
Information and Computation 208 (2010)63–82

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Mind-change optimal learning of Bayes net structure from dependency
and independency data

Oliver Schulte a ,∗, Wei Luob, Russell Greiner c

a Simon Fraser University, Burnaby, BC, Canada V5A 1S6
b The University of Queensland, Brisbane, Qld 4072, Australia
c Department of Computing Science, University of Alberta, Edmonton, Alta., Canada T6G 2E8

A R T I C L E I N F O A B S T R A C T

Article history:
Received 8 July 2008
Revised 12 March 2009
Available online 3 May 2009

This paper analyzes the problem of learning the structure of a Bayes net in the theoretical
framework of Gold’s learning paradigm. Bayes nets are one of the most prominent for-
malisms for knowledge representation and probabilistic and causal reasoning. We follow
constraint-based approaches to learning Bayes net structure, where learning is based on
observed conditional dependencies and independencies between variables of interest (e.g.,
the data are of the form “X is dependent on Y given any assignment to variables S" or of the
form “X is independent of Y given any assignment to variables S"). Applying learning criteria
in this model leads to the following results. (1) The mind change complexity of identifying
a Bayes net graph over variables V from either dependency data or from independency

data are

(|v|
2

)
, the maximum number of edges. (2) There is a unique fastest mind-change

optimal Bayes net learner for either data type; convergence speed is evaluated using Gold’s
dominance notion of “uniformly faster convergence”. For dependency data, the optimal
learner conjectures a graph if it is the unique Bayes net pattern that satisfies the observed
dependencies with a minimum number of edges, and outputs “no guess” otherwise. For
independency data, the optimal learner conjectures a graph if it is the unique Bayes net
pattern that satisfies the observed dependencies with a maximum number of edges, and
outputs “noguess”otherwise.We investigate the complexityof computing theoutputof the
fastest mind-change optimal learner for either data type, and show that each of these two
problems is NP-hard (assuming P = RP). To our knowledge these are the first NP-hardness
results concerning the existence of a uniquely optimal Bayes net structure.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

One of the goals of computational learning theory is to analyze the complexity of practically important learning problems,
and to design optimal learning algorithms for them that meet performance guarantees. In this paper, we model learning the
structure of a Bayes net (BN) as a language learning problem in the Gold paradigm. We apply identification criteria such as
mind change bounds [11, Chapter 12.2,26], mind-change optimality [16,17], and text-efficiency (minimizing time or number
of data points before convergence) [22,10]. Bayes nets, one of the most prominent knowledge representation formalisms
[24,25,13,7], are widely used to define probabilistic models in a graphical manner, with a directed acyclic graph (DAG)whose
edges link the variables of interest.

∗
Corresponding author. Fax: +1 778 782 3045.
E-mail addresses: oschulte@cs.sfu.ca (O. Schulte), luo@itee.uq.edu.au (W. Luo), greiner@cs.ualberta.ca (R. Greiner).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2009.03.009

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:oschulte@cs.sfu.ca
mailto:luo@itee.uq.edu.au
mailto:greiner@cs.ualberta.ca

64 O. Schulte et al. / Information and Computation 208 (2010) 63–82

We base our model of BN structure learning on an approach known as “constraint-based” learning [6]. Constraint-
based learning views a BN structure as a specification of conditional dependencies of the form X⊥"⊥ Y |S, where X and
Y are variables of interest and S is a set of variables disjoint from {X , Y}. (Read X⊥"⊥ Y |S as “variable X is dependent on
variable Y given values for the variables in the set S”.) An example of a conditional dependence statement represented
by a Bayes net would be written as F⊥"⊥ M|C where F (respectively, M, C) is eye colour of father (respectively, mother,
child). In this view, a BN structure is a syntactic representation of a dependency relation [24, Section 3.3]. It is possible
for distinct BN structures to represent the same dependency relation; in that case the equivalent BN structures share
a partially directed graph known as a pattern (defined below), so a BN pattern is a unique syntactic representation of
a dependency relation. A dependency relation meets the mathematical definition of a language in the sense of Gold’s
paradigm, where the “strings” in the language are dependence statements of the form “X⊥"⊥ Y |S”. Gold’s paradigm considers
language learning with both positive and negative data instances [10,11]. In constraint-based BN learning, each positive
instance corresponds to a dependency statement (e.g., “father’s eye color is dependent on mother’s eye color given child’s
eye color”) and each negative instance to an independency statement (e.g., “father’s eye color is independent of mother’s eye
color”).

We show that with data of either type alone, the mind change complexity of learning a Bayes net graph for a given

set of variables V is
(|V|

2

)
—the maximum number of edges in a graph with node set V. Our analysis leads to a char-

acterization of BN learning algorithms that are mind-change optimal. A learner is mind-change optimal if and only if it
minimizes the number of mind changes not only globally in the entire learning problem, but also locally in subproblems
encountered after receiving some evidence [16,17]. For dependency data, mind-change optimal BN learners are exactly
those that conjecture a BN pattern G only if the pattern is the unique one that satisfies the observed dependencies with
a minimum number of edges. For independency data, mind-change optimal BN learners are exactly those that conjecture a
BN pattern G only if the pattern is the unique one that satisfies the observed independencies with a maximum number of
edges.

Applying Gold’s notion of dominance in convergence time [10, p. 462], we show that there is a fastest mind-change
optimal learner, for either data type, whose convergence time dominates that of all other mind-change optimal learners.
The fastest learners are defined as follows: If there is more than one BN pattern G that satisfies the observed dependencies
(independencies) with a minimum (maximum) number of edges, output “?” (for “no guess”). If there is a unique pattern
G that satisfies the observed (in) dependencies with an optimal number of edges, output G. Thus standard identification
criteria in Gold’s paradigm lead to a natural and novel algorithm for learning BN structure. The technically most complex
result of the paper examines the computational complexity of the fastest mind-change optimal BN learners: we show that
computing the conjectures for each data type is NP-hard (assuming that P = RP).

Paper organization.We introduce concepts and results from both learning theory and Bayes net theory in the next section.
Section 3 presents and discusses our model of BN structure learning as a language learning problem. Section 4 analyzes the
mind change complexity of BN structure learning. Section 5 characterizes the mind-change optimal learning algorithms for
this problem and describes the fastest mind-change optimal learner. The final two sections define the problem of computing
the output of the fastest mind-change optimal learner and show that the problem is NP-hard. We close this section by
describing some related work.

Related work.Many BN learning systems follow the “search and score" paradigm, seeking a structure that optimizes some
numeric scoring function [6]. Ourwork is in the alternative constraint-based (CB) paradigm; see [6,21, Chapter 10]. The Tetrad
system [29] includes a number of CB methods for different classes of Bayes nets. A fundamental difference between existing
CB approaches and ourmodel is that the existingmethods assume access to an oracle that returns an answer for every query
of the form “does X⊥"⊥ Y |S hold?”. In contrast, our model corresponds to the situation of a learner whose evidence (in the
form of (in)dependency assertions) grows incrementally over time in an on-line setting. Another difference is that existing
CBmethods assume that their oracle indicates whether two variables are conditionally independent (learning from negative
data) [31, Chapter 5.4], or even that the oracle indicates bothwhether two variables are conditionally dependent andwhether
they are conditionally independent (learning from positive and negative data) [6]. Kelly outlines a model of learning causal
graphs from dependency data only [15]. To our knowledge, our work is the first application of Gold’s language learning
paradigm to Bayes net learning, and the first learning-theoretic analysis of constraint-based BN learning from dependency
data only.

A Bayes net that satisfies a set of given dependencies D is said to be an I-map for D. We show the NP-hardness of
the following problem: for a given set of dependencies D represented by an oracle O (Section 6), decide whether there is a
unique edgeminimal I-mapG forD, and if so, outputG. Bouckaert proved that theproblem isNP-hardwithout theuniqueness
condition [2, Lemma 4.5]. However, Bouckaert’s proof cannot be adapted for our uniqueness problem,which requires amuch
more complex reduction. To our knowledge, ours are the first NP-hardness results for deciding the existence of a uniquely
optimal Bayes net structure for any optimality criterion.

2. Preliminaries: language identification and Bayes nets

We first introduce general concepts from learning theory, followed by basic definitions from Bayes net theory and
computational complexity theory.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 65

2.1. Language identification with bounded mind changes

We employ notation and terminology from [12], [19, Chapter 1], [22], and [10]. We write N for the set of natural
numbers {0, 1, 2, . . . }. The symbols ⊆,⊇,⊂,⊃, and ∅, respectively, stand for subset, superset, proper subset, proper su-
perset, and the empty set. We assume that there is an at most countable set E of potential evidence items (strings in
language learning). A language is a subset of E; we write L for a generic language [10, p. 449]. A language learning
problem is defined by a collection of languages; we write L for a generic collection of languages. A text T is a map-
ping of N into E ∪{#}, where # is a symbol not in E. (The symbol # models pauses in data presentation.) We write
content(T) for the intersection of E and the range of T . A text T is for a language L iff L = content(T). The initial sequence
of text T of length n is denoted by T[n]. The set of all finite initial sequences over E ∪{#} is denoted by SEQ. We also
use SEQ(L) to denote finite initial sequences consistent with languages in L. Greek letters σ and τ range over SEQ. The
notation |σ | denotes the length of sequence σ . We write content(σ) for the intersection of E and the range of σ . We write
σ ⊂ T to denote that text T extends initial sequence σ ; similarly for σ ⊂ τ . A learner Ψ for a collection of languages
L is a mapping of SEQ(L) into L ∪ {?}, where ? corresponds to the vacuous conjecture “no guess". Our term “learner”
corresponds to the term “scientist” in [19, Chapter 2.1.2]. We say that a learner Ψ identifies a language L on a text T
for L, if Ψ (T[n]) = L for all but finitely many n. Next we define identification of a language collection relative to some
evidence.

Definition 1. A learner Ψ for L identifies L given σ ⇐⇒ for every language L ∈ L, and for every text T ⊃ σ for L, the
learner Ψ identifies L on T .

Thus a learner Ψ identifies a language collection L if Ψ identifies L given the empty sequence $. A learner Ψ changes its
mind at some nonempty finite sequence σ ∈ SEQ if Ψ (σ) "= Ψ (σ−) and Ψ (σ−) "= ?, where σ− is the initial segment of
σ with σ ’s last element removed [11, Chapter 12.2]. (No mind changes occur at the empty sequence $.)

