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Abstract

Bayes nets (BNs) for relational databases are a major re-

search topic in machine learning and artificial intelligence.

When the database exhibits cyclic probabilistic dependen-

cies, measuring the fit of a BN model to relational data with

a likelihood function is a challenge [5, 36, 28, 9]. A com-

mon approach to difficulties in defining a likelihood func-

tion is to employ a pseudo-likelihood; a prominent exam-

ple is the pseudo likelihood defined for Markov Logic Net-

works (MLNs). This paper proposes a new pseudo likelihood

P ∗ for Parametrized Bayes Nets (PBNs) [32] and other re-

lational versions of Bayes nets. The pseudo log-likelihood

L∗ = ln(P ∗) is similar to the single-table BN log-likelihood,

where row counts in the data table are replaced by frequen-

cies in the database. We introduce a new type of seman-

tics based on the concept of random instantiations (ground-

ings) from classic AI research [12, 1]: The measure L∗ is

the expected log-likelihood of a random instantiation of the

1st-order variables in the PBN. The standard moralization

method for converting a PBN to an MLN provides another

interpretation of L∗: the measure is closely related to the log-

likelihood and to the pseudo log-likelihood of the moralized

PBN. For parameter learning, the L∗-maximizing estimates

are the empirical conditional frequencies in the databases.

For structure learning, we show that the state of the art

learn-and-join method of Khosravi et al. [18] implicitly max-

imizes the L∗ measure. The measure provides a theoretical

foundation for this algorithm, while the algorithm’s empir-

ical success provides experimental validation for its useful-

ness.

Keywords: Statistical-Relational Learning, Bayes

Nets, Pseudo Likelihood, Lattice Search.

1 Introduction

Many real-world applications store data in relational
format, with different tables for entities and their links.
The field of statistical-relational learning (SRL) aims
to extend machine learning algorithms to relational

data [10, 4]. An important machine learning task is
to use data to build a generative statistical model that
represents the joint distribution of the random variables
that describe the application domain [10]. One of the
most widely used generative model classes are Bayes
nets (BNs) [30]. A BN structure is a directed acyclic
graph (DAG) whose nodes represent random variables
and whose edges represent direct statistical associations.
The most common approach to SRL with graphical
models is knowledge-based model construction (KBMC)
[29, 22, 39]: A 1st-order or class-level model serves
as a template, that is instantiated or ground with the
information in the database. A major difficulty with
KBMC is that the instantiated model may contain
cycles even if the class-level model does not [5, 36, 9].
These difficulties have been difficult to solve; Neville and
Jensen [28] conclude that “The acyclicity constraints
of directed models severely limit their applicability to
relational data.” A major competitive advantage of
undirected models (Markov nets) is that the cyclicity
problem does not arise [36, 5]. In this paper we propose
a new pseudo likelihood function P ∗ for relational BNs
that is well defined even in the presence of cyclic
dependencies.

Approach. We define the measure for
Parametrized Bayes Nets (PBNs), an extension of
BNs for relational data due to Poole [32]. The sum of a
pseudo likelihood measure, over all relational database
instances, does not add up to 1. It is common in
statistics to use pseudo likelihood functions for learning
when proper likelihood functions are conceptually or
computationally difficult [2, 8, 31, 24]; see [28, Sec.3.3]
for a brief overview. We define the pseudo log-likelihood
L∗ = ln(P ∗) as the sum, over all possible parent-child
combinations, of the conditional log-probability of the
child value given the parent values, multiplied by the
frequency of the parent-child combination. Thus L∗

has the same form as the single-table BN log-likelihood,
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with frequencies in a database replacing row counts in
a table. This paper discusses semantics and learning
for L∗.

Semantics. We introduce a new type of seman-
tics based on the concept of random instantiations from
classic AI research [12, 1]. In this semantics, an expres-
sion such as P (Flies(X )|Bird(X )) > .9 is interpreted
as “the probability that a randomly chosen bird will
fly is greater than .9”. For a PBN B with 1st-order
variables, given an instantiation of the 1st-order vari-
ables with individual constants, we can compute from
B, the log-probability of the attributes and links of the
individuals. The pseudo log-likelihood L∗ is the ex-
pected log-likelihood over random instantiations. We
also relate the pseudo likelihood to likelihood functions
for ground models: The standard moralization method
converts a PBN to an MLN [5, 12.5.3]. The measure L∗

is closely related to the log-likelihood and to the pseudo
log-likelihood of the moralized PBN. In this sense our
approach combines likelihood measures from the suc-
cessful MLN paradigm with Bayes nets.

Learning. Parameter Estimation. Like single-
table BNs, the maximum L∗ estimates for the PBN pa-
rameters are the empirical conditional frequencies. The
conditional frequencies can be computed from the suffi-
cient database statistics. A number of efficient methods
for computing sufficient statistics in a database have
been developed [42, 26, 17].

Structure Learning. Given a model selection score
S defined for single-table data, the measure L∗ can
be used as a log-likelihood measure with the score to
define a relational version S∗. Then structure search for
relational data with a pseudo likelihood score S∗ can be
implemented using a standard score+search algorithm.
An efficient PBN structure learning method is the recent
learn-and-join algorithm of Khosravi et al. [18]. The
learn-and-join algorithm performs a level-wise model
search through the table join lattice associated with a
relational database, where the results of BN learning on
subjoins constrain learning on larger joins. Empirical
evaluation shows that the learn-and-join algorithm is
orders of magnitude faster than previous MLN learning
methods, and produces substantive improvements in
accuracy. (10%-30% depending on the dataset used.)
We show that the learn-and-join algorithm implicitly
maximizes the pseudo log-likelihood L∗. This result
provides a theoretical foundation for the algorithm, as
well as empirical validation of the usefulness of the
L∗ measure. Thus while this is a conceptual paper
that does not report new simulation results, it presents
previous empirical results in a new light. Overall our
conclusion is that relational Bayes net learning based
on the pseudo likelihood measure is tractable, even in

the presence of cyclic dependencies.
Paper Organization. We discuss related work

and background material/notation for logic, graphical
models, Parametrized Bayes Nets and Markov Logic
Networks. Then we define the pseudo likelihood, and
discuss the computation of its maximizing parameter
values. The next section defines the new random selec-
tion semantics for PBNs, and describes the relationship
to the log-likelihood and pseudo log-likelihood of MLNs.
We conclude with a description of the learn-and-join al-
gorithm and its relationship to our pseudo likelihood
measure.

