the
current graph in a state feature vector, the D-GGNN leverages the power of
a GGNN to exploit the relational context information of the input image, and
combines the GGNN with an attention mechanism. Given the current graph,
and a current object, D-GGNN selects two actions: (i) a new neighbor and its
type (ii) the type of the new edge from the current object to the new object.
The reward for each action is a function of how well the predicted types measure
the ground-truth labels. At the test time, the D-GGNN builds a graph for a
given input by sequentially selecting the best actions with the greatest expected
accuracies (Q-values).

In summary, the contributions of this paper are as follows: (i) We propose
a new deep generative architecture that uses reinforcement learning to gener-
ate from unstructured inputs a heterogeneous graph, which represents the input
information with multiple types of nodes and edges. Unlike the recently pro-
posed Gated Graph Neural Networks (GGNN), the D-GGNN can be applied to
an input without requiring that the structure of the scene graph is known in
advance. (ii) We apply the D-GGNN to the scene graph generation task. The
D-GGNN can exploit domain priors and the relational context of objects in an
input image to generate more accurate scene graphs than previous work. (iii)
Our model scales to predict thousands of predicates and object classes. The
experiments show that our model significantly outperforms the state-of-the-art
models for scene graph generation task on the Visual Genome dataset.

2 Related Work

Scene Graph Generation. In [28], the authors introduced a rule-based and
a classifier based method for scene graph generation from a natural language
scene description. [11] proposed a model based on a conditional random field
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Dynamic Gated Graph Neural Networks for Scene Graph Generation 3

that reasons about various groundings of potential scene graphs for an image.
Recently, [20] proposed a model to detect a relatively large set of relationships
using language priors from semantic word embeddings. In [32], the authors devel-
oped a model for scene graph generation which uses a recurrent neural network
and learns to improve its predictions iteratively through message passing across
the scene graph. After a few steps the learned features are classified. However,
their model suffers from a class imbalance since for many pairs of objects, there
is no edge between them.

More recently, [15] proposed a neural network model, called Multi-level Scene
Description Network (MSDN), to address the object detection, region caption-
ing, and scene graph generation tasks jointly. MSDN aligns object, phrase, and
caption regions with a dynamic graph using spatial and semantic links. Then, it
applies a feature refining schema to send messages across features of the phrase,
objects, and caption nodes via the graph.

Most closely related to our work, [18] proposed a model for visual relation-
ship and attribute detection based on reinforcement learning. In their method,
as a state feature representation, they used the embedding of the last two rela-
tionships and attributes that were searched during the graph construction. This
fixed-length representation will lead to limited representational power, since the
resulting representation depends on the order of the actions, that is, the order
that the algorithm selects node and edges. For example, this method may gener-
ate different representations using different order of actions for the same graph.
In contrast, our state feature representation is based on a Gated Graph Neural
Network (GGNN) which is tailored towards graph-structured input data and
extracts features from the entire graph.

Graph Neural Networks. Several graph neural network models have been
proposed for feature learning from graph-structured inputs [5,7,9,16,27]. [26]
and [2] summarized recent work on graph neural networks in depth. Graph neu-
ral networks have been used for various range of tasks that need rich relational
structure such as visual scene understanding [25] and learning to represent pro-
grams [1]. Recently, a few work proposed generative models of graphs [3,4,17,34].
To the best of our knowledge, our work is the first work that uses reinforcement
learning to build a generative graph neural network architecture.

3 Background: Gated Graph Neural Networks

The state feature vectors in our RL framework encode an entire candidate graph.
The first step in building the graph encoding is to encode node information by
feature vectors (embedding, representations) such that each node feature vector
takes into account contextual information from the neighbor nodes. For example,
in scene graph prediction task, if we know that a node has an incoming edge from
another node which represents a man and the type of the edge is riding, then
the type of the node is likely horse or bicycle. There are various approaches
for finding node embeddings which can be applied within our RL framework. In
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4 M. Khademi and O. Schulte

this work, we utilize the Gated Graph Neural Network (GGNN) [16], which is a
recent state-of-the-art approach.