Definition 2. LetMC(Ψ , T , σ) denote the total number ofmind changes ofΨ on text T after sequence σ (i.e., MC(Ψ , T , σ) =
|{τ : σ ⊂ τ ⊂ T : Ψ changes its mind at τ }|).
1. Ψ identifies L withmind-change bound k given σ ⇐⇒ Ψ identifies L given σ and Ψ changes its mind at most k times
on any text T ⊃ σ for a language in L after σ (i.e., if T ⊃ σ extends data sequence σ and T is a text for any language
L ∈ L, then MC(Ψ , T , σ) ≤ k).

2. A language collection L is identifiable with mind-change bound k given σ ⇐⇒ there is a learner Ψ such that Ψ
identifies L with mind-change bound k given σ .

2.2. Bayes nets: basic concepts and definitions

We employ notation and terminology from [25,24,31]. A Bayes net structure is a directed acyclic graph G = (V, E).
Two nodes X , Y are adjacent in a BN if G contains an edge X → Y or Y → X . The pattern π(G) of DAG G is the partially
directed graph over V that has the same adjacencies as G, and contains an arrowhead X → Y if and only if G contains a
triple X → Y ← Z where X and Z are not adjacent. Since a pattern is also a graph, we use G for patterns as well unless
the distinction between graphs and patterns is important in context. An (undirected) path in G is a sequence of nodes such
that every two consecutive nodes in the sequence are adjacent in G and no node occurs more than once in the sequence.
A node Y is a collider on undirected path p in DAG G if p contains a triple X → Y ← Z . If X and Z are adjacent in G, the
collider Y is shielded, otherwise unshielded. Every BN structure defines a separability relation between a pair of nodes X , Y
relative to a set of nodes S, called d-separation: if X , Y are two variables and S is a set of variables disjoint from {X , Y}, then
S d-separates X and Y if along every (undirected) path between X and Y there is a node W satisfying one of the following
conditions:

1. W is a collider on the path and neither W nor any of its descendants is in S, or
2. W is not a collider on the path and W is in S.

We write (X⊥⊥ Y |S)G if X and Y are d-separated by S in graph G. If two nodes X and Y are not d-separated by S in graph
G, then X and Y are d-connected by S in G, written (X⊥"⊥ Y |S)G . The d-connection relation, or dependency relation, for a
graph is denoted by DG , that is, 〈X , Y , S〉 ∈ DG iff (X⊥"⊥ Y |S)G . The d-separation relation, or independency relation, for a
graph is denoted by IG , that is, 〈X , Y , S〉 ∈ IG if and only if (X⊥⊥ Y |S)G . Verma and Pearl proved that two Bayes nets G1 and
G2 represent the same dependency relation iff they have the same pattern (i.e., DG1 = DG2 iff π(G1) = π(G2) [35, Theorem
1]). Thus we use a pattern as a syntactic representation for a Bayes net (in)dependency relation. The dependency space
over a set of variables V, denoted by DV , contains all conditional dependency statements of the form (X⊥"⊥ Y |S), where X , Y
are distinct variables in V and S ⊆ V\{X , Y}. The independency space over a set of variables V, denoted by IV , contains all
conditional independency statements of the form (X⊥⊥ Y |S), where X , Y are distinct variables in V and S ⊆ V\{X , Y}. We
shall make use of the following basic fact about d-separation; for the proof see [24, Corollary 3.4].

66 O. Schulte et al. / Information and Computation 208 (2010) 63–82

season

sprinkler rain

wet

slippery

season

sprinkler rain

wet

slippery

Fig. 1. Sprinkler network and its pattern.

Lemma 3. If two nodes A, B in a DAG G are not adjacent, then there is a separating set S such that A, B are d-separated by S in G,
that is, (A ⊥⊥ B|S)G.

Example. Fig. 1 shows a Bayes net from [25, p. 15]. In this network, node wet is an unshielded collider on the path sprinkler −
wet − rain; node wet is not a collider on the path sprinkler − wet − slippery. The pattern of the network has the same
skeleton, but contains only two edges that induce the collider wet. The variables sprinkler and rain are d-separated given
the set {season}, written (sprinkler⊥⊥ rain|season)G , which can be seen as follows. There are two undirected paths from
sprinkler to rain, namely sprinkler − wet − rain and sprinkler − season − rain. For the first path, clause (1) of the
definition of d-separation applies, since wet is a collider on the path sprinkler − wet − rain and neither wet nor its
descendant slippery is contained in the conditioning set {season}. For the second path, clause (2) applies, since season
is not a collider on the path sprinkler − season − rain and season is a member of the conditioning set {season}. The
variables sprinkler and rain are not d-separated given the set {season, wet}, written (sprinkler⊥"⊥ rain|season)G , because
wet is a collider on the path sprinkler − wet − rain contained in the conditioning set, which violates clause (1) of the
definition of d-separation.

2.3. Computational complexity

This section presents some of the necessary background from complexity theory. We outline standard complexity theory
concepts only briefly to introduce our notation; more details may be found in textbooks such as [23,28]. A decision problem
P asks whether a given input string s satisfies a certain property, in which case we write s ∈ P. Let P,Q be two decision
problems and let f be a function that maps an input string s for P to an input string t for Q. We say that f many-one
reduces P to Q if s ∈ P if and only if f (s) ∈ Q, for all inputs s. If the function f is computable in polynomial time, the
problem P is many-one reducible to Q in polynomial time, which we denote by P ≤P Q. If problem P can be decided
with a finite number of calls to an oracle for problem Q, the problem P is Turing-reducible to Q. If problem P can be
decided by a randomized algorithm with an oracle for problem Q that runs in polynomial time, we have a randomized
polynomial-time Turing reduction of P to Q, which we denote by P ≤RP Q. The class RP comprises the decision problems
that can be decided in polynomial time with a randomized algorithm [23, Definition 11.1]. The class NP is the class of
problems that can be decided in nondeterministic polynomial time, and NPNP is the class of problems that can be decided
in nondeterministic polynomial time given an oracle for an NP-complete problem (e.g., the satisfiability problem SAT). The

class FP(NPNP) comprises the functions whose values can be computed in polynomial time given an oracle for problems in
the class NPNP (cf. [23, Chapter 17.1]). Our target problem for reduction will be the problem of deciding the existence of a
unique exact cover by 3-sets.

UEC3SET
Instance A finite set U with |U| = 3q and a collection C of 3-element subsets of U.
Question Does C contain a unique exact cover for U, that is, a unique subcollection C′ ⊆ C such that every element of U

occurs in exactly one member of C′?
We apply the following result concerning the complexity of the unique exact cover problem.

Proposition 4. Let SAT denote the satisfiability problem. There is a randomized polynomial-time Turing reduction of SAT to
UEC3SET, so SAT ≤RP UEC3SET. Thus a polynomial time algorithm for UEC3SET yields a polynomial time algorithm for provided
that P = RP . So UEC3SET is NP-hard under that assumption.

The proposition follows from the famous theorem of Valiant and Vazirani that gives a probabilistic Turing reduction of SAT
to Unique SAT [34]. Standard polynomial-time many-one reductions show that Unique SAT reduces to UEC3SET. Next we
introduce our model of BN structure learning, which associates a language collection with a given set of variables V; the
language collection comprises all (in)dependency relations defined by Bayes net structures.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 67

Table 1
The correspondence between constraint-based learning of Bayes nets from conditional dependency data and Gold’s language learning model.

General language learning Bayes net structure learning

String Conditional dependency statement X⊥"⊥ Y |S
Language Conditional dependency relation
Index Pattern
Text Complete dependency sequence

3. Bayes net learning with bounded mind changes

This section defines our model of BN structure learning. We discuss the assumptions in the model and compare them to
assumptions made in other constraint-based BN learning approaches.

3.1. Definition of the learning model

Fix a set of variablesV. LetLD
V be the set of BN-dependency relations over variables V (i.e.,LD

V = {DG : G is a pattern over
V}). A complete dependency sequence T is a mapping of N into DV ∪ {#}. A dependency sequence T is for a dependency
relation D iff D = content(T). A Bayes net learning algorithm Ψ for dependency data maps a finite data sequence σ over
DV ∪ {#} to a pattern G or the output ? (for “no guess"). As Table 1 illustrates, this defines a language learning model, with
some changes in terminology that reflect the Bayes net context.

Example. Let G be the DAG in Fig. 1. The dependency relation for the graph DG contains {〈season, sprinkler,∅〉, 〈season,
sprinkler, {rain}〉, . . . , 〈sprinkler, rain, {season, wet}〉, 〈sprinkler, rain, {season, slippery}〉}. Any text enumerating DG

is a dependency sequence for DG .
For learning from independency data, let LI

V be the set of BN-independency relations over variables V (i.e., LI
V = {IG :

G is a pattern over V}). A complete independency sequence T is a mapping of N into LI
V ∪ {#}. An independency sequence

T is for an independency relation I iff I = content(T). A Bayes net learning algorithm Ψ for independency data maps a
finite data sequence σ over LI

V ∪ {#} to a pattern G or the output ? (for “no guess").

3.2. Discussion of the learning model

We discuss and motivate the three key components of our learning model: the hypothesis space (language collection),
the data generation model, and what a learner should output given data.

The hypothesis space. A Bayes net defines a dependency relation via the d-separation criterion. The motivation for this
criterion stems from how a Bayes net represents a probability distribution P. Let P be a joint distribution over variables V. If
X, Y and Z are three disjoint sets of variables, thenX andY are stochastically independent given S, denoted by (X⊥⊥ Y|S)P , if
P(X, Y|S) = P(X|S) P(Y|S)whenever P(S) > 0. If X, Y, and S are disjoint sets of nodes in G and X and Y are not empty, then
X and Y are d-separated by S if and only if every pair 〈X , Y〉 in X × Y is d-separated by S. In constraint-based BN learning, it
is common to assume that the probability distribution generating the data of interest has a faithful BN representation [31,
Theorem 3.2], [25, Chapter 2.4] (for further discussion, see [36,32, Chapter 8.1]).

Definition 5. Let V be a set of variables, G a Bayes net over V, and P a joint distribution over V. Then G is faithful to P if
(X⊥"⊥ Y|S)P in P ⇐⇒ (X⊥"⊥ Y|S)G in G.

Faithfulness implies that the dependencies in the data can be exactly represented in a Bayes net or a pattern; our language
learning model therefore incorporates this assumption. It is easy to see that a graph G is faithful to a distribution P if and
only if G is faithful with respect to variable pairs, that is, if (X⊥"⊥ Y |S)P in P ⇐⇒ (X⊥"⊥ Y |S)G in G for all variables X , Y , over
all sets S. Therefore CB methods focus on pairwise conditional (in)dependencies of the form X⊥"⊥ Y |S. We also follow this
approach throughout the paper.

