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Abstract— A Bayes net has qualitative and quantitative as-
pects: The qualitative aspect is its graphical structure that
corresponds to correlations among the variables in the Bayes
net. The quantitative aspects are the net parameters. This paper
develops a hybrid criterion for learning Bayes net structures
that is based on both aspects. We combine model selection
criteria measuring data fit with correlation information from
statistical tests: Given a sample d, search for a structure G
that maximizes score(G, d), over the set of structures G that
satisfy the dependencies detected in d. We rely on the statistical
test only to accept conditional dependencies, not conditional
independencies. We show how to adapt local search algorithms
to accommodate the observed dependencies. Simulation studies
with GES search and the BDeu/BIC scores provide evidence
that the additional dependency information leads to Bayes nets
that better fit the target model in distribution and structure.

I. INTRODUCTION

Bayes nets [1] are a widely used formalism for repre-
senting and reasoning with uncertain knowledge, with many
applications ranging from medical diagnosis to scientific
discovery. A Bayes net (BN) model is a directed acyclic
graph G = 〈V,E〉 whose nodes V represent random vari-
ables and whose edges E represent statistical dependencies,
together with conditional probability tables that specify the
distribution of a child variable given an instantiation of
its parents. A sparse BN compactly represents the joint
probability distribution over a set of random variables. In
this paper we consider Bayes nets with discrete variables
only.

There are two well established general approaches to
learning BN structure. Constraint-based (CB) methods em-
ploy a statistical test to detect conditional (in)dependencies
given a sample d, and then compute a BN G that fits
the (in)dependencies [2], [3], [4]. By constrast, score-based
methods search for models that maximize a model selection
score [3], [4]. Recent research into hybrid methods aims to
combine the strengths of both approaches [5], [6]. Additional
motivation for the hybrid approach comes from cognitive sci-
ence and observations of human intelligence: Psychological
studies have shown that people infer causal models on the
basis of observed correlations [7], [3]. At the same time,
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they evaluate the importance of associations based on the
observed frequencies of events.

A natural approach to a hybrid system is to treat the
information from statistical tests as a constraint on the model
selection search that effectively reduces the search space [8].
In this paper we propose a new hybrid criterion: find a
Bayes net that maximizes the score given the constraint that
the net must satisfy the dependencies detected by a suitable
statistical test.

We provide a general schema for adapting any hill-
climbing search algorithm with a given score function for the
hybrid criterion. The adapted algorithm can be seen as a two-
phase strategy for discovering a minimal Markov boundary:
The growth phase performs hill-climbing with the given score
function to add edges to the BN structure until for any two
nodes X and Y , no statistically significant correlation is
found between X and Y given the neighbors and spouses of
X . The shrink phase performs hill-climbing to remove edges
from the BN structure, maintaining the Markov boundary
condition, until a local score optimum is reached.

For experimental evaluation, we adapted the state-of-the-
art GES search procedure [9], [10] for constrained optimiza-
tion; we refer to the resulting procedure as IGES (for “I-
map + GES”). We report a number of simulations comparing
GES search with and without dependency constraints, based
on the well-established BDeu and BIC score functions [11],
[10]. Simulation results compare the graphs learned with
and without dependency constraints to the target graph.
These simulations illustrate how for small to medium sample
sizes, adding dependency constraints corrects some of the
underfitting tendency of score functions. In our simulations,
the constrained search model has lower KL-divergence and a
better structure metric than the unconstrained search model.
Most of the improvement occurs for graph sizes of 10 or less,
and sample sizes of 1,000–2,000. It depends on the choice
of the significance level α for controlling the type I error
rate (falsely accepted dependencies); our experiments show
that the interaction between error rate, sample size and graph
size is crucial for learning performance.

a) Paper Organization: The next section reviews basic
notions from Bayes net theory. Section III discusses the
major design choices in our system, including our adaptation
of GES search. Section IV presents simulation studies that
compare constrained GES search with the BDeu score to
regular GES search with the same score. As this paper
proposes a hybrid model selection criterion, we compare our
approach to both constraint-based and score-based methods.