Contributions. The main contributions of the pa-
per can be summarized as follows.

1. A new proposal for a pseudo likelihood function
that measures the fit of a Bayes net to relational
data. The function is well defined even when cyclic
dependencies are present.

2. A novel semantics for the pseudo likelihood based
on random groundings rather than a ground model.

3. An analytic solution for the parameter values that
maximize the pseudo likelihood function. A de-
scription of efficient algorithms for parameter and
structure learning with the pseudo likelihood, in-
cluding the state of the art learn-and-join algo-
rithm.

Additional Related Work. While our presenta-
tion uses PBNs as a comparatively straightforward gen-
eralization of Bayes nets for relational data, our ap-
proach applies to directed SRL models generally, such
as Probabilistic Relational Models (PRMs) [9], Bayes
Logic Programs (BLPs) [16], and Logical Bayesian Net-
works (LBNs) [6].

Cyclic Directed Models. Directed models with cy-
cles have been studied for single-table data to model
feedback effects [34, 23]. These models are based on
equilibria in linear dynamic systems and do not directly
apply to the discrete attribute datasets we consider, nor
do they take account of relational structure. Introduc-
ing latent variables is an option for defining directed
relational models without cycles [41]. Hidden variable
models give rise to challenging parameter estimation
problems. Methods for learning PBNs with and without
hidden variables can be combined, for instance by using
a PBN without hidden variables as an initial starting
point for a hidden variable model.

Other Relational Pseudo Likelihood Functions.

Other likelihood functions that do not require acyclicity
have been developed based on Markov networks and on
dependence networks. The Markov pseudo likelihood
function [5, Sec.12.8] has played a key role in learning
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MLNs [20, 25, 21]. A possible approach to defining a
PBN pseudo likelihood is therefore to use the Markov
function for the moralized PBN. As we show below, the
key differences to our likelihood function are as follows.
(1) Our definition uses the probability of a child node
conditional on the values of its parents, rather than con-
ditional on the values of its Markov blanket (which in-
cludes children and coparents in addition to parents).
(2) We use the frequencies of child-parent configurations
rather than their counts, and connect this weighting to a
novel semantics based on random instantiations. Learn-
ing algorithms for MLNs have been based on Markov net
methods and on Inductive Logic Programming (ILP)
techniques.

Neville and Jensen developed a pseudo likelihood
approach for learning relational dependency networks

[28, 40]. Dependency networks (DNs) approximate a
joint distribution as the product of conditional probabil-
ities of each node given its Markov blanket (which ren-
ders the node conditionally independent of all others)
[13]. This DN pseudo likelihood is similar to the Markov
pseudo likelihood [28, Th.1], and the differences (1) and
(2) above apply. Learning algorithms for dependency
networks have been based on learning independent con-
ditional probability models for each node. This requires
the specification of a relational classifier to model the
conditional distribution of a node given related entities
and their attributes [28], (e.g., relational Naive Bayes
or probability tree), often based on aggregate functions.
MLNs and our BN pseudo likelihood do not require a
separate relational classifier model, nor do they require
aggregate functions.

To our knowledge, our proposal is the first pseudo
likelihood measure for a Bayes net applied to relational
data, rather than for a Markov or dependency network.
As we show below, this measure supports the extension
of single-table Bayes net learning algorithms to rela-
tional data.

2 Background and Notation

Our work combines concepts from relational databases,
graphical models, and Markov Logic networks. As much
as possible, we use standard notation in these different
areas.

2.1 Logic and Functors. Parametrized Bayes nets
are a basic SRL model; we follow the original presen-
tation of Poole [32]. A functor is a function symbol
or a predicate symbol. Each functor has a set of values
(constants) called the range of the functor. A functor
whose range is {T ,F} is a predicate, usually written
with uppercase letters like P,R. A functor random
variable is of the form f(τ1, . . . , τk) where f is a functor

and each term τi is a first-order variable or a constant.
We also refer to functor random variables as functor
nodes, or for short fnodes.1 If an fnode f(τ ) contains
no variables, it is ground, or a gnode. If an fnode
contains a variable, it is a vnode. An assignment of
the form f(τ ) = x, where x is a constant in the range
of f , is an atom; if f(τ ) is ground, the assignment is
a ground atom. A population is a set of individuals,
corresponding to a domain or type in logic. Each first-
order variable X is associated with a population PX of
size |PX |. An instantiation or grounding γ for a set
of variables X1, . . . , Xk assigns a constant γ(Xi) from
the population of Xi to each variable Xi.

The functor formalism is rich enough to represent
the constraints of an entity-relationship (ER) schema
[37] via the following translation: Entity sets correspond
to populations, descriptive attributes to functions, rela-
tionship tables to predicates, and foreign key constraints
to type constraints on the arguments of relationship
predicates. Figure 1 shows a simple database instance
in the ER format [5].

!"#$% &#'($)% *"+,$-%

.++"% /% /%

0'1% /% 2%

!"#$3% !"#$4%

.++"% 0'1%

0'1% .++"%

5$'67$% 2-8$+9%

Figure 1: A simple relational database instance.

