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Abstract
This paper extends unsupervised statistical outlier de-
tection to the case of relational data. For nonrelational
data, where each individual is characterized by a feature
vector, a common approach starts with learning a gen-
erative statistical model for the population. The model
assigns a likelihood measure for the feature vector that
characterizes the individual; the lower the feature vector
likelihood, the more anomalous the individual. A dif-
ference between relational and nonrelational data is that
an individual is characterized not only by a list of at-
tributes, but also by its links and by attributes of the in-
dividuals linked to it. We refer to a relational structure
that specifies this information for a specific individual
as the individual’s database. Our proposal is to use the
likelihood assigned by a generative model to the indi-
vidual’s database as the anomaly score for the individ-
ual; the lower the model likelihood, the more anoma-
lous the individual. As a novel validation method, we
compare the model likelihood with metrics of individ-
ual success. An empirical evaluation reveals a surprising
finding in soccer and movie data: We observe in the data
a strong correlation between the likelihood and success
metrics.

Introduction
Outlier detection is an important data analysis task in many
domains (Hodge and Austin 2004). Statistical approaches
to unsupervised outlier detection are based on a generative
model of the data. The generative model represents normal
behavior. An individual entity is deemed an outlier if the
model assigns sufficiently low likelihood to generating its
features. We propose a new method for extending statisti-
cal outlier detection to the case of relational data. While in
this paper we employ Bayes nets as our generative model
class, the anomaly detection method can be used with any
statistical-relational model (for example, Markov Logic Net-
works, Probabilistic Relational Models, Bayes Logic Pro-
grams etc.) Our approach opens up outlier detection as
a promising new application area for statistical-relational
models.

A generic Bayes net (BN) structure is learned with data
for the entire population. The nodes in the BN represent fea-
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tures for links, of multiple types, and attributes of individ-
uals, also of multiple types. A difference between relational
and nonrelational data is that an individual is character-
ized not only by a list of attributes, but also by its links and
by attributes of the individuals linked to it. We refer to the
substructure comprising this information as the individual
database. The model likelihood is computed by using the
model parameter values that assign the highest possible like-
lihood to the individual database (Vuong 1989). The model
likelihood defines an outlier score: the lower the model like-
lihood, the more anomalous the individual. A low model
likelihood indicates that there are edges missing from the
generic BN that represent an association or correlation that
is present in the individual database.

As an alternative anomaly measure, we also consider a
variant where a generic class-level BN model is compared
with a specific BN model learned for the individual database.
The model log-likelihood ratio (LR) is the log-ratio of the in-
dividual model likelihood to the generic model likelihood. A
high model log-likelihood ratio indicates that the individual
BN contains edges that are missing from the generic BN,
but represent an association that is present in the individ-
ual database. Figure 1 shows a flow chart for computing the
model likelihood and likelihood ratio. Note that the likeli-
hood ratio is an inherently relational concept: if an entity is
characterized by a flat feature vector, the individual database
would contain just a single data point, which would not sup-
port learning a individual BN model.

Evaluation We analyze two real-world data sets, from the
UK Premier Soccer League and the Internet Movie Database
(IMDB). Unsupervised anomaly detection methods are no-
toriously difficult to evaluate because of the lack of ground
truth labellings of anomalous cases (Cansado and Soto 2008;
Xu and Shelton 2010). In this paper we take a new approach,
that compares likelihood-based anomaly metrics with other
meaningful and independent metrics for ranking individuals.
Our reference metrics are success rankings of individuals,
e.g. League Standing of a team. Success rankings are one
of the most interesting features to users, and therefore cor-
relations to success rankings are of special interest. Strong
correlations between likelihood metrics and meaningful in-
dependent success metrics provide evidence that the likeli-
hood metric is meaningful as well. What we discover in the
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Figure 1: Computation of likelihood metrics for scoring
anomalies. Generic Model Likelihood L: Learn a generic
Bayes net on the complete database. Score the generic Bayes
net on the individual database. Model Likelihood Ratio LR:
Learn an individual Bayes net on the individual database.
Compute the ratio of the generic BN/individual BN scores
on the individual database.

data are surprisingly strong correlations between typicality
and success.