Formally, a GGNN takes as input a heterogeneous directed graph G = (V, E).
Each directed edge e = (v, u) ∈ E has an edge-type type(e) ∈ {1, . . . , K}, where
K is the number of edge-types (classes, labels). The given graph may also contain
node-types type(v) ∈ {1, . . . , M} for each node v, where M is the number of
node-types (classes, labels). Given the graph structure and the edge types, a
GGNN iteratively computes a new node embedding h(t)

v ∈ R
d, t = 1, . . . , T , for

each node v via a propagation model, where d is the embedding size.
For each node v, a node representation must take into account the infor-

mation from every linked neighbor of v. Let Ek be the adjacency matrix for
edge-type k. That is, Ek(u, v) = 1, if there is an edge with type k from node u
to node v, otherwise Ek(u, v) = 0. The matrix Ek determines how nodes in the
graph communicate with each other via edges of type k. We write xv ∈ R

M for
the one-hot representation of node v’s type.

The recurrence of the propagation for computing node embeddings h(t)
v ∈ R

d

is initialized with the padded one-hot representation of node v’s type, i.e. h(0)
v =

(xv,0) ∈ R
d. The update equations are

a(t)
v =

K∑

k=1

WkH(t−1)Ek:v (1)

h(t)
v = GRU

(
a(t)

v ,h(t−1)
v

)
. (2)

The H(t) ∈ R
d×|V| is a matrix with node representations h(t)

v , v = 1, . . . , |V|, as
its column vectors, Wk ∈ R

d×d is a weight matrix for edges of type k that we
learn, and Ek:v is the v’th column of Ek. The term H(t−1)Ek:v represents the
sum of latent feature representations for all nodes u that are linked to node v

by an edge of type k. Thus, a(t)
v combines activations from incoming edges of

all types for node v, aggregating messages from all nodes that have an edge to
v. The GGNN first computes the node activations a(t)

v for each node v. Then,
a Gated Recurrent Unit (GRU) is used to update node representations for each
node by incorporating information from the previous time-step.

The computation defined by the above equations are repeated for a fixed
number of time steps T . The choice of T depends on the task. For each node
the state vector from the last time step is used as the node representation. In
many real-world applications, the edges and edge-types are not given as part of
the input, which limits the applicability of the GGNN model. In this paper, we
extend GGNN to infer edges and edge-types.

4 New Reinforcement Learning Architecture for Graph
Structure Generation

Given an input image and a set of candidate bounding-boxes P, our goal is to
find a labelled graph G = (V, E), where V ⊆ P, and assign the edge-types and
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Dynamic Gated Graph Neural Networks for Scene Graph Generation 5

node-types to it jointly such that G represents contextual information of the
given input. The algorithm that we describe here can be applied for extracting
relational information for a variety of input data sources. However, our presen-
tation focuses on scene graph generation, the target application of this paper.

4.1 Initial Information Extraction

We extract initial information to constrain the reinforcement learning graph
construction.

Global Type Information. We extract the following information from the
training set to model type constraints in the target domain.

1. A set of M node types.
2. For each ordered pair of node-types i and j, a set of possible edge-types

e-types(i, j). For example, we may find that e-types(man,horse) =
{riding,nextto,on,has}.

Image Node and Type Candidates. We extract the following information
from each training image.

1. A set P of candidate nodes.
2. For each candidate node v ∈ P:

(a) A confidence score s(v) that measures how likely v is to be a node in the
scene graph.

(b) A set of candidate node-types n-types(v) ⊆ {1, . . . , M}.
(c) A feature vector x̂v.
(d) A vicinity set vic(v) is given such that u /∈ vic(v) implies that e = (v, u)

is not an edge in the scene graph.

This information is extracted as follows. Objects (nodes) are represented by
bounding-boxes. Each bounding-box v is specified by a confidence score s(v)
and its coordinates (vx, vy, vx′ , vy′), where (vx, vy) and (vx′ , vy′) are the top left
and bottom right corners of the bounding-box, respectively. Given an image
dataset with ground truth annotations, we train an object detector, using the
Tensorflow Object Detection API from https://github.com/tensorflow/models/
tree/master/research/object detection. We use faster rcnn nas trained on
MS-COCO dataset as the pretrained model. Also, we use default values for all
hyper-parameters of the object detector API.