The data model. Our model follows Gold’s paradigm which does not specify how linguistic data—for us, observed
(in)dependencies—are generated. In practice, a BN learner obtains a random sample d drawn from the data generating
joint distribution over the variables V, and applies a suitable statistical criterion to decide if a dependency X⊥"⊥ Y |S holds
[31,33, Section 4]. Many CB systems use a statistical test to answer queries to a dependency oracle: given a query “Does
X⊥"⊥ Y |S hold?”, the system answers “yes” if the test rejects the hypothesis X ⊥⊥ Y |S, and “no” otherwise. The assumption
that this procedure yields correct results is called the assumption of valid statistical testing [6, Section 6.2]. Compared to
this assumption, our model of learning from conditional dependencies (positive data) is more realistic in two respects. First,
the model assumes only that dependency information is available, but does not rely on independence data. In fact, many
statisticians hold that no independence conclusion should be drawn when a statistical significance test fails to reject an
independence hypothesis [9]. Second, the dependency learning model does not assume that the dependency information is
supplied by an oracle all at once, but explicitly considers learning in a setting where more information becomes available as

68 O. Schulte et al. / Information and Computation 208 (2010) 63–82

the sample size increases. Ourmodel still assumes that a statistically significant correlation does not disappear as the sample
size increases. The extent towhich this assumption is plausible depends on the testing strategy that extracts correlations from
the given samples. The most common approach in constraint-based methods is to employ a fixed conservative significance
level (e.g., α = 0.1% [31,8,33, Chapter 5]) for any sample size; with this kind of testing strategy, our assumption that the
store of observed correlations grows monotonically is quite plausible. In fact, the results in this paper generalize to a model
in which correlations may be taken back at later stages of learning, as long as there is a bound on the number of retractions:
it can be shown that the mind-change optimal learner in the generalized model conjectures that no dependencies will be
retracted in the future, and then follows the output of the mind-change optimal learner studied in this paper.

Although we have argued that our new model of learning Bayes nets from conditional dependencies is more realistic
than existingmodels based on independency information, in this paper we also study learning from independencies, for two
reasons. (1) From a mathematical point of view, it is natural to consider learning from both positive and negative data and
examine the similarities and differences between them in the domain of Bayes net learning. (2)Machine learning researchers
have extensively researched and widely applied methods based on independency data [3,31–33].

Output of the learner. In ourmodel, a learneroutputsoneof thepossiblehypotheses (languages) or thevacuous conjecture?.
While the use of a ? for “no guess" is standard in learning theory, it supplies a user with no information about what can
be inferred from the data. One approach to this issue in constraint-based learning is to indicate as part of the output that
certain aspects of the BNmodel are uncertain. For instance, the CPC algorithmmarks an edge A − B if the results of statistical
testing are ambiguous about the orientation of the edge [27]. A general formulation of this approach is to allow the learner to
output a set of hypotheses, rather than either a single hypothesis or ?. In the limit the learner has to converge to a singleton
comprising the correct pattern. In the set learning model, a learner Ψ changes its mind at some nonempty finite sequence
σ ∈ SEQ if Ψ (σ) "⊆ Ψ (σ−). Luo [18] defines the set learning model and shows that the results in this paper carry over to it.

Since the set of dependency relations LD
V constitutes a language collection in the sense of the Gold paradigm, we can

employ standard identification criteria to analyze this learning problem; similarly for the set LI
V of independency relations.

General results from learning theory that hold for any language collection are thus applicable to learning Bayes net structure
from either dependency or independency information. We begin by applying a fundamental result in Bayes net theory to
determine the mind change complexity of the problem.

4. The mind change complexity of learning Bayes net structure

Following Angluin [1, Condition 3] and Shinohara [30], we say that a class of languages L has finite thickness if the set
{L ∈ L : s ∈ L} is finite for every string or evidence item s ∈ ⋃

L. For language collections with finite thickness, their mind
change complexity is determined by a structural feature called the inclusion depth [17, Definition 6.1].

Definition 6. Let L be a language collection and L be a language in L. The inclusion depth of L in L is the size n of the largest
index set {Li}1≤i≤n of distinct languages in L, such that

L ⊂ L1 ⊂ · · · ⊂ Li ⊂ · · · ⊂ Ln.

The inclusion depth of L is the maximum of the inclusion depths of languages in L.

Thenextpropositionestablishes theconnectionbetween inclusiondepthandmindchangecomplexity. It follows immediately
from the general result for ordinal mind-change bounds established in [17, Proposition 6.1].

Proposition 7. Let L be a language collection with finite thickness. Then there is a learner Ψ that identifies L with mind-change
bound k ⇐⇒ the inclusion depth of L is at most k.

Sinceweare consideringBayes netswithfinitelymanyvariables, the dependency spaceDV is finite, so the language collection
LD
V containing all BN-dependency relations is finite and therefore LD

V has finite thickness; similarly the independency space
IV has finite thickness. Hence we have the following corollary.

Corollary 8. Let V be a set of variables. There exists a learner Ψ that identifies a BN dependency relation from LD
V , respectively,

a BN independency relation from LI
V , with mind-change bound k ⇐⇒ the inclusion depth of LD

V , respectively, LI
V , is at most k.

A fundamental result in Bayes net theory allows us to determine the inclusion depth of a dependency relation in LD
V or an

independency relation in LI
V . An edge A → B is covered in a DAG G if the parents of B are exactly the parents of A plus A

Fig. 2. Edge A → B is covered, whereas D → A is not covered.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 69

itself (see Fig. 2). The operation that reverses the direction of the arrow between A and B is a covered edge reversal. The
following theorem was conjectured by Meek [20] and proven by Chickering [4, Theorem 4].

Theorem 9 (Chickering–Meek). Let G and H be two DAGs over the same set of variables V. ThenDG ⊆ DH ⇐⇒ the DAGH can
be transformed into the DAG G by repeating the following two operations: (1) covered edge reversal, and (2) single edge deletion.

The next corollary characterizes the inclusion depth of a BN independence relation IG for a graph G in terms of a simple
syntactic feature of G, namely the number of adjacencies in G. For a BN dependence relation DG , the corresponding feature
is the number of adjacencies not in G.

Proposition 10. Let G = (V, E) be a Bayes net structure.

1. The inclusion depth of the BN-dependence relationDG equals
(|V|

2

)
− |E|, the number of adjacencies not inG. So the dependency

relation defined by the totally disconnected network has inclusion depth
(|V|

2

)
, and the dependency relation defined by the

complete network has inclusion depth 0.
2. The inclusion depth of the BN-independency relation IG equals |E|, the number of adjacencies in G. So the independency

relation defined by the totally disconnected network has inclusion depth 0, and the independency relation defined by the

complete network has inclusion depth
(|V|

2

)
.

Proof. Part 2 follows from Part 1, since an inclusion chain DG1 ⊂ · · · ⊂ DGk of BN-dependency relations corresponds to
an inclusion chain IGk ⊂ · · · ⊂ IG1 of the complementary independency relation. To establish Part 1, we use downward

induction on the number of edges n in graph G. Let N =
(|V|

2

)
. Base case: n = N. Then G is a complete graph, so DG contains

all dependency statements in the statement space DV , and therefore has 0 inclusion depth. Inductive step: Assume the
hypothesis for n + 1 and consider a graph G with n edges. Add an edge to G to obtain a BN G′ with n + 1 edges that is
a supergraph of G′. Adding an edge can only increase the number of d-connecting paths between two given variables, so
DG ⊆ DG′ . Suppose that the edge added is a new link between nodes A and B that are not adjacent in G. By the d-separation
Lemma 3, there is a separating set S such that A, B are d-separated by S in G, that is, (A ⊥⊥ B|S)G . However, in the graph G′,
the nodes A and B are adjacent, so they are not d-separated by any set, and we have (A⊥"⊥ B|S)G′ . So G′ entails strictly more
dependencies than G, that is,

DG ⊂ DG′ .

By inductive hypothesis, there is an inclusion chain

DG′ ⊂ DG1 · · · ⊂ DGN−(n+1)

consisting of BN dependency relations. Hence the inclusion depth of G is at least N − (n + 1) + 1 = N − n.
To show that the inclusion depth of G is exactly N − n, consider any inclusion chain

DG ⊂ DH ⊂ · · · ⊂ DV. (1)

Theorem 9 implies that graph G can be obtained from H with covered arc reversals and/or edge deletions. If G can be
obtained from H with covered arc reversals only, then H can be likewise obtained from G, since covered edge reversals are
symmetric, and so by Theorem 9 we would have DG = DH , contradicting the choice of H. So H has at least one more edge
than G and thus H has at least n + 1 edges. Applying the inductive hypothesis to H, it follows that the inclusion chain

DH ⊂ · · · ⊂ DV

has length at most N − (n + 1), so the inclusion chain (1) has at most N − (n + 1) + 1 = N − nmembers. !

Propositions 7 and 10 imply that themind change complexity of identifying a Bayes net structure over variablesV is given
by the maximum number of edges over V.

Corollary 11. For any set of variables V, the inclusion depth of LD
V and the inclusion depth of LI

V is
(|V|

2

)
. So the mind change

complexity of identifying the correct Bayes net structure from dependency data or from independency data is
(|V|

2

)
.

The next section characterizes the BN learning algorithms that achieve optimal mind change performance.

70 O. Schulte et al. / Information and Computation 208 (2010) 63–82

5. Mind-change optimal learners for Bayes net structure

We analyze mind-change optimal algorithms for identifying Bayes net structure. The intuition underlying mind-change
optimality is that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the
entire learning problem, but also locally in subproblems after receiving some evidence [17,16,14]. We formalize this idea as
in [17, Definition 2.3]. If amind-change bound exists for L given σ , let MCL(σ) be the least k such thatL is identifiablewith k
mindchangesgivenσ . For example, givena sequenceσ ofdependencies, letG = (V, E)beaBNthat satisfies thedependencies

in σ with a minimum number of edges. Then the mind change complexity MCLD
V
(σ) is

(|V|
2

)
− |E|. Mind-change optimality

requires that a learner should succeed with MCL(σ) mind changes after each data sequence σ .

Definition 12 (Based on Definition 2.3 of [17]). A learner Ψ is strongly mind-change optimal (SMC-optimal) for L if for all
data sequences σ the learner Ψ identifies L given σ with at most MCL(σ) mind changes.

The next proposition characterizes SMC-optimal learners for language collections with finite inclusion depth. It follows from
the general characterization of SMC-optimal learners for all language collections established in [17, Proposition 4.1].

