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Abstract

This is a position paper that presents a new approach
to identifying important nodes or entities in a complex
heterogeneous network. We provide a novel definition
of an importance score based on a statistical model: An
individual is important to the extent that including an
individual explicitly in the model improves the data fit
of the model more than it increases the model’s com-
plexity. We apply techniques from statistical-relational
learning, a recent field that combines Al and machine
learning, to identify statistically important individuals
in a scalable manner. We investigate empirically our ap-
proach with the OPTA soccer data set for the English
premier league.

Introduction

We present a new approach, based on a statistical model,
to identifying important individuals in a complex network.
Many, if not most, new datasets contain information about
networks whose nodes are linked entities. Identifying im-
portant individuals in a network is an important task for net-
work analysis. Our new statistical approach is as follows.
First, we learn a baseline generic statistical model that de-
scribes the dependencies among link types and node features
in the network. The generic model refers only to classes of
individuals, not to any individual in particular. While adding
an individual to the model increases the expressive power
of the model, it also increases the number of model param-
eters and hence the model complexity. A standard statisti-
cal model selection score quantifies the trade-off between
data fit and model complexity. The importance score of an
individual is the improvement in the model selection score
that results from introducing the individual into the model.
For typical statistical scores (e.g., BIC, AIC), the score im-
provement can be interpreted in minimum description length
terms: whereas adding the individual to the model requires
extra bits for specifying the new parameter values, it saves
bits by fitting the data more closely. Our model class in this
paper is Bayes nets, and the statistical score is the Bayes
Information criterion (BIC).

Compared to other approaches for ranking individuals in a
network, our statistical approach has several advantages. 1)
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If the statistical score can be evaluated quickly, as is the case
with BIC, computing the score improvement associated with
an individual is fast. 2) The importance metric is derived
from a general metric of predictive power. Because impor-
tance is tied to correlations and probabilitic predictions, the
metric provides an explanation of the ranking. 3) Most pre-
vious work assumes a homogeneous network with only one
type of node and link (e.g., social network, Twitter, web-
pages) (Chen et al. 2009). We use models from statistical-
relational learning that apply generally to networks with any
number of node link types. 4) The statistical score provides
a discrete decision as to whether the individual is important
or not (score improvement > 0), in addition to ranking. This
does not require specifying a k-value for selecting the top-k
individuals.

We present a preliminary investigation of our approach
on premier league soccer data. Here a player is statistically
important to the extent that introducing them into a model
increases the quality of predicting their team’s results and
other features of teams and matches.

Related Work

In a Bayesian network model, single-table features corre-
spond to nodes (e.g., age, gender). These feature nodes
should be not be confused with nodes in the data network
that represent individuals (e.g. Silva, Chelsea) (Neville and
Jensen 2007). For single-table data, there has been much
work on selecting, fusing, ranking, and scoring features. The
majority of this work applies to explicitly listed features
(e.g., column headers) that are shared between independent
individuals. Single-table feature selection is different from
the problem we address: 1) We describe a method for in-
troducing new features that are not explicitly listed in the
data. These new features are of a special type, intuitively
“being related to special individual z”. 2) In our definition,
the importance of an individual x is based on how much
being linked to z explains the features of other individuals.
Thus our scoring method is designed to take into account the
interdependence of linked individuals that is the defining as-
pect of relational data.

The task of identifying important individuals was stud-
ied in many contexts such as sparse data university en-
vironments (Balog et al. 2007) and for biblogaphic data
and digital libraties (Deng, King, and Lyu 2008)(Zhou et
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objects in a homogenous network (Hulgeri and Nakhe 2002;
Nie et al. 2005); for an extension to heterogeneous networks
see (Cao et al. 2012). Several communities have worked
on sports data with the goal of predicting match results
(Joseph, Fenton, and Neil 2006; Baio and Blangiardo 2010;
Vaz de Melo, Almeida, and Loureiro 2008; Onody and de
Castro 2004).