For each input image, the object detector outputs a set of object bounding-
boxes with their objectness scores, classification scores, and bounding-box coor-
dinates. We used 100 bounding-box per image with the highest objectness scores
as the candidate nodes P, and their objectness scores as the confidence scores.
For each bounding box, the classification scores rank the possible node-types.
The set of candidate object categories n-types(v) comprises the highest-scoring
types. For example, n-types(v) can be {man,boy,skier}.
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6 M. Khademi and O. Schulte

To extract a feature vector x̂v for each bounding-box v ∈ P, we first feed the
image to the 152-layer ResNet [10], pretrained on ImageNet [6], and obtain 1024
feature maps of size 14 × 14 from layer res4b35x. Then, we apply a Region
of Interest pooling layer [8], based on the coordinates of the bounding-box, to
get 1024 feature maps of size 7 × 7. Next, we use two fully-connected layers
with ReLU activation function to get a 512-dimensional feature vector. Finally
the set vic(v) is a subset of bounding-boxes in P which are spatially close to
bounding-box v (uw = u′

x − ux and uh = u′
y − uy):

vic(v) = {u : u �= v, |ux − vx| < 0.5(uw + vw), |uy − vy| < 0.5(uh + vh)}

4.2 Dynamic Gated Graph Neural Networks

Figure 1 shows the architecture of a D-GGNN for scene graph generation task.
The algorithm simultaneously builds the graph and assigns node-types and edge-
types using Deep Q-Learning [21,22]. The full algorithm is presented in Algo-
rithm 1. The Q-function maps a state-action pair to an expected cumulative
reward value. Actions and states are defined as follows.

Actions. The node with the highest confidence score is the starting node v, and
the type with the highest classification score its type l. At each time step t, given
a current subject node v ∈ P with node type l, we expand the scene graph by
adding a new object node and a new edge, and selecting the type of the new
node and the type of the new edge. These choices represent two actions.

1. Select a node ut and a node-type at from the pairs

A = {(a, u) : u ∈ vic(v) − prv(v), a ∈ n-types(u)} ∪ {STOP} (3)

where prv(v) denotes the set of previously selected nodes for neighbors of v,
and STOP is a special action that indicates the end of searching for neighbors
of node v. We first select the node type. If there are multiple nodes in A with
the same type as the selected type, we randomly select one of them.

2. Select an edge-type bt from

B = e-types(lt, at). (4)

States. The current RL state is a (partial) scene graph denoted by st. The new
state (graph) is obtained as st+1 = st + ut + et, where st + ut is obtained by
adding node ut with type at to graph st, and st + ut + et is obtained by adding
edge et = (v, ut) with type bt to graph st +ut. A GGNN computes a state repre-
sentation for state st. For each node v′ of st, we initialize the node representation
as h(0)

v′ = W (xv′ , x̂v′), where W ∈ R
d×(512+M) is a trainable matrix; so instead

of padding the one-hot node type vector xv′ with 0, we concatenate it with the
ResNet feature vector x̂v′ . Then, the state is represented by a vector GGNN(st)
computed as follows

GGNN(st) = tanh
( ∑

v′
σ
(
f(xv′ ,h(T )

v′ )
) � tanh

(
g(xv′ ,h(T )

v′ )
))

(5)
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Dynamic Gated Graph Neural Networks for Scene Graph Generation 7

Fig. 1. Dynamic Gated Graph Neural Networks for scene graph generation task. Given
an image and its candidate object bounding-boxes, we simultaneously build the graph
and assign node-types and edge-types to the nodes and edges in a Deep Q-Learning
framework. We use two separate Q-networks to select the actions, i.e. node-types and
edge-types. We use two fully-connected layers with ReLU activation function to imple-
ment each Q-network. The input to the Q-networks is the concatenation of the GGNN
representation of the current graph and a global feature vector from the image. The
search for the scene graph continues with the next node in a breadth-first search order.

where, f and g are two neural networks, σ is the sigmoid function. The vector
σ
(
f(xv′ ,h(T )

v′ )
)

is a soft attention mechanism that decides which nodes are rele-
vant to generate the vector representation for state st. Intuitively, σ

(
f(xv′ ,h(T )

v′ )
)

represents the degree of importance of node v′ to represent the current state, i.e.
the contribution of node v′ for selecting the next node-types and edge-types.