Proposition 13. Let Ψ be a learner that identifies a language collection L with finite inclusion depth. Then Ψ is SMC-optimal
for L if and only if for all data sequences σ : if Ψ (σ) /= ?, then Ψ (σ) is the unique language consistent with σ that maximizes
inclusion depth.

Applying the proposition to Bayes net learners yields the following corollary.

Corollary 14. Let Ψ be a Bayes net learner that identifies the correct Bayes net pattern for a set of variables V from dependency
data. The learner Ψ is SMC-optimal for LD

V ⇐⇒ for all dependency sequences σ , if the output of Ψ is not ?, then Ψ outputs a
uniquely edge-minimal pattern for the dependencies D = content(σ).

It is easy to implement a slow SMC-optimal BN learner. For example, for a given set of dependenciesD it is straightforward to
check if there is a pattern G that covers exactly those dependencies (i.e., DG = D). So an SMC-optimal learner could output
a pattern G if there is one that matches the observed dependencies exactly, and output ? otherwise. But such a slow learner
requires exponentially many dependency statements as input before it conjectures a graph. There are SMC-optimal learners
that produce a guess faster; in fact, using Gold’s notion of “uniformly faster”, we can show that there is a unique fastest
SMC-optimal learner. Gold proposed the following way to compare the convergence speed of two learners [10, p. 462].

Definition 15. Let L be a language collection.

1. The convergence time of a learner Ψ on text T is defined as CP(Ψ , T) ≡ the least timem such that Ψ (T[m]) = Ψ (T[m′])
for allm′ ≥ m.

2. A learner Ψ identifies L uniformly faster than learner Φ ⇐⇒
(a) for all languages L ∈ L and all texts T for L, we have CP(Ψ , T) ≤ CP(Φ , T), and
(b) for some language L ∈ L and some text T for L, we have CP(Ψ , T) < CP(Φ , T).

For a language collection L with finite inclusion depth, Proposition 13 implies that if there is no language L that uniquely
maximizes inclusion depth given σ , then a learner that is SMC-optimal outputs ? on σ . Intuitively, the fastest SMC-optimal
learner delays making a conjecture no longer than is necessary to meet this condition. Formally, this learner is defined as
follows for all sequences σ ∈ SEQ(L):

Ψ L
fast(σ) =

{
? if no language uniquely maximizes inclusion depth given σ

L if L ∈ L uniquely maximizes inclusion depth given σ .

The next observation asserts that Ψ L
fast is the fastest SMC-optimal method for a given language collection L.

Observation 16. Let L be a language collection with finite inclusion depth. Then Ψ L
fast is SMC-optimal and identifies L uniformly

faster than any other SMC-optimal learner for L.

Proof. It is easy to see thatΨ L
fast identifies L, so Proposition 13 implies thatΨ L

fast is SMC-optimal. LetΨ /= Ψ L
fast be any other

SMC-optimal learner that identifies L. By Proposition 13, ifΨ (σ) /= ?, thenΨ (σ) = Ψ L
fast(σ). SoΨ does not converge faster

than Ψ L
fast on any text. Therefore for any language L ∈ L and text T for L, we have

CP(Ψ L
fast, T) ≤ CP(Ψ , T).

O. Schulte et al. / Information and Computation 208 (2010) 63–82 71

Let σ ∈ SEQ(L) be a data sequence such that Ψ (σ) /= Ψ L
fast(σ) = L. Since both Ψ and Ψ L

fast are SMC-optimal, Proposition

13 implies that L uniquely maximizes inclusion depth given σ . So Ψ L
fast(σ) = L and Ψ (σ) = ?. Now let TL ⊃ σ be any text

for L extending σ . It is easy to see that the language L uniquely maximizes inclusion depth on any data sequence σ ′ with
σ ⊆ σ ′ ⊂ TL . So

CP(Ψ L
fast, TL) ≤ |σ |,

and clearly

CP(Ψ , TL) > |σ |

since Ψ (σ) = ?. Thus Ψ L
fast identifies L uniformly faster than Ψ , and in general faster than any other SMC-optimal learner.

!

Observation 16 leads to the following algorithm for identifying a BN pattern from dependency data.

Corollary 17. Let V be a set of variables. For a given sequence of dependencies σ , the learner Ψ D
fast outputs ? if there is more

than one edge-minimal pattern that covers the dependencies in σ , and otherwise outputs a uniquely edge-minimal pattern for
the dependencies D = content(σ). The learner Ψ D

fast is SMC-optimal and identifies the correct pattern uniformly faster given
dependency data than any other SMC-optimal BN structure learner.

The corollary shows that the criteria of mind-change optimality and convergence speed determine a unique, natural and
novel method for learning Bayes net structure. The next example illustrates this method.

Example 18. Let V = {A, B, C,D}. If

σ = (B⊥"⊥ D, B⊥"⊥ D|{A}, B⊥"⊥ D|{C},
C⊥"⊥ D, C⊥"⊥ D|{A}, C⊥"⊥ D|{B},
B⊥"⊥ C|{D}, B⊥"⊥ C|{A,D}),

then Ψ V
fast outputs the graph shown in Fig. 3(a), for the following reasons. According to Corollary 17, maximizing inclusion

depth given dependency data is equivalent to minimizing the number of edges in the output graph. In any edge-minimal
graph G consistent with the data σ , nodes B and D are adjacent: if they are not adjacent in some graph G, then by Lemma 3
there is a d-separating set S such that (B ⊥⊥ D|S)G . According to the data, B and D are dependent given any proper subset of
{A, C}, so we have (B ⊥⊥ D|{A, C})G . The skeleton of any such graphmust contain undirected paths B − A − D and B − C − D,
that is, all paths between B and D are blocked by A and C, but there is an unblocked path given just A and an unblocked
path given just C. But any such graph contains four edges, whereas the graph shown in Fig. 3(a) entails the dependencies
in σ with just two edges. So nodes B and D are adjacent in any edge-minimal graph consistent with σ . The same argument
holds for nodes C and D, so any edge-minimal graph consistent with σ contains a triple B − D − C. To entail the observed
dependence B⊥"⊥ C|{D}, that triple must be oriented as B → D ← C; the only alternative is to add an edge between B and C,
but this fails to minimize the number of edges. So the only pattern with only two edges that is consistent with the observed
dependencies σ is the one shown in Fig. 3(a).

Now suppose after some time, we have accumulated more data, and obtain the following data sequence:

σ ′ = σ ∪
A⊥"⊥ B, A⊥"⊥ B|{C}, A⊥"⊥ B|{D},
A⊥"⊥ C, A⊥"⊥ C|{B}, A⊥"⊥ C|{D}, B⊥"⊥ C),

Fig. 3. To illustrate SMC-optimal learning from dependency data. (a) The output of the optimal learner Ψ V
fast on example data σ . (b) The output of the

optimal learner Ψ V
fast on example data σ ′ .

72 O. Schulte et al. / Information and Computation 208 (2010) 63–82

then the optimal learner Ψ V
fast outputs the graph shown in Fig. 3(b), for the following reasons. Similar to the analysis of

the previous data, any edge-minimal graph must have A adjacent to B: for if A is not adjacent to B in a graph G consistent
with σ ′, then the skeleton of G must contain two paths A − C − B and A − D − B, and if G has the minimum number of 4
necessary edges, these are all the links in G. In any DAGwith such a skeleton, there is at least one collider (else a cycle would
occur). Suppose without loss of generality that B is a collider, so the graph contains a triple C → B ← D. But then either the
dependence C⊥"⊥ D|A or the dependence C⊥"⊥ D is not entailed by G. So any graphwith only four edges that is consistent with
σ ′ has the same skeleton as that shown in Fig. 3(b). The only remaining question is the placement of colliders. If both A and
D are colliders, the dependence B⊥"⊥ C fails. If neither is a collider, the dependence B⊥"⊥ C|{A,D} fails. If A is a collider and D
is not, the dependence B⊥"⊥ C|{D} fails. So the only possibility is to have D as a collider and A not a collider, which results in
the pattern shown in Fig. 3(b).

The next corollary characterizes the fastest mind-change optimal learner for independency data.

Corollary 19. Let V be a set of variables. For a given sequence of independencies σ , the learner Ψ I
fast outputs ? if there is more

than one edge-maximal pattern that covers the independencies in σ , and otherwise outputs a uniquely edge-maximal pattern for
the independencies I = content(σ). The learner Ψ I

fast is SMC-optimal and identifies the correct pattern uniformly faster given
independency data than any other SMC-optimal BN structure learner.

Intuitively, the learner Ψ I
fast removes as many potential adjacencies as are necessary to entail the independencies given

in the data. One of the most prominent constraint-based algorithms, the PC algorithm [31, Chapter 5.4.2], can be seen
as a heuristic implementation of this idea: Basically, the PC algorithm starts with the completely connected network
over n variables, and then successively considers independencies of the form X⊥⊥ Y |S, for |S| = 0, 1, . . . , n, removing
links between the conditionally independent variables X and Y . Examples of the kind of Bayes net structure that result
from this algorithm are given in [31]. The remainder of the paper analyzes the run-time complexity of the optimal Ψ D

fast

and Ψ I
fast methods; we show that computing the output of these learners is NP-hard (assuming that P = RP). The proof

gives two many-one reductions of the problem of deciding the existence of a unique exact cover by 3-sets, to the prob-
lems of computing the output of the fastest mind-change optimal learner from independency, respectively, dependency
data.

6. Computational complexity of fast mind-change optimal identification of Bayes net structure from independency
data

Because the NP-hardness proofs for the optimal learners are quite different for dependency and independency data, we
divide the analysis into different sections. We begin with the setting of independency data, whose NP-hardness proof is
much simpler. General complexity theory concepts and notation were reviewed in Section 2.3.

We describe the standard approach of analyzing the complexity of constraint-based learners in the Bayes net literature. As
with any run-time analysis, an important issue is the representation of the input to the algorithm. The most straightforward
approach for our learningmodelwouldbe to take the input as a list of (in)dependencies, and the input size tobe the size of that
list. However, in practice CB learners do not receive an explicitly enumerated list of (in)dependencies, but rather they have
access to a statistical oracle (cf. Section 3.2). Enumerating relevant (in)dependencies through repeated queries to the oracle is
part of the computational task of a CB learner. Accordingly, the standard complexity analysis takes an (in)dependency oracle
and a set of variables as the input to the learning algorithm (e.g., [5, Definition 12,2]). The oracle is assumed to be represented
syntactically in a reasonably concise way. For example, it may be a TuringMachine that computes the characteristic function
of a given dependency relation D.