We assume that a database instance assigns a con-
stant value to each gnode f(a), which we denote by
[f(a)]D. The value of descriptive relationship attributes
is well defined only for tuples that are linked by the re-
lationship. For example, grade(jack , 101 ) is not well
defined in a university database if Registered(jack , 101 )
is false. In this case, we assign the descriptive at-
tribute the special value ⊥ for “undefined”. Thus the
atom grade(jack , 101 ) = ⊥ is equivalent to the atom
Registered(jack , 101 ) = F . Fierens et al. [6] discuss
other approaches to this issue. The results in this paper
extend to functors built with nested functors, aggregate
functions, and quantifiers (e.g., existential); for the sake

1The term “functor” is used as in Prolog [3]. In Prolog,
a functor random variable is called a “structure”. Poole [32]
refers to a functor random variable as a “parametrized random
variable”. We use the term “fnode”, (1) for brevity, (2) to
emphasize the use of function/predicate symbols, (3) to avoid
confusion with the statistical sense of “parametrized”, meaning
that values have been assigned to parameters.
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of notational simplicity we do not consider more com-
plex functors explicitly.

2.2 Bayes Nets. We employ notation and terminol-
ogy from [30, 35] for a Bayesian Network. A Bayes net
structure is a directed acyclic graph (DAG) G, whose
nodes comprise a set of random variables denoted by V .
We consider only discrete finite random variables. The
parents of node vi in graph G are denoted by PAi, and
an assignment of values to the parents is denoted as pai.
A Bayes net (BN) is a pair �G,θG� where θG is a set
of parameter values that specify the probability distri-
butions of children conditional on instantiations of their
parents, i.e. all conditional probabilities of the form

θijk ≡ P (vi = xik|PAi = paij),

where xik is the k-th possible value of node i and
paij is the j-th possible configuration of the parents
of vi. The conditional probabilities are specified in a
conditional probability table for variable vi or CP-
table. AParametrized Bayes net, or PBN, is a Bayes
net whose nodes are functor random variables. We use
the following notation for describing the CP parameters
in a PBN.

!"#$%&'()*+,-.%/'0)*

1&2%#3'04()*

+,-.%/'()*

5'!'()*6*7*8+'()*67)*6*9:;*

<*

5'+'()*6*7*8+'0)*6741'04()67)*6*9:;*

5'+'()*6*7*8+'0)*6741'04()61)*6*9=;*

<*

!"#$%&'")* +,-.%/'")*

1&2%#3'"4>)*

+,-.%/'>)* !"#$%&'>)*

1&2%#3'>4")*

1&2%#3'>4>)*1&2%#3'"4")*

Figure 2: A PBN and its grounding for the database
of Figure 1. The double arrow ↔ is equivalent to two
directed edges.

• Let Fijk be the family formula that expresses that
fnode fi is assigned its k-th value, and the state of
its parents is assigned its j-th value.

• nijk(D) is the number of groundings of Fijk that
evaluate as true in D.

• If X1, . . . , Xk are the variables that occur in the
family formula Fijk, then its domain is the Carte-
sian product PX1 × · · · × PXk . Since the domain

of Fijk depends only on i (the family formulas Fijk

and Fij�k� contain the same variables), we write

mi ≡
k�

i=1

|PXi |

for the domain size of the families of child node
i.

• pijk ≡ nijk/mi is the empirical frequency of Fijk

in database D.

A ground graph B is derived from B by instantiat-
ing the functor nodes in B in every possible way. There
is a directed edge f1(a1) → f2(a2) in B just in case
there is an edge f1(τ 1) → f2(τ 2) in B and there is a
grounding γ such that γ(τ i) = ai, for i = 1, 2.

Examples. The following examples refer to the DB
instance of Figure 1. Figure 2 illustrates PBN concepts.
We use a Prolog-style list notation for a conjunction of
atoms. An example of a family formula Fijk with child
node fi = Smokes(Y ) is

Smokes(Y ) = T ,Smokes(X ) = T ,Friend(X ,Y ) = T .

From Figure 2, the associated conditional probability is
θijk = 70%. The number of true groundings is nijk = 2.
For the domain size we have

mSmokes(Y ) = |PX | · |PY | = 4.

Therefore the database frequency of this formula is
pijk = nijk

mSmokes(Y )
= 1/2.

A family formula with child node Cancer(Y ) is

Cancer(Y ) = T ,Smokes(Y ) = T .

The associated conditional probability parameter is
70%. The number of true groundings is 1. For the
domain size mCancer(Y ) = |PY | = 2. Therefore the
empirical frequency of this formula is 1/2.

2.3 Markov Logic Networks. Our presentation of
MLNs follows [5]. The set of first-order formulas is
defined by closing the set of atoms under Boolean
combinations and quantification. A Markov Logic
Network (MLN) M is a set {(φ1, w1), . . . , (φm, wm)}
where φi is a formula, and each wi is a real number
called the weight of φi. We write ni(D) for the number
of satisfying instantiations of formula φi in database D.
The log-likelihood of an MLN M is given by

(2.1) LM (D) =
m�

i

wini − ln(Zw)
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where Zw is a normalization constant that depends
on the weights but not on the database D. A PBN
can be converted to an MLN by the standard moral-
ization method [5, 12.5.3], where we have a formula
for each CP-table row whose weight is ln(θijk). Thus
the MLN M(B) associated with PBN B is the set
{(Fijk, ln(θijk))}. We refer to M(B) as a moralized
Bayes net (MBN).

Figure 3 shows an MBN and illustrates the Markov
network associated with an MLN M . The nodes are the
functor nodes that occur in the formulas of M . There
is an edge between two fnodes just in case they occur
together in some formula φi. For a given database D,
we can construct a ground Markov network just as with
a PBN. In this ground network, each instantiation of
an MLN formula φi corresponds to an assignment of
values to a clique whose potential is ewi . In the case of
an MBN, the nodes are gnodes, the cliques are ground
instances f ijk of family formulas, the corresponding
clique potential is the conditional probability θijk, and
the assignment of values to ground nodes is specified by
the DB instance D.