Rewards. Given the current object bounding-box v and the new object
bounding-box u, the reward functions for taking actions a (non-STOP) and b
at state s are defined as follows (IoU stands for Intersection over Union):

1. r(a, u, s) = +1 if there exists a ground truth bounding-box h with object
category a such that IoU(u, h) ≥ 0.5, otherwise r(a, u, s) = −1
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8 M. Khademi and O. Schulte

2. r′(b, v, u, s) = +1 if there exists two ground truth bounding-boxes h and h′

such that IoU(v, h) ≥ 0.5, IoU(u, h′) ≥ 0.5 and the type of edge e = (v, u) is
b, otherwise r′(b, v, u, s) = −1.

Temporal-Difference Training of Q-networks. We use two separate Q-
networks to select the actions: node-type Q-network and edge-type Q-network.
We use two fully-connected layers with ReLU activation function to implement
each Q-network. The input to each Q-network is φt = φ(st) =

(
GGNN(st),x

)
,

where x is a global image feature vector extracted from the last layer of the 152-
layer ResNet [10]. The global feature vector adds contextual information of the
image to the current state information.

After each 5000 steps, node-type Q-network trainable parameters θ(t) and
edge-type Q-network trainable parameters θ′(t) are copied to θ̂(t) and θ̂′(t) which
are used to compute the target Q-values for the node-type and edge-type Q-
networks, respectively. This helps stabilize the optimization.

To reduce correlation between samples and keep experiences from the past
episodes, we use an experience replay technique [21,22]. To update the parame-
ters of the Q-networks, we choose a random minibatch from the replay memory.
Let (φj , sj , aj , bj , rj , r

′
j , φj+1, sj+1) be a random transition sample, and vj+1 the

subject node in state sj+1. The target Q-values for both networks are obtained
as follows:

yj = rj + γ max
(a,u)∈Aj+1

Q
(
φ(sj+1 + u); θ̂(t)

)
(6)

y′
j = r′

j + γ max
b∈Bj+1

Q
(
φ(sj+1 + u†

j+1 + e†
j+1); θ̂

′(t)) (7)

where, Aj+1 and Bj+1 are actions that can be taken in state sj+1, u†
j+1 is the

node that maximizes 6, and e†
j+1 = (vj+1, u

†
j+1).

Finally, the parameters of the model are updated as follows:

θ(t+1) = θ(t) + α
(
yj − Q

(
φ(sj + u†

j); θ
(t)

))∇θQ
(
φ(sj + u†

j); θ
(t)

)
(8)

θ′(t+1) = θ′(t) + α
(
y′

j − Q
(
φ(sj + u†

j + e†
j); θ

′(t)))∇θ′Q
(
φ(sj + u†

j + e†
j); θ

′(t))

(9)

Search Strategy. The search for the scene graph continues with the next node
in a breadth-first search order. The algorithm continues until all nodes that
are reachable from the starting node have been visited. If some unvisited nodes
are remained, we repeat the search for the next component, until the highest
confidence score of the unvisited nodes is less than a threshold β, or a maximum
number of steps n is reached. This allows the search to generate disconnected
graphs. To train the RL model, we use ε-greedy learning, that is, with probability
ε a random action is selected, and with probability 1 − ε an optimal action is
selected, as indicated by the Q-networks. For test images, we construct the graph
by sequentially selecting the optimal actions.
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Dynamic Gated Graph Neural Networks for Scene Graph Generation 9

Algorithm 1. Dynamic Gated Graph Neural Networks: Deep Q-learning
Hyperparameters are described in the text
Input: A set of bounding-boxes P of an image with their feature vectors
Input: A global feature vector x extracted from the image
Result: Updates the parameters of the model (the weight matrices of the

GGNN for each edge-type and parameters of both Q-networks)
C ← P � Mark all nodes as unvisited (C is the set of all unvisited nodes)
Let s0 be an empty graph, t← 0 � Initialize the state (graph)
while C is not empty do

From C select node v with the highest confidence score and its node-type l
if s(v) < β or t > n then break
Add node v to st, and compute φ(st) =

(
GGNN(st),x

)
� Equation 5

q = Queue(), q.enqueue((v, l)) � Make an empty queue and add (v, l) to it
while q is not empty do