b) Related Work. CB and Hybrid Methods: There are
many constraint-based algorithms that employ statistical tests
to discover BN structure [2], [12], [13]. Many of these
methods use the “single link deletion” strategy [14]: if
a significance test does not reject an independence null
hypothesis X is independent of Y given S, then infer a
conditional independence and mark variables X and Y as
nonadjacent. As we do not infer independence from failure
to reject, our approach does not rely on the single edge
deletion strategy. To motivate this, observe that (at small to
medium sample sizes) a rejection is a quite reliable indicator
that the null hypothesis is false, but failure to reject is a
less reliable indicator that the null hypothesis is true. Many
statisticians recommend against inferring the truth of the null
hypothesis when the null hypothesis is not rejected [15];
our use of statistical tests follows this recommendation and
is more conservative than the use of tests in previous CB
algorithms. For more discussion of independence tests in CB
algorithms, see [3, p.593], [2, Sec.5.6], [16]. A recent hybrid
method (max-min hill climbing) that incorporates the single
link deletion strategy is presented in [5]. While this work
indicates that independence constraints from a statistical test
can improve a score-based search, the analysis of [8] shows
that max-min hill climbing is still sensitive to errors of the
independence test (type II errors). While the single edge
deletion strategy has to address type II error, the issue for
our system is type I error. Other previous hybrid BN learning
algorithms (e.g., [6], [17]) consider statistical measures (e.g.,
mutual information), but do not incorporate the outcome of
a statistical test as a constraint that the learned model must
satisfy. Our algorithm can be seen as a hybrid version of
the Grow-Shrink procedure [12]. The main difference is that
Grow-Shrink relies on a fixed ordering of variables to select
the next candidate structure and the next statistical hypothesis
to test. Our method employes the score function to select the
next candidate structure.

In sum, the novelty in our use of statistical tests is the com-
bination of (1) relying only on dependency information rather
than independencies, (2) using the Markov blanket concept
to select an informative set of independence hypotheses to
test in a given graph, and (3) interleaving the testing strategy
with a score-based search.

c) Related Work. Score+Search Methods: Several pre-
vious studies have observed the tendency of many score-
based methods towards graphs that are sparser than the
target structure [6], [18], [10]. The following simple ex-
periment illustrates how standard model-selection scores can
fail to capture statistically significant associations on small-
to-medium sample sizes. It is meant only to elucidate the
issue; more comprehensive studies appear in Section IV
below. The target graph is the 3-node graph X → Z ← Y
with ternary variables. Each simulation considered a sample
size (ranging from 100 to 2500), and for each sample size
we generated 1000 random parameter assignments for the
target structure (with a uniform distribution over the [0,1]
domain) and a random sample of the given size for the

distribution defined by the parameter assignment. We used
the Tetrad package [19], one of the most prominent software
environments for Bayes nets based at CMU. The simulations
investigated the BDeu score, with parameters set to the Tetrad
default values following [10]: structure prior = 0.001, ESS
= 10. The BDeu score has a Bayesian theoretical foundation,
and has been shown to be a competitive score for learning BN
models [11], [10]. The hybrid BDeu method combines the
BDeu score with the same parameters with the requirement
of fitting the statistically significant correlations (details in
Section III).

Figure 1 shows that, in the simple 3-node target graph,
the BDeu score often fails to fit statistically significant
dependencies, and that fitting the dependencies often leads
to recovering the target adjacencies. This improvement is
statistically significant (using a two-tail paired t-test with p-
value at 5%).

Fig. 1. An experiment to illustrate how a standard model selection score
may not fit all statistically significant correlations. The target structure is
X → Z ← Y . The applied score function is the BDeu score, compared

to hybrid BDeu that enforces fitting observed statistically significant cor-
relations. The y-axis shows, for each of the two methods, how often the
method discovers the correct adjacencies in the target graph.

Score-based functions trade off the global complexity of a
structure with how well it fits the data overall; with some, as
in the BDeu score, the trade-off is controlled by parameters
for the score. It is difficult for a user to know a priori which
balance between model complexity and data fit is best. A
novel contribution of our hybrid method is using the results
of statistical tests to aid the learning algorithm in detecting
correlations in a in a dynamic, data-driven manner without
the need for a user to set parameter values in advance.