Contributions The generative modelling approach to out-
lier detection is well established for nonrelational data. The
novelty diagram in Figure 2 illustrates conceptual similari-
ties and differences between that previous work and our new
proposal. Our main contributions may be summarized as fol-
lows.

1. Two new statistical outlier metrics for relational data.
2. A new application of relational learning methods, for out-

lier detection.

Related Work on Outlier Detection
To our knowledge, this is the first work that uses a Bayes net
generative model for relational outlier detection. Our work
applies two new advances in statistical-relational learning, a
recent field that combines AI and machine learning (Getoor
and Taskar 2007; Domingos and Lowd 2009). (1) We use a
tractable definition of the likelihood function for a Bayes net
given a (sub)database that generalizes the standard defini-
tion for the nonrelational case (Schulte and Khosravi 2012;
Alsanie and Cussens 2012). (2) We apply the learn-and-join
algorithm (LAJ), a state-of-the-art Bayes net structure learn-
ing method for relational data (Schulte and Khosravi 2012).

Relational Outlier Detection. Many approaches to rela-
tional outlier detection are based on discovering rules that
represent the presence of anomalous associations for an in-
dividual or the absence of normal associations (Maervoet et
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Figure 2: Novelty Diagram for conceptually positioning the
new work in comparison with previous work.

al. 2012; Gupta et al. 2013). Such rules are informative, but
they are not based on a statistical model and do not provide
a single aggregate outlier measure for each individual.

The community detection approach uses the relational
structure to identify communities (Gao et al. 2010; Sun et al.
2013). Given a (soft) assigment of individuals to communi-
ties, outliers can be defined similar to the nonrelational fea-
ture vector setting, where normal behavior is measured with
respect to a community. Our model also aggregates informa-
tion from individual features and links of different types, but
does not require the identification of communities.

Nonrelational Outlier Detection. Bayesian networks
have been successfully applied for unsupervised anomaly
detection (Hill, Minsker, and Amir 2007; Xu and Shelton
2010; Babbar and Chawla 2010) with nonrelational i.i.d.
data. For nonrelational data, previous evaluation methods in-
clude the following. (i) synthetic models with synthetic nor-
mal and abnormal data points that provide ground-truth la-
bels for comparison. (ii) Real-world datasets where domain
expertise was used to evaluate whether an outlier identifica-
tion was correct. In future work we will extend our evalua-
tion to include this methodology.

Bayes Nets for Relational Data
We adopt the Parametrized Bayes net (PBN) formalism
(Poole 2003) that combines Bayes nets with logical syntax
for expressing relational concepts.

Functor Terms A functor is a function or predicate sym-
bol. Each functor has a set of values (constants) called the
domain of the functor. The domain of a predicate is {T ,F}.
A predicate of arity at least two is a relationship functor.
Relationship functors specify which individuals are linked.



Other functors represent features or attributes of an indi-
vidual or a tuple of individuals (i.e., of a relationship). A
population is a set of individuals. A term is of the form
f(�1, . . . ,�k) where f is a functor and each �i is a first-
order variable or a constant denoting an individual. In the
context of Bayes nets, we refer to terms as Parametrized
Random Variables (PRVs). The grounding concept rep-
resents moving from the population-level to the individual
level. A grounding replaces each first-order variable in a
term by a constant; the result is a ground term. A grounding
may be applied simultaneously to a set of terms. Relational
data can be represented in terms of data tables that show the
value of ground terms.

Example The Opta dataset represents information about
premier league data (MCFC Analytics 2012). The basic pop-
ulations are teams, players, matches, with corresponding
first-order variables T ,P ,M . Table 1 specifies values for
ground terms.

Table 1: Sample Population Data Table (Soccer). The first
three column headers show first-order variables for different
populations. The remaining columns represent features.

MatchId M TeamId T PlayerId P First goal(P,M) TimePlayed(P,M) ShotEff(T,M) result(T,M)
117 WA McCarthy 0 90 0.53 win
147 WA McCarthy 0 90 0.35 loss
148 WA McCarthy 0 85 0.57 loss
15 MC Silva 1 90 0.59 win
175 MC Silva 0 90 0.61 win
. . . . . . . . . . . . . . . . . .