(v, l) = q.dequeue(), prv(v)← ∅ � Remove an element from the queue
repeat

Generate a random number z ∈ (0, 1) with uniform distribution
if z < ε then
A ← {(a, u) : u ∈ vic(v)− prv(v), a ∈ n-types(u)} ∪ {STOP}
Select a random node-type at and its node ut from A
if at is not STOP then

Select a random edge-type bt from B = e-type(l, at)
end

else
Select (at, ut) = arg max(a,u)∈A Q

(
φ(st + u); θ

)

if at is not STOP then
Select bt = arg maxb∈B Q

(
φ(st + ut + et); θ

′)

end

end
if at is not STOP then

Compute rewards rt and r′
t

st+1 ← st + ut + et

else
st+1 ← st

end
φt+1 ← φ(st+1) =

(
GGNN(st+1),x

)
� Equation 5

Store transition (φt, st, at, bt, rt, r
′
t, φt+1, st+1) in replay memory D

Sample minibatch of transitions (φj , sj , aj , bj , rj , r
′
j , φj+1, sj+1) from

replay memory D
Compute target Q-values yj and y′

j � Equations 6 and 7
Update the parameters of the model � Equations 8 and 9
if ut is in C then

q.enqueue((ut, at)) � Add (ut, at) to the queue
end
prv(v) = prv(v) ∪ {ut}, t← t + 1 � Add node ut to the set prv(v)

until at is STOP
C ← C − ({v} ∪ vic(v)

)
� Mark node v and its vicinity as visited

end

end
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10 M. Khademi and O. Schulte

4.3 Optimization and Implementation Details

We used RMSProp with minibatch size of 100. The learning rate α was 0.00001.
The number of iterations for the GGNN is set to T = 2. The maximum number
of steps to construct a graph for an image is set to n = 300. The discount factor
γ is set to 0.85 and ε is annealed from 1 to 0.05 during the first 50 epochs, and
is fixed after epoch 50. The embedding size d is set to 512.

To avoid overfitting, we used a low-rank bilinear method [23] to reduce the
rank of the weight matrix for each edge type. This technique effectively reduces
the number of trainable parameters. We train our model for 100 epochs. Our
model takes around two weeks to train on two NVIDIA Titan X GPUs.

5 Experiments

We introduce the datasets, baseline models and evaluation metrics that we use
in our experiments. Then, the experimental results are presented and discussed.

5.1 Data, Metrics, and Baseline Models

Datasets. The Visual Genome (VG) dataset [13] contains 108, 077 images. We
used Visual Genome version 1.4 release. This release contains cleaner object
annotations [32]. Annotations provide subject-predicate-object triples. A triplet
means that there is an edge between the subject and the object and the type of
the edge is indicated by the predictate. We experiment with two variations of
the VG dataset.

Following [32], we use the most frequent 150 object categories and 50 pred-
icates for scene graph prediction task. We call this variation VG1.4-a. This
results in a scene graph of about 11.5 objects and 6.2 relationships per image.
The training and test splits contains 70% and 30% of the images, respectively.

Following [18], we use the most frequent 1750 object categories and 347 pred-
icates for scene graph prediction task. We call this variation VG1.4-b. Follow-
ing [18], we used 5000 images for validation, and 5000 for testing. This variation
of the data allows large scale evaluation of our model.

Metrics. Top-K recall (Rec@K) is used as the metric, which is the fraction of
the ground truth relationship triplets (subject-predicate-object) hit in the top-K
predictions in an image. Predictions are ranked by the product of the objectness
confidence scores and the Q-values of the selected predicates. Following [32], we
evaluate our model on VG1.4-a based on three tasks as follows:

1. Predicate classification (PRED-CLS) task: to predict the predicates of all
pairwise relationships of a set of objects, where the location and object cate-
gories are given.

A
u

th
o

r 
P

ro
o

f



Dynamic Gated Graph Neural Networks for Scene Graph Generation 11

2. Scene graph classification (SG-CLS) task: to predict the predicate and the
object categories of the subject and object in all pairwise relationships, where
the location of the objects are given.

3. Scene graph generation (SG-GEN) task: to detect a set of object bounding-
boxes and predict the predicate between each pair of the objects, at the same
time. An object is considered to be properly detected, if it has at least 0.5
Intersection over Union (IoU) overlap with a bounding-box annotation with
the same category.