Definition 20. An independency oracle O for a variable set V is a function that takes as input independency queries from
the independency space IV and returns, in constant time, either “yes” or “?”.

The independency relation associated with oracle O is given by IO = {X⊥"⊥ Y |S ∈ IV : O returns “yes” on input X ⊥⊥ Y |S}.
The oracle represents the independencies observed on a finite data sample, which may be incomplete; that is, there need
not be any graph G such that IG = IO.

Remark. Our model of learning Bayes net structure can be reformulated in terms of a sequence of oracles: Instead of
a complete sequence of independence statements for an independence relation IG , the learner could be presented with
a sequence of independency oracles O1,O2, . . . ,On, . . . such that IOi ⊆ IOi+1 and

⋃∞
i=1 IOi = IG . The mind change and

convergence time results remain the same in the independency oracle model.
We say that a pattern G is an I-cover of a set of independencies I if G entails all the independencies in I (i.e., I ⊆ IG).

Computing the conjectures of the learner Ψ I
fast poses the following computational problem.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 73

Unique Maximal I-cover
Input A set of variables V and an independency oracle O for V.
Output If there is a unique DAG pattern G that entails the independencies in O with a maximal number of edges, output G.

Otherwise output ?.
This is a function maximization problem; the corresponding decision problem is the following.
Unique I-cover
Instance A set of variables V, an independency oracle O for V, and a bound k.
Question Is there a DAG pattern G such that: G entails the independencies in O, every other DAG pattern G′ entailing the

independencies in O has fewer edges than G, and G has at least k edges?
Clearly an efficient algorithm for the functionmaximizationproblemyields an efficient algorithm forUnique I-cover.Wewill
show that UEC3SET reduces to Unique I-cover. We also give an upper bound on the problem complexity in terms of oracle

computations. Recall that SAT is the NP-complete satisfiability problem and FP(NPNP) is the class of functions computable in
polynomial time given an oracle for decision problems in NPNP.

Theorem 21. The computational complexity of Unique Maximal I-cover.

1. Unique Maximal I-cover is in FP(NPNP) .
2. SAT ≤RP UEC3SET ≤P Unique I-cover ≤P Unique Maximal I-cover. So Unique Maximal I-cover is NP-hard provided

that P = RP .

Proof. Part 1: we specify a program that computes the output of the fastest SMC-optimal learner Ψ I
fast given a set of n input

nodes, an independency oracle O, and an oracle for computational problems in NPNP. A pattern G is an I-cover of O just in
case the answer to the question “is there a dependency X ⊥⊥ Y |S such that X ⊥⊥ Y |S ∈ (IO − IG)?” is no. So an oracle for NP
decides in constant time whether a pattern G is an I-cover of O.

1. Find the maximum number of edges k, for k = 1, . . . ,
(
n
2

)
, such that there is a pattern G that is an I-cover of O. Given an

NP-oracle for deciding whether G is an I-cover of O, for a given k this query can be answered in polynomial time with a
nondeterministic computation. Using binary search, this step therefore can be carried out with O(log(n)) queries to the
NPNP oracle.

2. Having determined the maximum number k of edges, ask “are there two distinct patterns G, G′ such that both G and G′
are I-covers of O and G and G′ contains k edges?”. Given an NP-oracle for deciding whether G and G′ are I-covers of O, this
query can be answered in polynomial time with a nondeterministic computation, hence with a single query to the NPNP

oracle. If the answer is “yes”, output ?, since there is no unique I-cover with a maximum number of edges. If the answer
is “no”, there is a unique I-cover with a maximum number of edges; continue to the next step.

3. Using a standard method, construct an output pattern R as follows. For each pair of nodes X , Y and each of the possible
link types X − Y , X → Y , X ← Y , ask “is there a pattern G with k edges that contains the given link type between X and
Y and is an I-cover of IO?”. As in the previous step, this query can be answered in constant time with an NPNP oracle for a
given pair of nodes X , Y and type of link between them. Since the edge-maximizing I-cover is unique, the answer is “yes”,
for at most one of these link types. If the test indicates a link of a certain type between X and Y , add the link to R. This

requires O
((

n
2

))
queries to the NPNP oracle.

This procedure returns the output of the fastest SMC-optimal learner Ψ I
fast with total runtime bounded by O

((
n
2

))
.

Part 2: we give a reduction fromunique X3Set toUnique I-Coverwith At Least k edges. Consider an instance of UEC3SET
with sets universe U of size |U| = 3m, and c1, . . . , cp, where |ci| = 3 for i = 1, . . . , p and U = ∪m

i=1ci. Define the following
set V of variables.

1. For every set ci, a set variable Ci.
2. A root variable R.

We write x for the element corresponding to node X , and similarly c for the set corresponding to node C. Set the bound
k = m. The following program implements an independency oracle O over the variables V, in time polynomial in the size of
the given UEC3SET instance.
Definition of independency oracle
Input An independency query V1 ⊥⊥ V2|S.
Output Oracle Clauses

1. If V1 = Ci, V2 = Cj , and S = ∅, then return “independent".
2. If V1 = Ci, V2 = Cj , S = {R} and ci ∩ cj /= ∅, then return “independent".
3. In all other cases, return ?.

We use the terms adjacency, edge, and link interchangeably. Let IO be the set of independencies associated with oracle O.
We argue that every I-cover for IO with at least m adjacencies corresponds to an exact set cover for the given instance of
UEC3SET, and vice versa.

74 O. Schulte et al. / Information and Computation 208 (2010) 63–82

Suppose that G is an I-cover for IO with at least m adjacencies. Clause 1 implies that all adjacencies are of the form
C − R: the only other possibility is an adjacency C − C′ between set variables, but then C and C′ are d-connected in G given
the empty set, whereas Clause 1 requires that they be d-separated given the empty set. The case with m = 1 is trivial; for
m > 1, Clause 1 implies that the adjacencies are directed as C → R: for suppose otherwise. Then there is a link of the form
C ← R. Sincem > 1, there is at least one other link C′ − R with C /= C′. Now R is not a collider on the path C ← R − C′, so
C and C′ are d-connected in G given the empty set, whereas Clause 1 requires that they be d-separated given the empty set.
Given that R is therefore a collider on any path C − R − C′, it follows that C⊥"⊥ C′|{R} whenever C, C′ are neighbors of R. The
contrapositive of Clause 2 says that if C⊥"⊥ C′|{R}, then c ∩ c′ = ∅. Thus the neighbors of R correspond to mutually disjoint
sets, so there are exactly m neighbors of R forming an exact set cover.

Conversely, it is easy to see that if the collection {c1, . . . , cm} forms an exact cover of the universe U, then the graph
containing all edges Ci → R, for i = 1, . . . ,m, is an I-cover of IO. So there is a 1-1 ontomapping between I-covers of IO with
at least m edges and exact set covers for the given set cover instance. Hence there is a unique I-cover of IO with at least m
edges if and only if there is a unique exact set cover. !

The gap between our upper and lower bounds is typical for problems in the higher levels of the polynomial hierarchy,
where both lower bounds and completeness in a class are difficult to establish (see [23, Chapter 17], especially the discussion
of the Minimum Circuit problem, and [28, Chapter 5], especially the discussion of Unique SAT).

The next section establishes a corresponding upper and lower bound for the problem of computing the output of the
fastest SMC-optimal learner from dependency data, which requires a much more difficult construction for the lower bound.
The reason why the hardness proof for dependency data is muchmore complex than for independency data is that there are
many ways to achieve d-connection between two variables A and B, whereas d-separation immediately entails the absence
of a link between A and B.

7. Computational complexity of fast mind-change optimal identification of Bayes net structure from dependency data

The definitions for the complexity analysis for dependency data parallel those for independency data.

Definition 22. A dependency oracle O for a variable set V is a function that takes as input dependency queries from the
dependency space DV and returns, in constant time, either “yes” or “?”.

The dependency relation associated with oracle O is given by DO = {X⊥"⊥ Y |S ∈ DV : O returns “yes” on input X⊥"⊥ Y |S}. The
oracle represents the dependencies observed on a finite data sample, which may be incomplete; that is, there need not be
any graph G such that DG = DO. As with independency data, our model of learning Bayes net structure can be reformulated
in terms of a sequence of dependency oracles, where instead of a complete sequence of dependence statements, the learner
is presented with a sequence of dependency oracles converging to the target independency relation. The mind change and
convergence time results remain the same in the dependency oracle model.

A pattern G is an I-map of a set of dependencies D if G entails all the dependencies inD (i.e.,D ⊆ DG , cf. [24]). Computing
the conjectures of the learner Ψ D

fast poses the following computational problem.
Unique Minimal I-map
Input A set of variables V and a dependency oracle O for V.
Output If there is a unique DAG pattern G that entails the dependencies in O with a minimal number of edges, output G.

Otherwise output ?.
The corresponding decision problem is the following.
Unique I-map
Instance A set of variables V, a dependency oracle O for V, and a bound k.
Question Is there a DAG pattern G such that: G covers the dependencies in O, every other DAG pattern G′ entailing the

dependencies in O has more edges than G, and G has at most k edges?
Clearly an efficient algorithm for the function minimization problem yields an efficient algorithm for Unique I-map. We will
show that UEC3SET reduces to Unique I-map. We also give an upper bound on the problem complexity in terms of oracle
computations.

Theorem 23. The computational complexity of Unique Minimal I-map.

1. Unique Minimal I-map is in FP(NPNP) .
2. SAT ≤RP UEC3SET ≤P Unique I-map ≤P Unique Minimal I-map. SoUniqueMinimal I-map isNP-hard provided that P =

RP .

Proof. Part 1 can be proven like Theorem 21(1). For Part 2, we give a reduction from UEC3SET to Unique I-map. Consider an
instance of UEC3SET with sets universe U of size |U| = 3m, and c1, . . . , cp, where |ci| = 3 for i = 1, . . . , p and U = ∪m

i=1ci.
Define the following set V of variables.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 75

1. For every set ci, a set variable Ci.
2. For every element xj of the universe U, a member variable Xj .
3. A root variable R.