Table 2: Sample Individual Data Table, for team T = WA.
MatchId M TeamId T = WA PlayerId P First goal(P,M) TimePlayed(P,M) ShotEff(WA,M) result(WA,M)

117 WA McCarthy 0 90 0.53 win
147 WA McCarthy 0 90 0.35 loss
148 WA McCarthy 0 85 0.57 loss
. . . WA . . . . . . . . . . . .

A novel aspect of our paper is that we learn generative
models for specific individuals as well as for the entire pop-
ulation. The appropriate data table for a target individual
is formed from the population data table by restricting the
relevant first-order variable to the target individual. For ex-
ample, the individual database for target individual Team
WiganAthletic, forms a subtable of the data table of Table 1
that contains only rows where TeamID = WA; see Table 2.

Bayesian Networks A Bayesian Network (BN) is a di-
rected acyclic graph (DAG) whose nodes comprise a set
of random variables and conditional probability parame-
ters (Pearl 1988). A Parametrized Bayes Net (PBN) is a
Bayesian network structure whose nodes are PRVs. For most
of the paper we refer to PBNs simply as Bayesian networks,
and to PRVs simply as random variables.

The relationships and features in an individual database
define a set of nodes for Bayes net learning. Figure 3 shows a
sample Bayes net for the entire Team population and another
one for Wigan Athletic. We use the following notation.

• DP is the database for the entire population; cf. Table 1.

• Dt is the restriction of the input database to the target in-
dividual; cf. Table 2.

  PassEff(T, M) 

(a) (b) 
  GoalDiff(T, M) 

  Result(T, M) 

  ShotEff(WA, M)=2   TeamFormation(WA, M)=1 

  Result(WA, M)=Win 

Figure 3: (a) Generic Bayes Net. (b) Individual Bayes net
for Wigan Athletic (WA). The ndoes in the individual BN
are derived from the generic BN by setting T = WA.

• MP is a model (e.g., Bayesian network) learned with DP
as the input database; cf. Figure 3(a).

• Mt is an individual model (e.g., Bayesian network)
learned with Dt as the input database; cf. Figure 3(b).

Datasets
In this paper, data tables are prepared from Opta
data (MCFC Analytics 2012) and IMDB (Internet Movie
Database ). Our datasets are available on-line (Khosravi et
al. 2014). Table 3 lists the populations and features. Table 4
shows summary statistics for the datasets.

Soccer Data The Opta data were released by Manchester
City. It lists all the ball actions within each game by each
player, for the 2011-2012 season. For each player in a match,
our data set contains eleven player features. For each team
in a match, there are five features computed as player fea-
ture aggregates, as well as the team formation and the result
(win, tie, loss). There are two relationship random variables,
Appears Player(P ,M ), Appears Team(T ,M ). We store
the data in a relational database, with a table for each base
population and a table for each relationship.

IMDB Data The Internet Movie Database (IMDB) is
an online database of information related to films, televi-
sion programs, and video games. The IMDB website of-
fers a dataset containing information on cast, crew, titles,
technical details and biographies into a set of compressed
text files. We preprocessed the data (Peralta 2007) to ob-
tain a database with seven tables: one for each population
and one for the three relationships Rated(User ,Movie),
Directs(Director ,Movie), and ActsIn(Actor ,Movie).

Likelihood-Based Anomaly Metrics
In principle our approach can be used with any generative
model class, such as Bayesian Networks, Markov Logic Net-
works, Probabilistic Relational Models, Bayes Logic Pro-
grams etc. All that is required is that a generative model de-
fine a relational model log-likelihood function

L(M ,D)

that assigns a real number to a structure database D given
a model M . A common approach for defining the likeil-
hood function to use a template semantics (knowledge-based
model construction) for assigning a likelihood to a relational



Table 3: Attribute Features. µ = average,
P

= sum. For re-
lationships please see text.

Individuals Features
Soccer-Player

per Match TimePlayed ,Goals ,SavesMade ,
ShotE↵ ,PassE↵ ,WinningGoal ,
FirstGoal ,PositionID ,
TackleE↵ ,DribbleE↵ ,
ShotsOnTarget

Soccer-Team
per Match Result ,TeamFormation ,

P
Goals ,

µShotE↵ ,µPassE↵ ,µTackleE↵ ,
µDribbleE↵ .