Following [18], we evaluate our model on VG1.4-b based on two tasks as follows:

1. Relationship phrase detection (REL-PHRASE-DET): to predict a phrase
(subject-predicate-object), such that the detected box of the entire relation-
ship has at list 0.5 IoU overlap with a bounding-box annotation.

2. Relationship detection (REL-DET): to predict a phrase (subject-predicate-
object), such that detected boxes of the subject and object have at least 0.5
IoU overlap with the corresponding bounding-box annotations.

Baseline Models. We compare our model with several baseline models includ-
ing the state-of-the-art models [18,32]. Faster R-CNN uses R-CNN to detect
object proposals, while CNN+TRPN trains a separate region proposal network
(RPN) on VG1.4-b.

[20] uses language priors from semantic word embeddings, while [32] uses an
RNN and learns to improves its predictions iteratively through message passing
across the scene graph. After a few steps the learned features are classified.

VRL [18] detects visual relationship and attributes based on a reinforcement
learning framework. To extract a state feature, they used the embedding of
the last two relationships and attributes that were searched during the graph
construction.

5.2 Results and Discussion

Tables 1 and 2 report our experimental results on VG1.4-a and VG1.4-b
datasets, respectively. CNN+RPN, Faster R-CNN, and CNN+TRPN train inde-
pendent detectors for object and predicate classes. As a result, they cannot
exploit relational information in the given image. D-GGNN outperforms the
state-of-the art models (VRL [18] and [32]) for scene graph generation.

Both D-GGNN and the message passing approach [32] leverage the power of
RNNs to learn a feature vector for each bounding-box. However, the message
passing suffers from imbalanced classification problem (often there is no edge
between many pairs of objects).
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Table 1. Experimental Results of the predicate classification, scene graph classifica-
tion, and scene graph generation tasks on the VG1.4-a dataset. We compare with
visual relationship detection with language priors [20], and scene graph generation by
iterative message passing [32]

Model PRED-CLS SG-CLS SG-GEN

R@50 R@100 R@50 R@100 R@50 R@100

[20] 27.88 35.04 11.79 14.11 00.32 00.47

[32] 44.75 53.08 21.72 24.38 03.44 04.24

D-GGNN 46.85 55.63 23.80 26.78 06.36 07.54

Table 2. Experimental Results of the relationship phrase detection and relationship
detection tasks on the VG1.4-b dataset.

Model REL-PHRASE-DET REL-DET

R@100 R@50 R@100 R@50

CNN+RPN [29] 01.39 01.34 01.22 01.18

Faster R-CNN [24] 02.25 02.19 - -

CNN+TRPN [24] 02.52 02.44 02.37 02.23

[20] 10.23 09.55 07.96 06.01

VRL [18] 16.09 14.36 13.34 12.57

D-GGNN 18.21 15.78 14.85 14.22

Both D-GGNN and VRL use deep Q-learning to generate the scene graph.
However, the representational power of VRL is limited, since it represents a state
by the embedding of the last two relationships and attributes that were searched
during the graph construction. In contrast, our state feature representation is
based on a GGNN which exploits contextual clues from the entire graph to more
effectively represent objects and their relationships.AQ2

Figures 2 and 3 illustrate some scene graphs generated by our model. The
D-GGNN predicts a rich semantic representation of the given image by rec-
ognizing objects, their locations, and relationships between them. For example,
D-GGNN can correctly detect spatial relationships (“trees behind fence”, “horse
near water”, “building beside bus”), parts of objects (“bus has tire”, “woman
has leg”), and interactions (“man riding motorcycles”, “man wearing hat”).
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Fig. 2. Some scene graphs generated by our model.
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Fig. 3. Some scene graphs generated by our model.
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6 Conclusions

We have presented a new model for generating a heterogeneous graph from
unstructured inputs using reinforcement learning. Our model builds on the
recently proposed GGNN model for computing latent node representations
that combines relational and feature information. Unlike the recently proposed
GGNN, the D-GGNN can be applied to an input when the structure of the input
digraph is not known in advance. The target application in this paper was the
scene graph generation task. The experiments on Visual Genome dataset show
that D-GGNN significantly outperforms the state-of-the-art models for scene
graph generation task.
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