We write x for the element corresponding to node X , and similarly c for the set corresponding to node C. Set the bound
k = 3p + m. The following program M implements a dependency oracle O over the variables V , in time polynomial in the
size of the given UEC3SET instance.
Definition of dependency oracle
Input A dependency query V1⊥"⊥ V2|S.
Output Oracle Clauses

1. If V1 = Ci, V2 = Xj , and xj ∈ ci, then return “dependent”.
2. If V1 = Xi, V2 = Xj , and there is a set ck ⊇ {xi, xj} such that Ck ∈ S, then return “dependent”.
3. If V1 = R, V2 = Xj , S = ∅ then return “dependent”.
4. If V1 = R, V2 = Xj , |S| = 1, and S /= {C} where xj ∈ c, then return “dependent”.
5. In all other cases, return ?.

We argue that there is a unique exact set cover for an instance 〈U, {ci}〉 iff there is a unique I-map with at most k edges for O.
So if there were a polynomial time algorithm A for Unique I-map, we could solve the UEC3SET instance in polynomial time
by using the programM to “simulate” the oracle O and use A to solve the corresponding instance of Unique I-map. Our proof
strategy is as follows. Consider what we refer to as the basic graph for O, shown in Fig. 4. The basic graph is also a pattern
because all arrows correspond to unshielded colliders. We show that if there is a unique I-map G for Owith at most k edges,
then G is a subgraph of the basic graph, with possibly edges Ci → R missing for some sets ci, such that the set of variables
{C1, C2, . . . , Cm} with the edge Ci → R in G corresponds to an exact cover {c1, . . . , cm}. Conversely, any unique exact cover
corresponds to a subgraph of the basic graph in the same manner.

In the following argumentsweuse the terms adjacency, edge, and link interchangeably. For notation,weuse anundirected
link as in A − B to indicate that nodes A and B are adjacent in a given graph, but the direction of the link is not determined
by the context. The notation A − · · · − B indicates a path starting with A and ending in B where the direction of the links
involving A and B is not determined. The notation A − · · · → B indicates that the last edge points into B, etc. It is easiest to
consider separately the constraints imposed by each clause of O. Let Di be the set of dependencies corresponding to Clause i.
For example, D1 = {〈Ci, Xj , S〉 : xj ∈ ci}. The implications of D1 are as follows.

Assertion 24. Let DAG G be an I-map for D1. Then any two nodes X and C are adjacent whenever x ∈ c.

Proof. The d-separation Lemma 3 implies that if G entails the dependencies in D1, then x and C are adjacent whenever
x ∈ c. !

An implication of the constraints in D2 is that any two element nodes Xi, Xj with xi, xj contained in the same set c are
adjacent to each other or have variable C as a common child (possibly both may be the case).

Assertion 25. Let DAG G be an I-map for D1 ∪ D2, and suppose that xi, xj are two elements of a set c. Then Xi and Xj are adjacent
in G, or G contains a component Xi → C ← Xj.

Proof. By Assertion 24, nodes Xi and Xj are, respectively, adjacent to C. If Xi and Xj are adjacent, then the assertion holds
trivially. A basic fact about d-separation is that in a triple X − Y − Z such that X and Z are not adjacent, the node Y is a
collider if and only if all sets that contain Y d-connect X and Z [21, Lemma 2.5]. So the dependencies D2 require that C is a
collider in G. !

Clause 3 requires that everymember variable X be d-connected to the root variable. The intuition behind our reduction is
that the basic graph B contains themost edge-efficient way to achieve the connection because with just one edge C → R the

Fig. 4. The basic graph for the NP-hardness proof. A set cover of sizem corresponds to m edges of the form C → R.

76 O. Schulte et al. / Information and Computation 208 (2010) 63–82

graph d-connects three member variables at once. Since there are many ways to achieve d-connection in a graph, proving
the correctness of this intuition is the main difficulty of our proof.

The bulk of the proof shows that any I-map for D3 can be transformed into a subgraph of the basic graph B without
increasing the number of edges. This requires a number of intermediate results. We begin by establishing that in an I-map
G of D3, all arcs originating in the root variable R can be reversed with the result G′ still an I-map of D3.

Lemma 26. Let DAG G be an I-map of D3. Let G
′ be the graph obtained by reversing all arcs of the form R → V to be V → R.

Then G′ is an I-map of D3.

Proof. First we argue that G′ is acyclic. Suppose for contradiction that G′ contains a directed cycle that is not contained in
G. Then the cycle involves a reversed edge of the form X → R, and we can write the cycle as R → Y → · · · → R. However,
since all edges involving the root R are reversed in G′, there is no edge R → Y in G′. So G′ is acyclic since G is.

Second, we show that G′ entails the dependencies in D3. Let X be any member variable and consider a path p in G of the
form

p = R − · · · − X

that d-connects R and X in G.
Case 1: The path p contains no reversed edge. Then the edges in p are the same in G as in G′, and p d-connects R and X in

G′.
Case 2: The path p contains some reversed edge. Let Z be the last such member. Then p is of the form

p = R − · · · − Z − · · · − X

where the final path segment Z − · · · − X contains no nodes with their edges changed. The following path p′ d-connects R
and X in G′: set

p′ = R ← Z − · · · − X.

Clearly the node Z is not a collider in p′, and so p′ d-connects R and X in G′ as the final segment Z − · · · − X is oriented the
same in both graphs. So in either case, R and X are d-connected in G′ and so G′ entails D3. !

The next assertion shows that if the root node is a sink in a graph G, then for any parent A of R, all edges pointing out of A
except for A → R can be reversed.

Lemma 27. Let DAG G be an I-map of D3. Suppose that the root variable R has outdegree 0 and that A is a parent of R in G. Let
G′ be the graph obtained by reversing all edges of the form A → B where B /= R. Then G′ is an I-map of D3.

Proof. First we argue that G′ is acyclic. Suppose for contradiction that G′ contains a directed cycle that is not contained in
G. Then the cycle involves a reversed edge and hence contains A, so without loss of generality, we may assume the cycle is of
the form A → · · · → A. But the only child of A in G′ is the root R, which is a sink in G and hence in G′. So there is no directed
path from R to A and hence no directed cycle in G′ from A to A. Thus G′ is acyclic since G is.

To see that G′ entails the dependencies inD3, let X be anymember variable; since G entails the dependencies in D3, there
is a path p in G of the form R − · · · − X that d-connects R and X in G. Suppose that path p uses an edge of the form A → B
that is reversed in G′.

Case 1: p is of the form

X − · · · − A → B → · · · → R.

Then the path

X − · · · − A → R

d-connects X and R in G′.
Case 2: p is of the form

X − · · · ← B ← A − · · · − R.

Then the path

X − · · · ← B ← A → R

introduces no new collider and thus d-connects X and R in G′. So all member variables X are d-connected to the root variable
R in G′ and G′ is an I-map of the dependencies D3. !

O. Schulte et al. / Information and Computation 208 (2010) 63–82 77

The next assertion shows that if a node has two directed paths towards the root, then one of them is superfluous for
entailing the dependencies in D3, and it is possible to delete an edge. This is a key fact for constraining the structure of
edge-minimal graphs.

Lemma 28. LetDAGGbean I-mapofD3. Suppose that for somenodeX , there are twodirectedpathsX → U1 → · · · → Up → R

and X → W1 → · · · → Wq → R where U1 /= W1. Let G
′ be the graph obtained from G by deleting the edge X → U1. Then G′

is an I-map of D3.

Proof. Consider a path p in G of the form

p = R − · · · − Y

that d-connects R and Y in G. If p does not use the edge X → U1, then p d-connects R and X in G′. Otherwise there are two
cases.

Case 1: The path p is of the form

p = R − · · · − X → U1 − · · · − Y .

Then Y is d-connected to U1 in G and hence in G′. Thus the path

Y − · · · − U1 → · · · → Up → R

d-connects Y to R.
Case 2: The path p is of the form

p = R − · · · − U1 ← X − · · · − Y .

Since U1 /= W1, the path

X → W1 → · · · → Wq → R

exists in G′. So the path

Y − · · · − X → W1 → · · · → Wq → R

d-connects Y to R.
So in either case, anymember variable Y is d-connected to the root variable R in the graph G′, and so G′ is an I-map of D3.

!

Lemma 29. Let DAG G be an I-map of D3. Suppose G contains an edge A → B where B is not an ancestor of R. Add an edge
B → R and delete the edge A → B. The resulting graph G′ is an I-map of D3 that contains no more edges than G.

Proof. Consider any path in G that d-connects a member variable X with root variable R and uses the edge A → B. Since B
is not an ancestor of R, the path must be of the form

X − · · · ← B ← A − · · · − R.

So in G there is a path X − · · · ← B that does not involve the edge A → B, hence in G′ we have the path

X − · · · ← B → R

d-connecting X and R. So anymember variable d-connected to R in G is also d-connected in G′, which establishes the lemma.
!

The previous lemmas showed that an I-map G of D3 can be transformed in various ways that bring it closer to the basic
graph while still remaining an I-map of D3. The next key Assertion 30 shows that an I-map G of D3 of minimum size must
not contain certain types of edges outside of the basic graph; we refer to these as ‘inefficient’ edges. Formally, say that an
edge is inefficient in DAG G if and only if it has one of the following forms: (1) X − Y where X and Y are member variables,
(2) X − R where X is a member variable, (3) X → C where x "∈ c. An edge is efficient if it is not inefficient. So the efficient
edges have one of the following forms: (1) C − R, or (2) C − C′, or (3) C − X with x ∈ c, or (4) X ← C where x "∈ c; here
C, C′ are set variables, and X is a member variable. We refer to an adjacency of the form X ← C where x "∈ c as an efficient
set-nonmember link. We show that the presence of an inefficient edge in an I-map of D1 ∪ D2 ∪ D3 requires more than k
edges total in G, by the following construction: First, if an I-map of D1 ∪ D2 ∪ D3 contains no efficient set-nonmember
links, but contains inefficient edges, then it has more than k edges total. Second, we can replace efficient set-nonmember
links with other links, without reducing the number of inefficient edges, until the first case applies.

78 O. Schulte et al. / Information and Computation 208 (2010) 63–82

Assertion 30. Let G be an I-map of D1 ∪ D2 ∪ D3. If G contains inefficient edges, then G contains more than k = 3p + m edges.

Proof. The proof is by induction on the number of efficient set-nonmember links, denoted as a.
Base case, a = 0. We proceed with a further induction on the number of inefficient edges, denoted as i. Base case, i = 1.

Let A → B be the only inefficient edge in G, and suppose for contradiction that G contains no more than 3p + m edges.
Assertion 24 implies that G contains 3p adjacencies of the form X − C where x ∈ c, which are efficient. Since G contains also
an inefficient edge, the number of remaining efficient edges not of the form X − C is at most

(3p + m) − 3p − 1 = m − 1.