!"#$%&'()*+,-.%/'0)*

1&2%#3'04()*

+,-.%/'()*

!"#$%&'")* +,-.%/'")*

1&2%#3'"45)*

+,-.%/'5)* !"#$%&'5)*

1&2%#3'54")*

1&2%#3'545)*1&2%#3'"4")*

+'()*6*74*+'0)*674*1'04()678*9#':;<)*

+'()*6*74*+'0)*614*1'04()678*9#':=<)*

!'()*6*74*+'()*678**9#':;<)*

>*

?@A*

Figure 3: The moralized PBN of Figure 2 and its ground
Markov network for the database of Figure 1.

3 Pseudo-likelihood for Parametrized Bayes
Nets

We propose the following pseudo log-likelihood function
for a PBN B:

(3.2) L∗
B(D) =

�

ijk

pijk(D) · ln(θijk).

The formula may be read as follows. For each pos-
sible parent-child configuration, find the corresponding
conditional log-likelihood from the PBN B, multiply it

by the frequency of the parent-child configuration in the
given database D, and sum the results. This compares
to the log-likelihood assigned to a single data table D
by a BN G as follows. If V = x is a joint assignment of
values to the nodes in a Bayes net �G,θG�, its proba-
bility PG(V = x) is obtained by multiplying the condi-
tional probabilities of each node value assignment given
its parent value assignments. So the log-likelihood of
the data table is given by

(3.3) ln(PG(D)) =
�

ijk

nijk(D) · ln(θijk)

where nijk(D) is the number of rows in D where
the family state Fijk occurs. Thus the relational
equation (3.2) is obtained from the single-table equa-
tion (3.3) by replacing counts of rows in the data table
by instantiation frequencies in the database. We discuss
the motivation for this change.

Frequencies vs. Counts. If the population size
mi for functor node fi is significantly greater than that
for fl, the corresponding terms nijk range over a larger
scale than the nljk terms. Viewing Equation 3.2 as a
log-linear model, this means that scales of the indepen-
dent variables can differ by orders of magnitude, which
is undesirable for learning. Since the ln(θijk) weights
are negative, using counts for model selection heavily
penalizes structures whose families include more first-
order variables. Replacing counts by frequencies puts
all factors on the same [0,1] scale. For the same reason,
MLN researchers usually scale counts to frequencies in
the pseudo likelihood for MLNs [21, 25] (cf. Section 4.3).
Raina et al. use a similar normalization in a log-linear
classification model [33]. As we show below, using fre-
quencies has the desirable consequence of making the
pseudo likelihood invariant under equivalence transfor-
mations of the database design such as table normaliza-
tion.

Likelihood Maximization. The parameter val-
ues that maximize Equation (3.2) are the empirical con-
ditional frequencies in a database.

Proposition 3.1. The parameter values �θijk that max-

imize the pseudo log-likelihood L∗
B(D) are the condi-

tional empirical frequencies:

�θijk =
pijk�
k� pijk�

.

The result follows because the pseudo likelihood has
the same form as the BN log-likelihood, so the standard
MLE argument for BN estimation applies. (Replacing
counts by frequencies adds a constant factor that does
not affect the argument).
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Computing MLE Values. The conditional
database frequencies for computing �θijk, can be found
from the sufficient database statistics pijk, the joint
frequencies of parent-child combinations. Because they
are required in many applications, several practical
algorithms for computing sufficient statistics in a
database have been developed, as well as techniques
for optimizing runtime and memory usage [42, 26].
The unrestricted problem of computing the number
of groundings of an arbitrary first-order clause is
#P-complete [5, Prop.12.4]. However, Vardi shows
that the problem is solvable in polynomial time given a
constant bound on the number of first-order variables

that occur in the formula [38]. This is a natural
syntactic complexity measure that bounds the number
of (generic) objects that are under consideration in
a single formula. In SRL models, it is rare to find
more than 3 or 4 variables in a single rule or formula.
Khosravi et al. [17] present a dynamic programming
algorithm for computing conditional CP-table entries in
a PBN and provide empirical evidence for its feasibility.
In sum, the PBN pseudo likelihood is analytically and
computationally tractable. To gain further theoretical
understanding of this measure, we consider several
ways to derive Equation (3.2).

4 Semantics for the Pseudo Likelihood

KBMC or model grounding treats the PBN as specify-
ing a 1st-order pattern of dependencies that is applied
to every possible instantiation. Classic AI research by
Halpern and Bacchus developed a probabilistic seman-
tics for first-order formulas based on the idea of a ran-

dom instantiation [12, 1]. In this section we show that
random instantiations provide a semantics for the PBN
pseudo likelihood (3.2). We also show that the version
of Equation (3.2) with counts instead of frequencies can
be given several KBMC interpretations.

4.1 Random Selection Semantics for the
Pseudo Log-Likelihood. We review the random se-
lection semantics briefly in the context of a functor lan-
guage; extensive treatment in general 1st-order logic was
provided by Halpern and Bacchus [12, 1]. The key idea
is to view a first-order logical variable as a random vari-
able (population variable) that selects a member of its
population with a given probability. In the remainder
we assume that the selection is uniform (cf. [12, fn.1]),
so for a single population variable X we have

P (X = a) =
1

|PX | .

Different population variables are assumed to be mutu-
ally independent, so the joint distribution over popu-

lation variables is uniform as well. Since a function of
a random variable is itself a random variable, a distri-
bution over population variables defines a distribution
over assignments of values to functor nodes (i.e., a dis-
tribution over vnodes).