IMDB-Actor Quality , Gender
IMDB-Director Quality ,avgRevenue
IMDB-Movie year ,isEnglish ,Genre ,Country ,

RunningTime , Rating by User
IMDB-User Gender , Occupation .

Table 4: Summary Statistics for the IMDB and Soccer data
sets.

Premier League Statistics IMDB Statistics
Number Teams 20 Number Movies 3060
Number Players 484 Number Directors 220
Number Matches 380 Number Actors 98690
avg player per match 26.01 avg actor per movie 36.42

dataset (Getoor and Taskar 2007). To emphasize the general
applicability, we state our definitions abstractly, then discuss
how to implement them using Bayesian networks in the next
section.

A generative model assigns a likelihood to a single data
point. Low likelihood of a datapoint indicates an anomaly.
Defining a likelihood for relational data is more compli-
cated, however, because an individual is characterized not
only by a feature vector, but by an individual database that
lists the individual’s links and the attributes of linked enti-
ties. Our proposal in this paper is to use as an anomaly score
the model likelihood assigned to the individual database.
The individual database Dt is defined by instantiating
(grounding) the value of a population variable with the tar-
get individual, and extracting from the entire population
database the facts that satisfy this instantiation; cf. Table 2.
Every statistical-relational model defines a log-likelihood
function L(M ,D) for any structured database, so once the
individual database Dt is constructed, we can apply the log-
likelihood function to obtain an anomaly score.

We examine two definitions of an anomaly metric that are
based on the relational model likelihood function L(M ,D).
Both metrics are defined so that a higher value indicates a
more anomalous individual. The generic likelihood metric
is the magnitude of the log-likelihood of a model learned for
the general population, evaluated on an individual database
(see Figure 1). Using the notation above, this quantity is de-
noted by

�L(MP ,Dt), (1)
which we typically abbreviate as �L.

The log-likelihood ratio LR is the difference between
the log-likelihood of the individual BN on the individual
database and the log-likelihood of the generic BN on the
individual database:

L(Mt ,Dt)� L(MP ,Dt), (2)
which we typically abbreviate as LR.

Anomaly Score for Bayesian Networks
We now illustrate how the above recipe can be applied with
Bayesian networks, which we utilize in this paper. For the
model likelihood function L(M ,D), where M denotes a
Bayesian network, we employ the random selection pseudo
log-likelihood (Schulte 2011). This pseudo log-likelihood
can be computed as follows for a given Bayesian network
structure and database.

1. For each parent-child configuration, use the maximum-
likelihood estimate of the conditional probability of the
child given the parent.

2. Multiply the logarithm of this estimate by the instantiation
proportion of the parent-child configuration. The instan-
tiation proportion is the number of instantiating ground-
ings, divided by the total number of possible instantia-
tions.

3. Sum this product over all parent-child configurations and
all nodes.

Example. In the BN structure of Figure 3, consider the
parent-child configuration as shown in Figure 3(b). Sup-
pose that the data show that team WA played 20 matches
in formation 1 with team shot efficiency at level 2 and
won 12 of these. Then the maximum likelihood estimate
of winning given the parent values is 12/20 = 0.6. The
instantiation count is 10, so the instantiation proportion is
10/20 = 0.5. This parent-child configuration contributes
ln 0.5 · 0.6 = �0.415 to the aggregate pseudo-likelihood.

The combination of Bayesian network and the pseudo-
likelihood has several attractive properties as an anomaly
metric. (1) It can be computed in closed form given the suf-
ficient database statistics (the instantiation counts). This is
faster than computing conditional likelihoods for each indi-
vidual ground term. (2) Instantiation counts are standardized
to be proportions. This avoids giving exponentially more in-
fluence to features with more groundings (Schulte 2011).

Bayes Net Learning. We need to learn a Bayes net struc-
ture for the entire population database as well as to each
individual database. We apply the learn-and-join algorithm
to obtain these Bayes net models. Any structure learning
method can be used, the details of the method do not mat-
ter here. Table 5 shows the learning times for applying the
learn-and-join algorithm to the whole database (generic BN)
and the average for the individual databases (individual BN).
The learning algorithms were executed with 64-bit Cen-
tos with 4GB RAM and an Intel Core i5-480 M processor.
Learning on the soccer dataset is fast. Learning on the IMDB
database is feasible at around 50 minutes. It takes the longest



Database Generic BN Individual BN
Soccer-Team 10 min 0.33 min
Soccer-Player 10 min 0.25 min
IMDB-Movie 50 min 1.00 min

Table 5: Bayes Net structure learning time for different
datasets.

because of the large number of individuals (over 98,000 Ac-
tors) and fairly complex relationships. The subdatabase for
an individual movie is small, so individual learning is fast,
and it is possible to learn 3,060 individual models.