Let C be any set variable; as c contains three elements, and there is only one inefficient edge in G, there is an element x ∈ c
such that X is not adjacent to any other member variable X′ with x′ in c. So by Assertion 25, all 3p adjacencies X − C with
x ∈ c are oriented as X → C. So no edge of the form C → A is included in the 3p links X → C, and since all edges of the
form C → A are efficient by definition, it follows that there are at mostm − 1 such edges. In other words, there are at most
m − 1 set variables that have outdegree greater than 0. So there are at most 3(m − 1) = 3m − 3 elements x of the universe
such that X is adjacent to some set variable C with outdegree greater than 0. The contrapositive of this conclusion is that
at least three elements x, y, z are adjacent only to set variables with outdegree 0. At least one of the corresponding nodes
X , Y , Z is distinct from A and B; without loss of generality, choose X to be the distinct one. As all edges linking X are efficient,
edges linking X are of the form X → C with x ∈ c and X ← C where x "∈ c. But since X is adjacent only to set variables with
outdegree 0, the latter type of edge does not exist, and so all edges linking X are of the form X → C where x ∈ c and the set
variable C has outdegree 0. Any path that d-connects X and R has to start with an edge X → C → · · · − R; since there is no
such path, the graph G fails to entail the dependencies D3. This contradiction shows that G has more than 3p + m edges.

Inductive step (still with a = 0): Assume the hypothesis for i and consider i + 1.
We show how to transform G into an I-map G′ of D1 ∪ D2 ∪ D3 with one less inefficient edge and nomore edges overall.

The inductive hypothesis then implies that G′ and hence G has more than k edges.

1. Reorient all edges to point into the root R. By Lemma26, the resultG1 is an I-map ofD1 ∪ D2 ∪ D3 with the samenumber
of edges; the number of inefficient edges is the same.

2. If G1 contains an edge X → R, where X is a member variable, then:

(a) Choose a set variable C with x ∈ c, and add an edge C → R (such an edge may already exist in G1).
(b) Reorient any adjacency B ← C to point into C, where B /= R. By Lemma 27, the result G2 is an I-map of D3. And by

Assertions 24 and 25 G′ is also an I-map of D1 ∪ D2. Since there are no efficient set-nonmember links (a = 0), it is
not possible to have B = X with x "∈ c, so this step adds no inefficient edges.

(c) Delete the edge X → R. Since inG2 there are two directed paths connecting X to R, namely X → R and X → C → R,
Lemma 28 guarantees that the resulting graph is an I-map of D1 ∪ D2 ∪ D3. As the construction adds an edge in
Step 2 and deletes one in this step, the overall number of edges is the same as in G. Since no inefficient edge was
added and this step deletes an inefficient edge, the number of inefficient edges has decreased by 1 as required.

3. Else if G1 contains an adjacency X − Y where X and Y are member variables, suppose without loss of generality that the
link is oriented as X → Y .

(a) If Y is an ancestor of the root R, then:

(i) Choose a set variable C with x ∈ c, and add an edge C → R (such an edge may already exist in G1).
(ii) Reorient any adjacency B ← C to point into C, where B /= R. As in Steps 2a and 2b above, the result G2 is an

I-map of D1 ∪ D2 ∪ D3 with no added inefficient edges and at most one more edge overall.
(iii) Delete the edge X → Y . Since in G2 there are two directed paths connecting X to R, namely X → Y → · · · → R

and X → C → R, Lemma 28 guarantees that the resulting graph is an I-map of D1 ∪ D2 ∪ D3. As the con-
struction adds an edge in Step 2 and deletes one in this step, the overall number of edges is the same as in G.
Since no inefficient edge was added and this step deletes an inefficient edge, the number of inefficient edges has
decreased by 1 as required.

(b) Else if Y is not an ancestor of the root R, add an edge Y → R and delete the edge X → Y . Lemma 29 implies that the
result is an I-map of D1 ∪ D2 ∪ D3. Then proceed as in Step 2 to eliminate the edge Y → R. In the resulting graph,
the number of edges is the same as in the original graph G and there is one less inefficient edge, as required.

4. Else if G1 contains an adjacency X → C where x "∈ c, proceed as in Step 3 with C in place of Y .

This construction covers all cases of inefficient edges and completes the induction on i, the number of inefficient edges. Thus
if the number of efficient set-nonmember links a is 0, then G contains more than k = 3p + m edges.

Inductive step: Assume the hypothesis for a and consider a + 1. Let X ← C be an efficient set-nonmember link in G such
that x "∈ c. We show how to transform G into an I-map G′ of D1 ∪ D2 ∪ D3, where G′ has one less efficient set-nonmember
link edge, at least as many inefficient edges as G and no more edges than G overall. The inductive hypothesis for a then
implies that G′ and hence G has more than k edges.

O. Schulte et al. / Information and Computation 208 (2010) 63–82 79

1. If the variable X is not an ancestor of R, then add an edge X → R and delete the edge X ← C. By Lemma 29, the resulting
graph G′ is an I-map of D3. And by Assertions 24 and 25 G′ is also an I-map of D1 ∪ D2. Since one inefficient edge was
added and one efficient set-nonmember edge was deleted, the graph G′ has the same number of edges overall and more
inefficient edges than G.

2. Else add an edge C → R. Then there are two directed paths from C to R, namely C → R and C → X → · · · → R, so by
Lemma 28, we may delete the edge C → X with the result being an I-map of D3. And by Assertions 24 and 25 G′ is also
an I-map of D1 ∪ D2. Since one efficient edge was added and one efficient set-nonmember edge was deleted, the graph
G′ has the same number of edges overall and as many inefficient edges as G.

This construction completes the inductive step; by inductive hypothesis, G′ and thus G has more than k edges. Thus any
I-map G of D1 ∪ D2 ∪ D3 that contains an inefficient edge has more than k adjacencies. !

The next assertion shows that the number k = 3p + m is a lower bound on the number of edges in an I-map of D1 ∪ D2 ∪
D3. Combined with the previous assertion, we obtain strong constraints on the structure of a minimum-edge I-map of
D1 ∪ D2 ∪ D3.

Assertion 31. Let DAG G be an I-map of D1 ∪ D2 ∪ D3 with no more than k = 3p + m adjacencies.

1. Every member variable X is an ancestor of the root variable R.
2. The DAG G contains exactly k edges, and the collection {c : C has outdegree 1} is a partition of the universe.
3. For every ancestor A of R, there is exactly one d-connecting path to R.

Proof. Part 1: Let X be anymember variable. Suppose for contradiction that X is not an ancestor of R. Then any d-connecting
path from X to R must be of the form

X ← C − · · · − R

where x "∈ c, since by Assertion 30 G contains only efficient edges. Now by Lemma 29wemay add an edge X → R and delete
the edge X ← C with the result G′ still an I-map of D1 ∪ D2 ∪ D3. But then G′ contains the inefficient edge X → R, so by
Assertion 30, it has more than k edges, so G has more than k edges, which is a contradiction.

Part 2: SinceG containsonly efficient edges, Part 1 implies that for everymembervariableX , there is a set variableCwithan
edgeX → C inG such thatC is an ancestor ofR, andC has outdegree greater than0. So the collection {c : C is an ancestor of R}
covers the universe U, and the size of this collection is at least m. On the other hand, for every member c of this collection,
the corresponding set variable C has an edge originating in it, and overall there can be at most m such edges: for the graph
contains a total of no more thanm + 3p adjacencies and 3p of the adjacencies are of the form X → C′ for x ∈ c′. So the size
of the collection {c : C is an ancestor of R} is exactly m, which establishes that G contains exactly m + 3p = k edges. Also,
the collection is a partition of the universe. Thus (a) every set variable C has outdegree at most 1, and indegree exactly 3, (b)
C has outdegree 1 if and only if C is an ancestor of R, and (c) every member variable X points to exactly one set variable C
with outdegree 1.

Part 3: First we argue that if p is a path d-connecting an ancestor A to the root variable R, then p is directed. The proof is
by induction on the length l > 0 of the path p.

Base case, l = 1. Since G contains only efficient edges, the path p has the form C − R. If the adjacency C − R is oriented
as C ← R, then C has indegree 4, which contradicts (a) above.

Inductive step: Assume the hypothesis for l and consider l + 1. Suppose for contradiction that p d-connects A and R and
is of the form

A ← B − · · · − R.

Since A is an ancestor of R, so is B. The path segment p′ = B − · · · − R d-connects B and R and has length l, so by inductive
hypothesis p′ is directed of the form

B → V → − · · · → R.

Thus B points to A and to V and has outdegree 2. By (a) above, this implies that B is not a set variable, and the base case
implies that B /= R, so Bmust be a member variable. But since G contains only efficient edges, it follows that A and V are set
variables of outdegree 1, so B contradicts (c) above.

This completes the inductive step and establishes that all paths that d-connect an ancestor A to R begin with an edge
A → B. To complete the proof of the assertion, it suffices to show that for every ancestor A in graph G, there is at most one
directed path to the root variable R. We show this by induction on the length l of such a path.

Base case, l = 1. Then the path is of the form A → R, so Amust be a set variable since G contains efficient edges only. By
(a) above, every set variable has outdegree at most 1, so the only edge originating at A points directly into R.

80 O. Schulte et al. / Information and Computation 208 (2010) 63–82

Inductive step: Assume the hypothesis for l and consider l + 1. Consider a directed path

A → B → · · · → R

of length l + 1. By inductive hypothesis, the final path segment B → · · · → R is the only directed path from B to R. If A is a
set variable, then as in the base case, the variable B is its only possible successor, and so p is the only directed path from B
to R. If A is a member variable, then since G contains only efficient edges, it follows that B is a set variable with outdegree 1.
But by (c) above, the member variable A points to only one set variable, so the path A → B → · · · → R is the only directed
path between A and R.

So there is at most one directed path between an ancestor A and the root variable R. And we previously established that
all d-connecting paths between A and R are directed. Hence there is a unique d-connecting path between A and R. !

Assertion 31 implies that any I-map ofD1 ∪ D2 ∪ D3 is very close to the basic graph. The only other possibility remaining
is an edge of the form C → X where x "∈ c. If X is an ancestor of R via a path X → C′ → R, the edge C → X can be used to
d-connect members of c to R; for example if y ∈ C, there is a d-connecting path

Y → C → X → C′ → R.

However, this path will be blocked by conditioning on the variable C′, which is a set variable whose corresponding set does
not contain y. So although this path satisfies Clause 3 of the oracle definition, it does not satisfy Clause 4, which is the last
clause our proof takes into account.