Scoring

We use Poole’s Parametrized Bayes nets that are defined as
follows. The relational structure contains a list of popula-
tions P41, ..., Pk, such as player, teams, matches. Popula-
tion variables such as Player, Team1, Team2, Match are
associated with a unique population. A functor is a predicate
or function. A functor node is of the form f (o, ...,...,0,)
where each o; is a constant or variable of the appropriate
population. A Parametrized Bayes net is a Bayes net whose
nodes are functor nodes. The state-of-the-art learn-and-join
algorithm (Schulte et al. 2012) takes as input (1) a rela-
tional database D representing a network, (2) a set of functor
nodes, and produces a Bayes net for the functor nodes.

The user chooses a statistical score score(B,D) that
scores a Parametrized Bayes net B for a database D. In
our experiments, we used the relational Bayes Information
Criterion (BIC)(Schulte 2011). We evaluate the score im-
provement due to a target individual ¢ as follows. Let ¢ be a
constant denoting an individual that instantiates population
variable X, with associated population P. Let D;" be the
database where the population of X is restricted to the sin-
gle member ¢. Let D, be the database where ¢ is removed
from the population of X.

1. Learn a generic model Bp for the entire database.

2. Apply Bayes net learning to (1) input database D;", and
(2) the functor nodes that have X replaced by ¢. Call the
result B;.

3. The score improvement is given by
Pl-1
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Example. For the Bayes net model of Figure 1, we
can replace the variable Player (c) by Player = Nasri
(b). The database Dj contains only rows where team =
ManchesterCity (MC) and player = Nasri. The database
D, contains the rows for all the other players of MC.
Figure (a) illustrates the result of the same procedure for
Player = Silva.

Dataset

The dataset in this paper is the Opta data, released by
Manchester City. It is a time coded feed that lists all the ball
actions within each game by each player from 2011 to 2012.
Number of goals, passes, fouls, tackles, saves and blocks and

score(Bp, Dy )—score(Bp, D).

Table 1: Data for strikers and mid-fielders of Manchester
City: Model Score Improvement, Expected percentage of
wins when player plays (model estimate) = PWP, Actual
Percentage, PWP/Average Time played, salary.

also position assigned to a player in a match are examples of
the information associated with each player. The informa-
tion can be visualized as a heterogeneous network that links
players to teams, and teams to matches.
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Figure 1: Generic Bayes Net for Manchester City (MC) and
the special models for their players Nasri and Silva.

Figure 1 shows special models built for two players of
Manchester City (MC). In the generic MC model, scoring
the first goal does not predict the result but there is a corre-
lation if Nasri or Silva score it. The length of time played
by Silva positively correlates with higher results, but not
for Nasri. This illustrates how the Bayes net analysis can
find qualitative differences between individuals. We com-
pare the player’s importance score with a simple measure of
their value to the team: how the MC average number of wins
changes given that they play (WinPercentage). The average
number of MC wins is 78%. The BN general population es-
timates the winning percentage at 70%. The Predicted Win-
Percentage column shows that this estimate is improved for
each player by building a specific model (except for Nasri).
The last two columns in Table 1 show that if we divide each
player’s WinPercentage by their average time played, there
is a strong correlation with salary (r = 0.813). The table
shows data for the strikers and midfielders for whom we
could obtain salary data.

Conclusion

We introduced a new statistical approach to identifying im-
portant individuals in a heterogenous network. The impor-
tance scores are fast to compute. The score results point to
qualitative differences between individuals, and improve es-
timates of a player’s contribution. These estimates correlate
strongly with contribution metrics that are independent of
the score (e.g., player salary). Questions for future work in-
clude defining a discriminative version of our importance
score, how to identify clusters of statistically similar play-
ers, and how to combine the generic Bayes net and the indi-
vidual Bayes nets into a single Bayesian hierarchical model
(Spiegelhalter et al. 1996)(Gyftodimos and Flach 2002).
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