II. BASIC DEFINITIONS

We consider Bayes nets for a set of variables V =
{X1, . . . , Xn} where each Xi has a finite number of values
or states. A Bayes net structure G = 〈V,E〉 for a set of
variables V is a directed acyclic graph (DAG) over node set
V. A Bayes net (BN) is a pair 〈G, θG〉 where θG is a set of
parameter values that specify the probability distributions of
each variable conditioned on instantiations of its parents. A
BN 〈G, θG〉 defines a joint probability distribution over V.
Two nodes X, Y are adjacent in a BN if G contains an edge
X → Y or Y → X; an adjacency is a pair of adjacent nodes.
An unshielded collider in G is a triple of nodes connected as



X → Y ← Z, where X and Z are not adjacent. The pattern
π(G) of DAG G is the partially directed graph over V that
has the same adjacencies as G, and contains an arrowhead
X → Y if and only if G contains an unshielded collider
X → Y ← Z.

Every BN structure defines a separability relation between
nodes X, Y relative to a set of nodes S, called d-separation
[1, Ch.3.3]. We assume familiarity with d-separation. We
write (X⊥⊥ Y |S)G if X and Y are d-separated by S in
graph G. If two nodes X and Y are not d-separated by S
in graph G, then X and Y are d-connected by S in G,
written (X⊥&⊥ Y |S)G. If X,Y and Z are three disjoint sets
of variables, then Z d-separates X and Y if for all variables
X ∈ X and Y ∈ Y, the set Z d-separates X and Y . We
write D(G) for the set of all d-connections that hold in a
graph G.

Let P be a joint distribution over variables V. If X,Y
and Z are three disjoint sets of variables, then X and
Y are stochastically independent given S, denoted by
(X⊥⊥ Y|S)P , if P (X,Y|S) = P (X|S)P (Y|S) whenever
P (S) > 0. A BN structure G is an I-map of distribution P if
(X⊥&⊥ Y|S)P implies (X⊥&⊥ Y|S)G for all variables X, Y and
variable sets S disjoint from X, Y . For a given BN structure
G and joint distribution P , there is a parametrization θG such
that P is the joint distribution over V defined by 〈G, θ〉 if
and only if G is an I-map of P ; see [3, Th.1.4,1.5].

For a node X , we refer to the set of its parents, children
and co-parents (i.e., other parents of its children) as the
Markov blanket of X , written MBG(X). Given its Markov
blanket MBG(X), each node X in G is d-separated from all
other nodes outside of the Markov blanket. We refer to the
set of independencies {X⊥⊥ Y |MBG(X) : Y &∈ MBG(X)}
as the set of Markov blanket independencies for graph G.
If a graph G is an I-map of a distribution P , then all the
Markov blanket independencies in G hold in P [1, Ch.3.3].
As the characteristic feature of our approach is searching for
a graph that satisfies this condition, we refer to it as “I-map
learning”. The next section describes an implementation of
I-map learning.

III. ALGORITHM DESIGN FOR I-MAP LEARNING

This section describes the major design choices in our sys-
tem. We first discuss employing statistical tests for detecting
conditional dependencies, then integrating statistical testing
with a score-based local search.

A. Use of Statistical Tests for Detecting Conditional Depen-
dencies

I-map learning requires a statistical significance test for
conditional independence hypotheses of the form X⊥⊥ Y |S.
As with CB methods, the test can be chosen to suit the
type of available data and application domain. We used the
traditional χ2 test for categorical data [20, Ch.9]. Since
I-map learning treats the results of the statistical test as
hard constraints, it is important that the decisions of the
test be reliable, even on small to medium sample sizes. To
this end, our system follows two principles for applying

the significance test. (1) Accept rejection of the indepen-
dence null hypothesis as indicating dependence, but draw no
conclusion from failure to reject. (2) Require a minimum
sample coverage for the χ2 test [20, Ch.9.1]: the expected
number of samples in each cell Ci must be at least 5; that
is, m × pi ≥ 5, where pi is the probability of cell Ci

according to the null hypothesis, and m is the sample size.
The coverage condition implies that the χ2 distribution is a
reliable approximation to the distribution of the test statistic.
If the sample coverage condition is not met, we draw no
conclusion from the outcome of the test.