Empirical Distribution of Likelihood-Metrics
We show the distribution of the �L and LR values on the
soccer and the IMDB datasets. We observe that subtracting
the common trend in the population, tends to make individ-
ual deviations become more pronounced: The tail of the LR
distribution is longer than that of the �L distribution. This is
because the log-likelihood ratio cancels out areas of agree-
ment between the generic and the individual BN models.

Figure 4 presents six histograms, two for each type of in-
dividual, comparing the generic BN likelihood �L to the
LR. Density estimation curves smooth the empirical distri-
bution. The density curves were produced by R’s default
density function (the S3 Gaussian kernel estimator). If
we think of the anomaly metric as measuring a distance from
the generic individual (e.g., the generic team), we observe a
pronounced central tendency for that distance. We may in-
terpret this mean as an average degree of atypicality for an
individual’s pattern of associations. There is a fairly large
tail to the left of the mean that represents individuals who
are more typical than most, and a smaller tail to the right
that represents individuals who are definite outliers in their
class. We next relate the likelihood and likelihood ratio met-
rics to metrics that identify successful individuals.

Likelihood Metrics vs. Success Metrics
The aim of this section is to compare the LR metric with
other meaningful metrics for comparing individuals. Our
reference metrics are success rankings of individuals, shown
in Table 6. Success rankings are one of the most interesting
features to users. Strong correlations between an anomaly
metric and meaningful success metrics provide evidence that
the anomaly metric is meaningful as well. We measure cor-
relation strength by the standard correlation coefficient ⇢.
The coefficient ranges from -1 to 1, where 0 means no corre-
lation and 1 or -1 indicate maximum strength (Fisher 1921).

Dataset Success Metric Min Max Standard Dev. Mean
IMDB Rating 1.8 9 1.14 6.3
Soccer-Player TimePlayed 5.0 3420 1015.69 1484.0
Soccer-Team Standing 1.0 20 5.91 10.5

Table 6: Success metrics.

Our main observation is that typicality correlates with
success. These correlations are remarkable in at least two
respects. (1) The strength of the correlation is surprisingly

⇢(#Parameters,
Standing)

⇢(LR,
Standing)

⇢(-L,
Standing)

All Teams -0.10 0.19 0.52
Top Teams 0.44 0.62 0.45

Bottom Teams 0.33 0.41 0.38

Table 7: Teams: Correlations of team-standing with team-
#parameters, team LR ratio and team log-likelihood �L
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(b) For top half teams. The de-
pendent variable is 10-standing.

Figure 5: Teams: Regression plane of Standing on the LR
ratio and #parameters.

high: magnitudes range from 0.3 to 0.6 where 1 is the max-
imum strength. (2) The trend holds across two different do-
mains, different types of individuals, and different success
metrics. The correlation between typicality and success be-
comes most apparent when we divide the population into
different subgroups or strata.

Team Standing The reference metric is Standing in the
final Premier League table. The most successful team has
Standing = 1 and the least successful team has Standing =
20. Table 7 shows the correlation between the model likeli-
hood metrics and Team Standing. For teams the number of
parameters in the individual BN correlates with Standing as
well so we include it. If we distinguish Top Teams (Standing
 10) from Bottom Teams (Standing > 10), a strong posi-
tive correlation emerges between �L resp. LR and Stand-
ing, meaning that unusual teams tend to have worse (i.e.,
higher) standing.

The number of parameters correlates positively with
Standing for Top Teams and Bottom Teams. We interpret
this result as saying that teams with complex correlation pat-
terns tend to perform worse. The plane of best fit is shown
in the 3-D scatterplots of Figure 5.