Assertion 32. Let DAG G be an I-map of DO (= D1 ∪ D2 ∪ D3 ∪ D4) with no more than than k = 3p + m edges. Then G is a
subgraph of the basic graph with exactly k adjacencies. That is, G that contains only the following types of edges: X → C where
x ∈ c and C → R.

Proof. Assertion 31 establishes that G has exactly k adjacencies. We argue that G contains m edges of the form C → R. For
this it suffices to show that the unique path that d-connects a member variable X to the root variable R has length 2. (The
unique path exists by Assertions 31(1) and 31(3).) Suppose for contradiction that the path is of length greater than 2. Then
since by Assertion 30 the graph G contains only efficient edges, the path p is of the form

p = X → C → A → · · · → R.

Now A is not a set variable C′ whose set contains X , for otherwise X is adjacent to two set variables with outdegree 1 (i.e.,
C and C′), which the proof of the previous assertion showed is impossible. Therefore Clause 4 of the dependency oracle O
implies that X is d-connected to R given A. Since p is the only path d-connecting X and R conditional on the empty set, and
conditioning on A blocks this path, it follows that there must be a path p′ that d-connects X and R given A on which A is a
collider. So p′ is of the form

X − · · · → A ← B − · · · R.

Now B is an ancestor of A, and hence of R, that has two d-connecting paths to R: the path segment

B − · · · R

and the path

B → A → · · · → R

following p. But this contradicts Assertion 31(3) above. So there is no path p′ that d-connects X and R given A on which A is a
collider, and G does not satisfy Clause 4 of the dependency oracle O, contrary to supposition. Hence the unique d-connecting
path from amember variable X to the root R is of the form X → C → R, and soG contains exactlym edges of the type C → R.
Since G contains also 3p edges of the form X → C with x ∈ c and a total ofm + 3p edges overall, G contains only edges from
the basic graph. !

Assertion 33. There is a unique edge-minimal I-cover of DO with at most k = 3p + m edges ⇐⇒ there is a unique exact set
cover in the corresponding set cover instance with p sets and m elements.

Proof. By Assertion 32, no I-map of DO has less than 3p + m edges. For every I-map G of DO with exactly 3p + m edges,
Assertion 31(2) says that the collection {c : C has outdegree 1} is a partition of the universe. Thus an I-map of DO with at
most 3p + m edges determines a unique exact set cover. Conversely, if there is an exact cover {c1, . . . , cm} for U, then there

O. Schulte et al. / Information and Computation 208 (2010) 63–82 81

is an I-map G of DO with exactly 3p + m edges, where 3p edges are of the form X → Ci, with x ∈ ci, and m edges are of the
form Ci → R for i = 1, . . . ,m. This is the precisely the graph that maps onto the exact cover {c1, . . . , cm}. Thus for every
instance of UEC3SET, there is a 1-1 onto mapping between I-maps G of DO with exactly 3p + m edges and exact set covers.
So a given instance has a unique exact set cover if and only if the dependency oracle DO has a unique I-map with exactly
3p + m edges. !

We briefly indicate how our reduction differs from Bouckaert’s NP-hardness proof for the problem of finding an I-map
(not unique) with at most k edges. Bouckaert reduces the problem of finding an independent set of size at least k in a graph
G to the I-map problem. In Bouckaert’s reduction, for a given graph G with an independent set of size at least k, there is a

corresponding I-map instance with oracle O with at most
(
n
2

)
−

(
k
2

)
edges. The key step in the argument is to observe that

any ordering of the nodes in an I-map entailing the dependencies inO can have atmost
(
n
2

)
−

(
k
2

)
edges. But his construction

does not constrain the ordering of the nodes, so in general there will be more than one I-map solution for the corresponding
independent set problem.

8. Conclusion

This paper applied learning-theoretic analysis to a practically important learning problem: identifying a correct Bayes
net structure. We presented a model of this task in which learning is based on conditional dependencies between variables
of interest. This model fits Gold’s definition of a language learning problem, so identification criteria from Gold’s paradigm
apply. We considered mind-change optimality and text efficiency. The mind change complexity of identifying a Bayes net

over variable setV is
(|V|

2

)
, themaximumnumber of edges in a graphwith node setV. There is a uniquemind-change optimal

learner Ψ V
fast whose convergence time dominates that of all other mind-change optimal learners. This learner outputs a BN

pattern G if G is the unique graph satisfying the observed dependencies with a minimum number of edges; otherwise Ψ V
fast

outputs ? for “noguess”. Inmany language learningproblems, it is plausible to view themind change complexity of a language
as a form of simplicity [17, Section 4]. Our results establish that the mind-change based notion of simplicity for a Bayes net
graph G is the inclusion depth of G, which is measured by the number of edges absent in G. Using the number of edges as a
simplicity criterion to guide learning appears to be a new idea in constraint-based Bayes net learning research.

The technicallymost complex result of the paper shows that an exact implementation of the uniquemind-change optimal
learner Ψ V

fast is NP-hard because determining whether there is a uniquely simplest (edge-minimal) Bayes net for a given set
of dependencies is NP-hard. To our knowledge, this is the first NP-hardness result for deciding the existence of a uniquely
optimal Bayes net structure by any optimality criterion.

Acknowledgments

This researchwas supportedbyNSERCdiscoverygrants to thefirst and thirdauthorandby theEbco/EppichVisitingScholar
fund. We are indebted to Josh Buresh-Oppenheim for discussions of complexity theory. Parts of this work were previously
presented at the Conference on Learning Theory (COLT 2007) and to the Tetrad Group at Carnegie Mellon University; the
paper benefitted from helpful suggestions from these audiences. Greiner gratefully acknowledges support from the Alberta
Ingenuity Centre for Machine Learning.

References

[1] D. Angluin, Inductive inference of formal languages from positive data, Information and Control, 45 (2) (1980) 117–135.
[2] R.R. Bouckaert, Bayesian belief networks: from construction to inference. Ph.D. Thesis, Universiteit Utrecht, 1995.
[3] J. Cheng, R. Greiner, J. Kelly, D. Bell, W. Liu, Learning Bayesian networks from data: an information-theory based approach, Artificial Intelligence 137

(2002) 43–90.
[4] D. Chickering, Optimal structure identification with greedy search, Journal of Machine Learning Research 3 (2003) 507–554.
[5] D.M. Chickering, D. Heckerman, C. Meek, Large-sample learning of Bayesian networks is NP-hard, Journal of Machine Learning Research 5 (2004)

1287–1330.
[6] G. Cooper, An overview of the representation and discovery of causal relationships using Bayesian networks, in: C. Glymour, G. Cooper (Eds.),

Computation, Causation, and Discovery, AAAI Press/MIT Press, Cambridge, MA, 1999, pp. 4–62.
[7] R.G. Cowell, S.L. Lauritzen, D.J. Spiegelhater, Probabilistic Networks and Expert Systems, Springer, Berlin, 2005.
[8] L.M. de Campos, A scoring function for learning Bayesian networks based on mutual information and conditional independence tests, Journal of

Machine Learning Research 7 (2006) 2149–2187.
[9] R.N. Giere, The significance test controversy, The British Journal for the Philosophy of Science 23 (2) (1972) 170–181.

[10] E.M. Gold, Language identification in the limit, Information and Control 10 (5) (1967) 447–474.
[11] S. Jain, D. Osherson, J.S. Royer, A. Sharma, Systems that Learn, second ed., MIT Press, Cambridge, MA, 1999.
[12] S. Jain, A. Sharma, Mind change complexity of learning logic programs, TCS 284 (1) (2002) 143–160.
[13] F.V. Jensen, Bayesian Networks and Decision Graphs, Springer, Berlin, 2002.
[14] K. Kelly, Justification as truth-finding efficiency: how Ockham’s razor works?, Minds and Machines 14 (4) (2004) 485–505.
[15] K. Kelly,Why probability does not capture the logic of scientific justification, in: C. Hitchcock (Ed.), Contemporary Debates in the Philosophy of Science,

Wiley–Blackwell, London, 2004, pp. 94–114.
[16] W. Luo, O. Schulte, Mind change efficient learning, in: Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005, 2005, pp. 398–412.

82 O. Schulte et al. / Information and Computation 208 (2010) 63–82

[17] W. Luo, O. Schulte, Mind change efficient learning, Information and Computation 204 (2006) 989–1011.
[18] Wei Luo, Mind change optimal learning: theory and applications, Ph.D. Thesis, Simon Fraser University, 2007.
[19] E. Martin, D.N. Osherson, Elements of Scientific Inquiry, MIT Press, Cambridge, MA, 1998.
[20] C. Meek, Graphical models: selecting causal and statistical models, Ph.D. Thesis, Carnegie Mellon University, 1997.
[21] R.E. Neapolitan, Learning Bayesian Networks, Pearson Education, 2004.
[22] D.N. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT Press,

Cambridge, MA, 1986.
[23] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauffmann, San Mateo, CA, 1988.
[25] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge, MA, 2000.
[26] H. Putnam, Trial and error predicates and the solution to a problem of Mostowski, The Journal of Symbolic Logic 30 (1) (1965) 49–57.
[27] Joseph Ramsey, Jiji Zhang, Peter Spirtes, Adjacency-faithfulness and conservative causal inference, Proceedings of the 22nd Conference on Uncertainty

in Artificial Intelligence (UAI 2006), AUAI Press, 2006, pp. 401–408.
[28] Jörg Rothe, Complexity Theory and Cryptology, Springer, Berlin, 2005.
[29] R. Scheines, P. Spirtes, C. Glymour, C. Meek, T. Richardson, TETRAD 3: Tools for Causal Modeling – User’s Manual, CMU Philosophy, 1996.
[30] T. Shinohara, Inductive inference of monotonic formal systems from positive data, New Generation Computing 8 (4) (1991) 371–384.
[31] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, MIT Press, Cambridge, MA, 2000.
[32] M. Studeny, Probabilistic Conditional Independence Structures, Springer, Berlin, 2005.
[33] I. Tsamardinos, L.E. Brown, C. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Machine Learning 65 (1) (2006)

31–78.
[34] L. Valiant, V. Vazirani, NP is as easy as detecting unique solutions, Theoretical Computer Science 47 (1) (1986) 85–93.
[35] T.S. Verma, J. Pearl, Equivalence and synthesis of causal models, in: Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence (UAI

1990), 1990, pp. 220–227.
[36] Y. Xiang, S.K. Wong, N. Cercone, Critical remarks on single link search in learning belief networks, in: Proceedings of the 12th Annual Conference on

Uncertainty in Artificial Intelligence (UAI 1996), 1996, pp. 564–57.