If a suitable test rejects the hypothesis that
X⊥⊥ Y |MBG(X) for two nodes X, Y , this is evidence
that the graph G is not correct. I-map learning relies on a
procedure find-new-dependencies(G) that takes as
input a new graph G adopted during the local search, tests
the new Markov blanket hypotheses for the graph G, and
returns the set of rejected independence hypotheses. Every
time the local search moves to a new graph structure G, the
procedure find-new-dependencies is applied to G to
augment the cache of observed dependency constraints; see
Figure 2.

 Candidate Graph at stage k  Dependency Cache at stage k

 evaluate graph

 with score function

 Candidate Graph at stage k+1 

 Dependency Cache

 at stage k+1

find-new-

dependencies

Fig. 2. Integrating a local search for a score-maximizing graph structure
with testing for statistically significant dependencies. Once a candidate struc-
ture Gk is chosen that maximizes the score function given the dependencies
observed at stage k, the procedure find-new-dependencies applies
the Markov blanket concept to test new independence hypotheses entailed
by Gk , and adds rejected independence hypotheses to the global cache for
stage k + 1.

The procedure find-new-dependencies tests a set
of independence hypotheses, so issues of multiple hypothesis
testing arise. Our system architecture is modular, so any
multiple hypothesis testing method can be employed to im-
plement the functionality of find-new-dependencies,
such as the methods described in [21], [22]. Many constraint-
based and hybrid systems simply carry out multiple hypothe-
ses at the same fixed significance level [2], [6], [12]. Our
simulations follow this approach, to facilitate comparisons
with the competitor systems, and to investigate our hybrid
model selection criterion in a relatively simple implementa-
tion first before examining more complicated systems. The
next section describes how our statistical testing strategy is



interleaved with a local search.

B. Heuristic Search Algorithm for I-map learning

We describe a general schema for adapting any local hill-
climbing search procedure L with score function score(G, d)
[3, Ch.9.1] to perform optimization of the score in com-
bination with a statistical testing strategy implemented by
the procedure find-new-dependencies. The procedure
can be applied to search in any DAG-based space, such
as the space of patterns (Sec. II) or the space of DAGs;
in what follows we simply refer to graphs. We call the
constrained version of the L search procedure IL search
(for I-map + L). If the current state of the search is a
graph G, a local search procedure L moves to the highest
scoring graph G′ in a neighborhood nbdh(G) provided that
score(G′, d) > score(G, d). The neighborhood constrained
by dependencies D is defined as follows. A graph G′ is a
member of nbdhD(G) if

1) G′ ∈ nbdh(G) and (D(G′) ∩D) ⊇ (D(G) ∩D), and
2) score(G′, d) > score(G, d) or

(D(G′) ∩D) ⊃ (D(G) ∩D).
The first clause requires that a candidate graph G′ for

constrained optimization must be a candidate graph in the
original search space, and that it must cover at least as
many of the given dependencies D as the current graph
G. The second clause stipulates that a candidate graph G′

must make progress, in that G′ has a higher score or covers
more of the given dependencies. From a current graph G, the
constrained IL search moves to the neighboring candidate
graph G′ ∈ nbdhD(G) with maximum score. Note that IL
search may move to a graph with lower score G′ if G′ covers
more dependencies and all the neighbors of G have a lower
score than G. The search terminates with graph G when there
are no more candidate graphs, that is, when nbdhD(G) = ∅.
Given the modified definition of neighborhood, this schema
can be extended in an obvious way to local search strategies
more complex than hill climbing. To check if a graph
expansion covers strictly more dependencies, we keep a
cache of dependencies that have not yet been covered during
the growth phase, and go through these dependencies in order
to see if any of them are covered by a candidate graph.
Algorithm 1 gives pseudocode for IL search.