Player Time Played The reference metric is TimePlayed,
the total time that a player played over all matches in the
season. This metric was shown to correlate strongly with
other success metrics, such as salary, on MLS soccer data
(T.Swartz 2013). Table 8 shows the correlations between the
likelihood metrics and TimePlayed. For model likelihood
(magnitude) �L, there is a strong positive correlation with
TimePlayed. The correlation is even greater for subpopula-
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Figure 4: Generic BN model log-likelihood �L (magnitude) vs. individual BN model log-likelihood ratio. The x-axis shows the
generic model log-likelihood �L resp. the log-likelihood ratio LR. Higher x-values indicate more anomalous individuals. The
y-axis shows densities derived from the counts of x-values divided by total number of individuals. The plots include density
estimation curves. N = number of individuals.

⇢(Parameter,
TimePlayed)

⇢(LR,
TimePlayed)

⇢(�L,
TimePlayed)

All Players 0.00 0.34 0.20
Goalkeepers -0.37 0.58 0.60
Defenders 0.09 0.26 0.54

MidFielders -0.20 0.42 0.63
Strikers -0.15 0.17 0.60

Table 8: Players: Correlations of TimePlayed, with player-
#parameters, player LR ratio and player log-likelihood �L.

Genre ⇢(LR,Rating) ⇢(L,Rating)
All Genres 0.28 0.13

Drama 0.28 0.29
Action 0.42 0.29
Sci-Fi 0.35 0.32

Adventure 0.34 0.37
Film-Noir 0.49 0.5

Table 9: Movies: Correlations of Average Rating with movie
LR ratio and movie log-likelihood �L, by Genre. Correla-
tions with #Parameters are weak (not shown).

tions defined by the player positions Goalkeepers, Defend-
ers, and MidFielders. For the log-likelihood ratio LR, there
is a substantive correlation as well. Thus unusual players
tend to play more minutes.

Movie Ratings The reference metric is the average user
rating of the movie, called Rating. Table 9 shows the correla-
tions between the likelihood metrics and Rating. For model
likelihood (magnitude) �L, there is a positive correlation
with Rating. This trend becomes stronger for strata defined
by genres; similarly for the LR metric. The same movie may
fall into different genres so the strata are not disjoint. Thus
unusual movies tend to receive higher ratings.

In summary, we observe strong correlations between the
likelihood metrics and the success metrics. Among players
and movies, less typical individuals tend to be more success-
ful, whereas among teams, more typical individuals tend to
be more successful. Thus the direction of the correlation ap-
pears to be domain-specific. The fact that success can be pre-
dicted from our proposed anomaly metrics is an interesting
and potentially useful feature of these metrics. Our argument
is that a correlation with a meaningful quantity provided ev-
idence that our proposed metrics are meaningful as well.

Conclusion
We presented a new approach for applying Bayes nets to re-
lational outlier detection. The key idea is to learn a graphical
model to represent population-level associations, and com-
pare how well the generic model fits individual-level asso-
ciations. A variant learns another graphical model to rep-
resent individual-level associations, and compare how well
each model fits the relational data that characterize the indi-
vidual, using the model likeilhood ratio.

We applied efficient state-of-the-art relational learning
methods to construct one generic Bayes net for a given do-
main and many Bayes nets for individuals (e.g., 3060 models
for IMDB movies). The likelihood ratio highlights individ-
ual deviations more than the simple model likelihood. The
data show a surprisingly strong correlation between our pro-
posed anomaly metrics and success metrics. We believe that
closer investigation of the correlation between success and
typicality is a fruitful topic for future work.

Instead of estimating parameters for the generic BN from
the individual database, an option is to estimate parame-
ters from the population database. The likelihood score then
reflects not only individual deviations in qualitative model
structure, but also in event frequencies. The difficulty is that
individual frequency deviations conflate group membership
features with causal connections. For instance, relatively few
soccer players are goalies, so a BN with frequency estimates
derived from the general population is biased towards view-
ing goalies as anomalous. Combining individual deviations
in terms of qualitative structure, as discussed in this paper,
and quantitative frequency into a single meaningful metric
is a challenging and fruitful topic for future work.

Overall, our new model likelihood metrics for statistical-
relational outlier detection showed promising results on the
Soccer and IMDB dataset. They provide a new approach for
applying AI techniques to a challenging and practically im-
portant topic.
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