

SQL for SRL: Structure Learning Inside a Database System

Oliver Schulte and Zhensong Qian, Simon Fraser University, Canada

- Statistical-Relational Learning: Learn a joint statistical model for *all* tables in the input database.
- New approach to *SRL* system building:
- The RDBMS stores structured objects for statistical analysis as *first-class citizens* in the

Model Manager Parameter Manager Score Computation

student id

intelligen

The Parameter Manager

Goal: Learn Bayesian Network Parameters

- Stored in Conditional Probability (CP) table.
- Maximum Likelihood Estimate are easy to compute from database counts.

	Table Name	Column Headers in Random Variable Database					
	Pvariables	Pvid	TABLE_NAME				
•		С	course				
		Р	prof				
		S	student				
	1Variables	1VarID	COLUMN_NAME	Pvid			
		diff(C)	diff	С			
		intelligence(S)	intelligence	S			
		popularity(P)	popularity	Р			

database.

- SQL is used to build and transform statistical objects:
 - Structured Model (Bayesian network, Markov Logic Network).
 - Parameter Estimates.
 - Sufficient Statistics.
- Empirical evaluation: leveraging the RDBMS capabilities achieves scalable learning and fast model testing.
- All code and datasets are available online [1].

Contributions

- Identifying new system requirements for multirelational machine learning that go beyond single table machine learning.
- An integrated set of SQL-based solutions for providing these system capabilities.

	Capa(P,S)	RA(P,S)	Salary(P,S)	CP	
	4	Т	high	0.45	
	5	Т	high	0.36	
	3	Т	high	0.18	
	3	Т	low	0.20	
	2	Т	low	0.40	
	1	Т	low	0.40	
	2	Т	med	0.22	
	3	Т	med	0.44	
	1	Т	med	0.33	

CP table

. .					0
5		4	5	Т	hig
8		2	3	Т	hig
)		1	3	Т	lov
))		2	2	Т	lov
)		2	1	Т	lov
2		2	2	Т	me
4		4	3	Т	me
3		3	1	Т	me

	ranking(S)	ranking			S	
rating(C)		rating				
	teachingability(P)	teachingability			Р	
	2VarID	COLUMN_NAME1	COLUMN_NAME2		Pvid1	Pvid2
	capability(P,S)	p_id	s_id		Р	S
2Variables	grade(C,S)	c_id	s_id		С	S
	salary(P,S)	p_id	s_id		Р	S
	sat(C,S)	c_id	s_id		С	S
	RVarID	TABLE_NAME	COLUMN_NAME1	COLUMN_NAME2	Pvid1	Pvid2
Relationship	RA(P,S)	RA	p_id	s_id	Р	S
	Registered(C,S)	Registered	c_id	s_id	С	S

Meta data about random variables stored in database tables.

• Domain of possible values.

•

• Pointer to corresponding data table/column.

variables. • Count Manager: uses the meta data in the VDB database to compute multi-relational sufficient statistics for a set of random variables [4].

DB system catalog to define a default set of random

• Schema Analyzer: examines the information in the

Random variables

Model Manager: supports the construction and querying of large structured statistical models.

SELECT COUNT(*) AS Count, Capability as `Capa(P,S)`, 'T' as `RA(P,S)`, Salary as FROM 'RA';

Contingency Table

Results

Task: learning a multi-relational Bayesian network

Dataset	# Database Tuples	# Sufficient Statistics (SS)	SS Computing Time (s)	#BN Parameters
Movielens	1,010,051	252	2.7	292
Mutagenesis	14,540	1,631	1.67	721
UW-CSE	712	2,828	3.84	241
Mondial	870	1,746,870	1,112.84	339
Hepatitis	12,927	12,374,892	3,536.76	569
IMDB	1,354,134	15,538,430	7,467.85	60,059

ER-Design University Domain

student

The Count Manager

Goal: for a conjunctive query, compute the instantiation

count = result set size.

- Stored in Contingency (CT) Table [4].
- Main computational cost in learning.