Analysis of Search Algorithm. The next observation asserts
that constrained local search finds a local optimum for our
hybrid criterion, provided that the basic operations of the
local search procedure make it possible to reach an I-map
for any set of dependencies D. This is the case if single
edge addition is one of the local operations; all local search
algorithms that we know of consider single edge additions.

Observation 1: Let L be a local optimization procedure
for a score function, with single edge addition as one of
its basic operations. Then on any sample d, the constrained
local search IL terminates with a local score optimum
G that satisfies its Markov blanket independencies for a
given statistical test. That is, if two nodes X and Y are
d-separated in G given MBG(X), then the statistical test

Algorithm 1 The IL procedure adapts a local BN search
procedure based on a neighborhood structure nbdh.

Input: data sample d for random variables V.
Calls: score evaluation function score(G, d), statistical
testing procedure find-new-dependencies(G, d).
Output: BN structure that maximizes score function given
dependencies.

1: initialize with the disconnected graph G over V.
2: for all Variables X, Y do
3: test the hypothesis X⊥⊥ Y
4: if X⊥⊥ Y is rejected by statistical test, add to detected

dependencies stored in D
5: end for
6: while nbdhD(G,D) is not empty do
7: choose G′ in nbdhD(G,D) with maximum score
8: D := D ∪ find-new-dependencies(G, d)
9: end while

applied to sample d does not reject the hypothesis that
X⊥⊥ Y |MBG(X), and every neighbor of G has lower score
or fails to satisfy a statistically significant dependency found
during the search.
The proof is omitted due to space constraints.

The computational overhead compared to regular local
score optimization is the number of statistical calls. For a
graph G with n nodes, the Markov blanket independence
hypotheses form an informative set of size O(

(n
2

)
)—two tests

for each pair of nodes X, Y that are in each other’s Markov
blanket. By taking advantage of the structure of the local
search procedure, we can often reduce the set of hypotheses
to be tested to an equivalent but smaller set. For example, if
the local search adds a single edge X → Y to a graph G,
the only nodes whose Markov blanket has been affected are
X, Y and the parents of Y . Assuming that the target graph
has constant degree (as in the analysis of the PC algorithm
[2, Ch.5.4.2.1]), only a linear number of new independence
tests is required at each stage of the search. Thus we expect
that in practice, the order of independence tests required will
be O(n × ca) where ca is the total number of candidate
structures examined during the local search. Our simulations
provide evidence for this hypothesis (Section IV).

Adapting GES Search for Constrained Optimization. For
our experiments we adapt the GES (Graph Equivalence
Search) local search algorithm. GES is a state-of-the-art BN
search strategy that satisfies optimality guarantees in the
large sample limit and has been extensively evaluated [10].
Since our goal is to investigate whether adding dependency
constraints improves the quality of learned models, we want
to employ a high-quality score-based method such as GES.
We describe GES only in sufficient detail to indicate how we
adapt it; for a full description see [10]. During its “growth
phase”, GES adds an edge to a current pattern π, subject
to several conditions, until reaching a local score maximum.
Adding an edge to a pattern π leads to a pattern π′ that
covers strictly more conditional dependencies. During the



subsequent “shrink phase”, GES deletes an edge from a
current pattern π, subject to several conditions, until reaching
a local score maximum. GES is particularly natural for I-
map learning because the set of entailed dependencies grows
monotonically, so during its growth phase the second clause
of the IL search condition is always satisfied. It is possible
to show that if the conditional dependencies D constraining
IGES hold in the target distribution, then in the sample size
limit GES and IGES find the same graph (proof omitted
due to space constraints). This implies that the asymptotic
convergence guarantees for GES established by Chickering
also hold for IGES [10].

Our motivation for using statistically significant dependen-
cies is our expectation that fitting these dependencies will
speed up convergence to a correct graph structure. The next
section presents evidence from simulation studies based on
GES that validate this expectation.