We apply the concept of a random instantiation
to define a pseudo log-likelihood for a PBN B as
follows. Let X1, . . . , Xk be a list of all variables that
occur in the fnodes of B. (1) Randomly select an
instance (constant) ai from the population of variable
Xi, for each i = 1, . . . , k. (2) Replace each variable
in B with the corresponding instance so each vnode
in B becomes a gnode. (3) For each gnode in the
instantiated BN, assign to it the value defined by the
database D. (4) Compute the log-likelihood of this
joint assignment using the usual product formula; this
defines a log-likelihood for the random instantiation ai.
The expected value of this log-likelihood is the random
log-likelihood of database D given PBN B. Figure 4
shows a random instantiation of the PBN in Figure 2
with the corresponding assignment defined by the DB
instance of Figure 1; see also Table 1.

!"#$%&'()*+,-.%/'")*

0&1%#2'"3()*

+,-.%/'()*

45*

40*

45*45*

Figure 4: The computation of P γ
B(D) for the PBN

of Figure 2 and the instantiation γX = Anna = a,
γY = Bob = b.

For a formal definition, in this section only we use
γ to denote a simultaneous substitution of each variable
in B. We write Γ for the space of all possible groundings
of the variables in B; so Γ = PX1 × · · · × PXk . In the
PBN of Figure 2, there are 4 possible groundings of the
two variables X,Y , so we have |Γ| = 4. Applying γ
to a vnode f(τ ) defines a gnode γ(f(τ )); to simplify
notation, we write γ(f) when the arguments to the
functor are not relevant. Recall that [γ(f(τ ))]D denotes
the value determined by D when f is applied to ground
term γ(τ ). For instance, [Cancer(Anna)]D = T in our
sample DB. So the likelihood of the “database slice”
defined by γ is given by

P γ
B(D) =

�

i

PB(fi = [γ(fi)]D|pai = [γ(pai)]D)

and the expected value of the log-likelihood ln(P γ
B(D))
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over all possible equiprobable groundings, is given by

(4.4) LΓ
B(D) ≡ 1

|Γ|
�

γ∈Γ

ln(P γ
B(D))

where LΓ
B(D) denotes the random log-likelihood for

the space of possible PBN groundings Γ. The next
proposition shows that the random selection seman-
tics validates the pseudo log-likelihood defined by Equa-
tion (3.2).

Proposition 4.1. Let B be a PBN and D a relational

database. Then

L∗
B(D) = LΓ

B(D).

Proof. For each family formula Fijk, let γijk(D) be the
number of simultaneous groundings of all variables in B
that satisfy Fijk. Write ri for the size of the Cartesian
product of the populations of variables that do not occur
in Fijk. For instance, if variables X1, X2 occur in Fijk,

then ri =
�k

l=3 |PXl |. Then we have

γijk(D) = nijk(D) · ri
|Γ| = mi · ri

Therefore pijk(D) = γijk(D)/|Γ| and the pseudo
log-likelihood (3.2) can be written as

(4.5)
�

ijk

pijk(D) · ln(θijk) =
1

|Γ|
�

ijk

γijk(D) · ln(θijk).

Each factor ln(θijk) in Equation (4.4) appears in
the sum

�
γ∈Γ ln(P

γ
B(D)) once for each simultaneous

grounding γ ∈ Γ that satisfies Fijk in database D.
Therefore we have

(4.6)
1

|Γ|
�

γ∈Γ

ln(P γ
B(D)) =

1

|Γ|
�

ijk

γijk(D) · ln(θijk).

Equations (4.6) and (4.5) together establish the
identity of the pseudo log-likelihoods (4.4) and (3.2).

4.2 Random Selection Semantics for the
Pseudo Likelihood. The random likelihood version
of Equation (4.4), given by

(4.7) PΓ
B(D) ≡ exp(LΓ

B(D)) =
�

γ∈Γ

P γ
B(D)

1
|Γ|

has a useful interpretation as well. Consider each
simultaneous instantiation γ of the variables in B as

Hyperentity Hyperfeatures
Γ X Y F(X,Y) S(X) C(X) S(Y) C(Y) P γ

B ln(P γ
B)

γ1 Anna Bob T T T T F 0.105 -2.254
γ2 Bob Anna T T F T T 0.245 -1.406
γ3 Anna Anna F T T T T 0.263 -1.338
γ4 Bob Bob F T F T F 0.113 -2.185

Table 1: The single-table interpretation of the random
likelihood for the PBN of Figure 2 and the database
of Figure 1. A simultaneous grounding of all variables
in the PBN defines a hyperentity. The values of
functors for the hyperentity define its hyperfeatures.
The PBN assigns a likelihood to the hyperfeatures. The
rounded numbers shown were obtained using the CP
parameters of Figure 2 together with PB(Smokes(X ) =
T ) = 1 and PB(Friend(X ,Y ) = T ) = 1/2 , chosen
for easy computation. (a) The random likelihood is
the geometric mean of the joint probabilities given
by (0.105 · 0.245 · 0.2625 · 0.1125)1/4 ≈ 0.166. (b)
The random log-likelihood is the average of the log-
likelihoods for each grounding, given by −(2.254 +
1.406 + 1.338 + 2.185)/4 ≈ −1.8. By Proposition 4.1,
this equals our PBN pseudo log-likelihood.

a constant-size hyperunit (similar to a hyperedge in a
hypergraph). Then we can think of the values of the
ground functor nodes that the data determine for γ
as feature values for the hyperunit. Equation (4.7)
computes the product over all hyperunits, of the BN-
probability of the hyperunit’s features, raised to the
root of the number of hyperunits. In other words, it
is the geometric mean2 of the product of feature vector

probabilities for hyperunits; see Table 1 for illustration.
Since hyperunits have individuals in common, they are
interdependent. The geometric mean is a smoothed
product likelihood that adjusts for the dependencies.