• BayesStore [3]: all statistical objects are first-class citizens in a relational database. Inference, no learning.

ourse

diff

rating

course id

Registered

- MadLib [5]: leverages SQL for single-relational data table analysis.
- Tuffy [7]: reliable and scalable inference and parameter learning for Markov Logic Networks with an RDBMS. No structure learning.

References

- 1. Qian, Z.; Schulte, O. The BayesBase System. www.cs.sfu.ca/ ~oschulte/BayesBase
- 2. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach Prentice Hall, 2010.
- 3. Wang, D. Z.; Michelakis, E.; & et al. BayesStore: managing large, uncertain data repositories with probabilistic graphical models, PVLDB, 2008, 1, 340-351.
- 4. Qian, Z.; Schulte, O. & Sun, Y. Computing Multi-Relational Sufficient Statistics for Large Databases, CIKM 2014, 1249-1258.
- 5. Hellerstein, J. M.; Ré, C.; Schoppmann, F.; & et al, The MADlib Analytics Library: Or MAD Skills, the SQL, PVLDB, 2012, 5, 1700-1711
- 6. Schulte, O. & Khosravi, H. Learning graphical models for relational data via lattice search Machine Learning, 2012, 88, 331-368 7. Niu, F.; Ré, C.; Doan, A. & Shavlik, J. W. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS PVLDB, 2011, 4, 373-384

Bayesian Network Structure Learning [6].

The Model Manager

- Nodes = Random Variables
- Edges are stored in Database tables
- Model selection scores are also stored, not shown (BIC, AIC, BDeu)

Child	Parent
Capability(P,S)	RA(P,S)
Capability(P,S)	Salary(P,S)
Teachingability(P)	Popularity(P)
Teachingability(P)	RA(P,S)

Problem: need to generate SQL queries for **arbitrary** variable lists. **Solution**: use Meta Data + **Meta Queries**

General Form of SQL Count Query:

SELECT COUNT(*) AS Count, <VARIABLE-LIST> **FROM TABLE-LIST GROUP BY <VARIABLE-LIST>** WHERE <Join-Conditions>

Metaqueries	Entries
CREATE TABLE Select_List AS	COUNT(*) as "count"
SELECT RVarID, CONCAT('COUNT(*)',' as "count"') AS Entries	`popularity(P)`
FROM Relationship	`teachingability(P)`
SELECT RVarID, 1VarID AS Entries	`intelligence(S)`
FROM Relationship_1Variables;	`ranking(S)`
CREATE TABLE From_List AS SELECT RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries	@database@.prof AS P
FROM Relationship_Pvariables UNION DISTINCT	@database@.student AS S
SELECT RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries FROM Relationship;	@database@.RA AS `RA`
CREATE TABLE Where_List AS SELECT	`RA`.p_id = P.p_id
RVarID, CONCAT(RVarID,'.',COLUMN_NAME,' = ', Pvid,'.', REFERENCED_COLUMN_NAME) AS Entries FROM Relationship_Pvariables;	`RA`.s_id =S.s_id

Comparison with other statistical-relational learning (Markov Logic Networks)

Database and performance statistics for MRLBase

Dataset	RDN_Boost	MLN_Boost	MRLBase	MRLBase-CT
MovieLens	92.7min	N/T	1.12	0.39
Mutagenesis	118	49	1	0.15
UW-CSE	15	19	1	0.27
Mondial	27	42	102	61.82
Hepatitis	251	230	286	186.15
IMDB	N/T	N/T	524.25	439.29

The RDBMS support for multi-relational learning translates into orders of magnitude improvements in speed and scalability.

Speedup on other tasks: compute model selection score, test models, cross-validation. Not shown.

Meta Query Count(*) Query Variable List

- Multi-relational learning requires new system capabilities.
 - ➢ leverage SQL, RDBMS.
- Fast system development through high-level SQL constructs.
- Manage large statistical objects: parameters, sufficient statistics.
- Fast native support for counting (count(*)).
- Future Directions:
 - distributed processing, in-memory
 - computing (SparkSQL)
 - Integrate with inference systems (BayesStore, Tuffy)