Schema Invariance. The fact that the PBN pseudo
likelihood is equivalent to an expression defined in terms
of a single (hyper)population has the important conse-
quence that it is invariant under syntactic equivalence
transformations of the database. For instance, database
normalization operations may move information about
a descriptive attribute from one table to another [15].
For any fixed set of populations (entity types), such op-
erations do not affect the pseudo likelihood because they
do not change the feature values associated with a hy-
perunit.

To illustrate, suppose we have a university database
with courses and instructors. Course attributes in-
clude level and difficulty . There is also a relation-
ship Teaches(C ,P) that records which professor teaches
which course; there is a unique instructor for each
course. Now a DB design may include the course at-

2The geometric mean of x1, . . . , xn is (
�

i xi)1/n.
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tributes in the Teaches table as descriptive relationship
attributes, so they correspond to fnodes level(C ,P) and
difficulty(C ,P). If the level of a course predicts its dif-
ficulty, a PBN would include an edge

level(C ,P) → difficulty(C ,P).

Then the number of groundings of a family formula like

level(C ,P) = hi , difficulty(C ,P) = hi

will be the number of courses with the corresponding
attributes, multiplied by the irrelevant number of pro-
fessors in the database. In contrast, the frequency of
the family formula will be the frequency of courses with
the corresponding attributes, since the irrelevant factor
cancels out. A similar syntactic invariance holds with
respect to transformations of the model, rather than
the database: Adding irrelevant parents with additional
variables increases the number of satisfying groundings
of a family formula but not their frequency.

4.3 KBMC/Grounding Semantics. There does
not appear to be a direct KBMC semantics for the PBN
pseudo log-likelihood L∗ with frequencies. But there are
several possibilities for the variant with counts:

(4.8) L+
B(D) =

�

ijk

nijk(D) · ln(θijk).

(1) Product Formula. For a PBN B, we may apply
the usual BN product scheme as follows: for each
instantiation of a formula formula F ijk, multiply the
associated conditional probabilities θijk. The logarithm
of the product leads to Equation (4.8).

(2) Moralized Markov Log-likelihood. Applying
Equation (2.1), the MLN log-likelihood function for the
moralized PBN M(B) is

(4.9) LM(B)(D) =
�

ijk

nijk(D) · ln(θijk)− ln(Zθ).

Omitting the partition function component ln(Zθ) leads
to Equation (4.8). The normalization constant Z is not
related to how well the model fits the facts in a database.

(3) Markov Pseudo Likelihood. Because of the in-
tractability of the partition function, MLN researchers
have based learning on the Markov network pseudo
likelihood [5, Sec.12.8]. Equation (4.8) is related to
the MLN pseudo likelihood for M(B) as follows. The
Markov pseudo likelihood [2] of an assignment V = x of
values to each node is the product, over all nodes v, of
the probability that v = x conditional on the neighbors
of v, where x is the value of v specified by x. This condi-
tional probability is the product of all clique potentials

in which v participates, divided by a local normaliza-
tion constant Zv. For an MBN, this means that each
clique potential is counted once for each clique fam-

ily member. Given the interpretation of the θijk po-
tentials as conditional probabilities, a natural alterna-
tive is to count each potential only once overall, as the
conditional probability of the family’s child. Making
this change, omitting the local normalization constants
Zv, and taking logarithms leads to Equation (4.8). In-
tuitively, the Markov pseudo likelihood computes the
probability of the value of each node in the ground net-
work given its neighbors (Markov blanket), then mul-
tiplies these probabilities. The PBN pseudo likelihood
with counts computes the probability of the value of
each node in the ground network given its parents, which
are a subset of its Markov blanket, then multiplies these
probabilities.

Discussion. The semantic interpretations of the
PBN pseudo likelihood function indicate that our ap-
proach is broadly applicable to Bayes net-like SRL mod-
els, either directly or through the connection with the
count version (4.8). (i) The pseudo likelihood can be
used for any directed SRL model whose structure con-
verts to an MLN structure, and whose conditional prob-
ability parameters translate into weights via moraliza-
tion. As MLNs are intended to be a unifying framework
for SRL [5, 12.5], this includes a large class of SRL mod-
els, such as PRMs [9], BLPs [16], and LBNs [6]. (ii)
At the ground model level, the pseudo likelihood can
be used with any directed SRL model that via KBMC
defines a ground directed graph with local CP-table pa-
rameters, which again includes a large class as KBMC
is the dominant type of SRL semantics. (iii) The ran-
dom selection semantics applies to any logic-based SRL
model that includes 1st-order variables, such as BLPs,
LBNs, PBNs. In the remainder of the paper we consider
structure learning with the PBN pseudo likelihood.

5 Model Selection with the Pseudo Likelihood

An important role of a likelihood function is to guide
model selection. A single-table model selection score
has the form S(G,D) where G is a graphical model and
D a data table. We consider scores that trade off data
fit against model complexity, and that can be computed
given the following quantities.

1. The log-likelihood LG(D).

2. The sufficient data statistics for joint events
pijk(D).

3. The number of parameters parG.

4. The sample size m = number of rows in D.
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An example is the Bayes Information Criterion
(BIC) score [27, Ch.8.3.2]

BIC (G,D) ≡ ln(P �G(D))− par(G) · ln(m)

2

where �G is the BNG with its parameters instantiated by
the maximum likelihood estimates given the datatable
D, and par(G) is the number of free parameters in the
structure G. We can define a relational model selection
score S∗(B,D) by substituting the pseudo log-likelihood
L∗
B for the single-table likelihood. For instance, the

relational BIC version would be

BIC
∗(G,D) ≡ L∗

B̂
(D)− par(B) · ln(m)

2
.

Provided that the relational model selection score can be
efficiently evaluated, standard BN search+score struc-
ture learning algorithms can be applied. We discuss the
computation of the components of a relational score S∗

in turn.
(1) Likelihood Computation. The computation of

the pseudo log-likelihood requires only the computation
of sufficient DB statistics (Section 3).

(2) Parameter Complexity. The number of param-
eters par(B) is the same for a PBN as for a standard
BN (typically the number of CP-table entries).

(3) Sample Size. Determining a global sample size
m is not straightforward when the data are distributed
across tables. A reasonable possibility is to use the
fact that most score functions decompose, that is, they
can be written as the sum of local scores

�
i Si(G,D),

where each local score involves only node i and its
parents. The number mi of possible instantiations of
the Fi family is a plausible local score size. This can
be justified in terms of the hyperpopulation discussed
in Section 4. If we use m ≡ |Γ| = |PX1 | · |PX2 | · · · |PXk |
as a global sample size, then ln(|Γ|) =

�k
j=1 ln(|PXj |).

For the BIC difference BIC (B,D)−BIC (B�,D) between
two PBNs that differ only in a local family, the difference
in the sample size term reduces to the difference in the
local sample sizes mi. In the next section we show
that a state of the art PBN structure learning algorithm
maximizes the pseudo likelihood.

6 Empirical Results: The Learn-and-Join
Algorithm

Khosravi et al. present the learn-and-join (LAJ) struc-
ture learning algorithm [18]. The algorithm upgrades
a single-table BN learner for relational learning. We
briefly review the algorithm and its empirical perfor-
mance, then discuss how it relates to the PBN pseudo
likelihood.

6.1 Review: The Learn-and-Join Algorithm
The key idea of the algorithm can be explained in terms
of the table join lattice. Recall that the (natural) join
of two or more tables, written T1 �� T2 · · · �� Tk is a new
table that contains the rows in the Cartesian products
of the tables whose values match on common fields. A
table join corresponds to logical conjunction [37]. Say
that a join table J is a subjoin of another join table J �

if J = J � �� J∗ for some join table J∗. If J is a subjoin
of J �, then the fields (columns) of J are a subset of
those in J �. The subjoin relation defines the table join
lattice. The basic idea of the learn-and-join algorithm is
that join tables should inherit edges between descriptive
attributes from their subjoins. This gives rise to the
following constraints for two attributes v1, v2 that are
both contained in some subjoin of J . (i) v1 and v2
are adjacent in a BN BJ for J if and only if they are
adjacent in a BN for some subjoin of J . (ii) If all subjoin
BNs of J orient the link as v1 → v2 resp. v1 ← v2,
then BJ orients the link as v1 → v2 resp. v1 ← v2.
The learn-and-join algorithm then builds a PBN for the
entire database D by level-wise search through the table
join lattice. The user chooses a single-table BN learner.
The learner is applied to table joins of size 1, that is,
regular data tables. Then the learner is applied to table
joins of size s, s + 1, . . ., where the constraints (i) and
(ii) are propagated from smaller joins to larger joins.

Example. We illustrate the learn-and-join algo-
rithm on the example database of Figure 1. Applying
the single-table BN learner to the People table may pro-
duce a single-edge graph Smokes → Cancer . Then we
form the join

J = People �� Friend �� Friend ;

this join table has four attribute columns that in-
dicate the values of Smokes and Cancer for each
member of a pair in the Friend table. Using the
functor notation to distinguish different “copies” of
the same attribute, we may denote the columns as
Smokes(X ),Smokes(Y ),Cancer(X ),Cancer(Y ). The
BN learner is applied to J , with the constraint from
the People BN that there must be an edge

Smokes(Y ) → Cancer(Y ).

Also, the algorithm is constrained such that no edges
may point into Smokes(X ) or Cancer(X ). The intu-
ition behind this constraint is that it suffices to model
the conditional distribution of just one “copy” of the
Smokes attribute, namely the vnode Smokes(Y ). The
BN learner then may find an edge

Smokes(X ) → Smokes(Y ).
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Dataset LAJ MSL MSLc LHL LHLc
University 0.03 + 0.032 5.02 11.44 3.54 19.29
MovieLens 1.2 +120 NT NT NT NT
MovieLens1 0.05 + 0.33 44 121.5 34.52 126.16
MovieLens2 0.12 + 5.10 2760 1286 3349 NT
Mutagenesis 0.5 +NT NT NT NT NT
Mutagenesis1 0.1 + 5 3360 900 3960 1233
Mutagenesis2 0.2 +12 NT 3120 NT NT

Table 2: Runtime to produce a parametrized MLN, in
minutes. The LAJ column shows structure learning
time + weight learning time for the Learn-and-Join
Algorithm. The other columns show the run-times for
previous MLN learning methods. Since these methods
do not scale to the full datasets, randomly constructed
subsample databases were used.

Since the dependency represented by this edge is valid
only for pairs of people that are friends (i.e., conditional
on Friend(X ,Y ) = T ), the algorithm adds an edge
Friend(X ,Y ) → Smokes(Y ). The final result is the
PBN shown in Figure 2.

Evaluation. Khosravi et al. present a complexity
analysis that shows that the edge inheritance constraint
keeps the BN model search space roughly constant for
each join table. We review briefly the main points of
their empirical findings [18]. On benchmark datasets
the learn-and-join algorithm produces a PBN 1,000-
10,000 times faster than the state-of-the art Markov
Logic Network learners; see Table 2. The table is from
[18]. The databases MovieLens and Mutagenesis are
standard benchmarks; for details on the datasets and
experimental setup see [18].

To evaluate the predictive accuracy of the learned
PBN models, Khosravi et al. applied the learned PBNs
with MLN inference techniques: Each PBN structure
was converted to an MLN set of formulas using the stan-
dard moralization method, and standard weight learn-
ing methods were used to estimate the MLN parameters
for the MLN structure. In the context of PBN learn-
ing with the pseudo-likelihood, applying MLN inference
is natural since the pseudo-likelihood function for the
PBN is similar to the likelihood function of the con-
verted MLN (Section 4.3). Moreover, MLN inference
techniques are among the state-of-the-art in SRL, so
this experiment compares the predictive performance of
the learned JBNs with a high-quality competitor. The
predictive accuracy of the MBN models using MLN in-
ference was substantially higher than that of the models
learned with MLN methods. Depending on the dataset
used, improvement ranged from 15% to 25%. Table 3
from [18] provides details for the benchmark datasets
MovieLens and Mutagenesis. Other standard measures,
such as CLL, the average log-likelihood of database facts

(ground atoms) predicted by the model, and area-under-
curve show similar improvement.

6.2 Relationship to Pseudo Likelihood Learn-
ing. We now discuss how the learn-and-join algorithm
may be viewed as an instance of context-specific BN
learning with the pseudo likelihood. In the BN learn-
ing literature, a context is a specification of values
for some of the variables in the BN [7]. A context-
specific dependence between variables v1 and v2 is one
that holds conditional on a context. Several BN learn-
ing method for context-specific dependencies have been
developed [7]. Extending our previous notation, we
write nijk(D)|(V = x) for the number of groundings
in database D that satisfy both the family formula Fijk

and the context V = x, and pijk(D)|(V = x) for the
frequency of Fijk in database D conditional on the con-
text. The LAJ algorithm can be seen as learning with
the PBN pseudo likelihood in a context-specific manner,
where the contexts are conjunctions (joins) of the form
R1 = T , . . . , Rk = T .

(1) Sufficient Statistics. We observe that for a
join table J , the sufficient statistics computed from J
are the sufficient database statistics conditional on the

corresponding relationship(s) being true. For instance,
consider the Friend table with corresponding fnode
Friend(X ,Y ) or F (X,Y ) for short. The LAJ algorithm
uses the join table

J = People �� Friend �� Friend .

For a family formula Fijk involving only variables X,Y
and the atom F (X,Y ) = T , such as

F (X,Y ) = T ,Smokes(X ) = T ,Smokes(Y ) = F

the number of rows in the join table satisfying Fijk is
the number of instantiations that satisfy the conjunc-
tion in the data base. Therefore we have nijk(D) =
nijk(Friend). The equivalence of the sufficient statis-
tics for relationship tables holds also for larger joins of
relationship tables. The data join table J is equivalent
to restricting the Grounding Table 1 to the rows with
Friend(X ,Y ) = T .

(2) Parameter Complexity. The learn-and-join al-
gorithm computes the parameter count as the number
of CP-table entries without the Boolean relationship in-
dicator R. Therefore it is equivalent to the number of
CP-table entries with R = T , which is the local param-
eter count for that context.

(3) Sample Size. The learn-and-join algorithm
treats the sample size as the number of rows in the
current join table, which is the number of groundings
that satisfy the specified relational context.
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Dataset Accuracy CLL AUC
LAJ MLN MSLc LHL LHLc LAJ MLN MSLc LHL LHLc LAJ MLN MSLc LHL LHLc

Movielens11 0.63 0.39 0.45 0.42 0.50 -0.99 -3.97 -3.55 -4.14 -3.22 0.64 0.46 0.60 0.49 0.55
Movielens12 0.59 0.42 0.46 0.41 NT -1.15 -3.69 - 3.56 -3.68 NT 0.62 0.47 0.54 0.50 NT
Mutagenesis1 0.60 0.34 0.47 0.33 0.45 -2.44 -4.97 - 3.59 -4.02 -3.12 0.69 0.56 0.56 0.50 0.53
Mutagenesis2 0.68 NT 0.53 NT NT -2.36 NT - 3.65 NT NT 0.73 NT 0.59 NT NT

Table 3: The table shows predictive performance for the models obtained by LAJ vs. previous MLN structure
learning methods. Training was performed on 2/3 of the database and testing on the other 1/3. More details and
further simulation results are given by Khosravi et al. [18].

(4) Likelihood Computation. The current version of
the learn-and-join algorithm considers cross-table cor-
relations only conditional on the existence of relation-
ships. Applying a standard BN learner to a join table
implicitly uses the count likelihood (4.8) rather than the
frequency version (3.2). Nonetheless, the empirical re-
sults of Khosravi et al. are a positive test for both the
count version and the frequency version, for the follow-
ing reasons. (i) Because the BN learner is applied to a
join table J that fixes the local relational context, and
with it the 1st-order variables in the PBN, there is no
problem with a bias against structures with more 1st-
order variables. (ii) The simulations employed the BDeu
score with a uniform structure prior. This score repre-
sents a likelihood function PB(T ) derived from Bayesian
hyperparameters [14], without any other term, such as
an explicit penalty term for free parameters. Therefore
dividing the log-likelihood ln(PB(J)) by the join table
size does not make a difference to BDeu maximization,
that is, for this score database counts and database fre-
quencies are equivalent.

In sum, we may view the learn-and-join algorithm
as an context-specific structure learning method for
the pseudo log-likelihood (3.2), where the contexts
considered are joins of relationship tables.

7 Conclusion

We proposed a new pseudo likelihood function P ∗ to
measure the fit of a Bayes net to relational data. This
function is well-defined even in the presence of cyclic
dependencies. The form of the pseudo likelihood func-
tion P ∗ is very similar to that of the standard single-
table BN likelihood, replacing counts in a data table by
frequencies in a database. The function P ∗ has several
attractive theoretical and computational properties. (1)
Parameter learning is efficient as the P ∗ maximizing es-
timates are the empirical conditional frequencies. (2)
There is a new type of semantics for P ∗ in terms of ran-
dom instantiations. The function is also closely related
to the log-likelihood of Markov Logic Networks. (3) The
fast Learn-and-Join Algorithm for BN structure learn-
ing in relational data is a context-specific learner for P ∗,

where the contexts considered specify the existence of
various relationship chains between entities.
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