IV. EXPERIMENTAL COMPARISON OF HYBRID
CRITERION WITH STANDARD SEARCH+SCORE METHOD

We begin with our experimental design and performance
metrics. Most of our evaluation focuses on augmenting
the BDeu score with statistical tests. We examine how the
false acceptance rate, which is controlled by the choice of
significance level, interacts with sample and graph size. We
also summarize results for the BIC score, and for two real-
word datasets (Insurance and Alarm).

A. Experimental Design and Performance Metrics
Our code is written in Java and uses many of the tools in

the Tetrad package [19]. The target models considered were
randomly generated networks with 4–10 binary nodes. We
used Tetrad’s random DAG generating functions to build the
networks. A parent and a child are chosen at random, and if
the corresponding edge does not violate graph constraints, it
is added to the random graph. The number of edges is also
determined randomly; the graphs are constrained so that the
number of edges is at most twice the number of nodes. This
skew towards sparser graphs favors standard model selection
criteria rather than the hybrid criterion. The parameters for a
given graph structure are uniformly and independently drawn
from the [0,1] interval. For each graph, we drew samples
of various sizes (ranging from 100 to 8000). We repeated
the simulation 30 times, resulting in 30 random graphs for
each combination of sample size and node count. Our graphs
and tables display the average of the 30 networks for all
measurements. The following two learning methods were
compared.

1) Search + score method. Score function: BDeu, with
parameters set to the Tetrad default values, which were
also used in [10]: structure prior = 0.001, ESS = 10.
Search method: GES search (Section III-B).

2) Hybrid search, score and test method. Score function:
BDeu, as above. Search method: IGES search (Section
III-B) with χ2 test and significance level α = 5%.

Performance Measures. The motivation for I-map learning
is to achieve a better fit to the target distribution before

convergence. As in other Bayes net learning studies (e.g., [6],
[18]), the distributional criterion considered is the Kullback-
Leibler (KL) divergence of the fitted model to the true
distribution [23]. Given a target distribution f that generates
the training sample, and a DAG G inferred from the sample,
let f̂G be the fitted distribution (with MLE estimation of
parameters [4]). Then the KL divergence of f̂G to f is defined
as KLD(f, f̂G) = Ef (log f/f̂G) where Ef denotes the
expectation with respect to distribution f . Our simulations
use an exact method to compute KL divergence.

We also consider the structural difference between the
target graph and the learned graph. The main effect of fit-
ting dependencies is to add adjacencies. The KL-divergence
simulation shows that these adjacencies are useful for fitting
the target distribution. Our measurements examine the trade-
off between adding adjacencies in the target structure (true
positive) vs. adding adjacencies not present in the target
structure (false positive). To aid interpretation of the experi-
mental results, we combine positives and negatives using the
F-measure [24, p.146], defined as

2(True Positive)
2(True Positive) + (False Positive) + (False Negative)

.

Higher F-measures are better.

B. Performance Measurements for BDeu Model Selection vs.
Constrained BDeu Model Selection

1) Simulations with Random Data: Figure 3 shows a
uniform improvement for IGES search over regular GES
search on both the distributional and structural measures.
As expected, the improvements are especially pronounced
for smaller sample sizes. The improvements are statistically
significant for 47 of the 56 experimental constellations in-
volving sample sizes from 100 to 8,000 (using a two-tail
paired t-test with p-value at 5%).

Dependencies and Statistical Testing Strategy. The next
measurement considers the strength of the dependencies
present in the target distribution, detected by the statistical
test, but missed by the model selection score. For example,
if the target structure is X → Y Z , the score selects the
structure X Y Z , and the test rejects the independence
hypothesis X⊥⊥ Y , then the dependency X⊥&⊥ Y is in this
category. For each dependency X⊥&⊥ Y |Z missed by the
model selection score, we computed the conditional mutual
information I(X, Y |Z). Figure 4 confirms our expectation
that explicit statistical testing helps the score-based learner to
more quickly converge to dependencies of medium strength:
At small sample sizes, the score is able to identify stronger
associations only (mutual conditional information > 0.06),
and misses weaker yet statistically significant dependencies
many of which are included in the graphs learned by the
hybrid method. As the sample size increases, the score be-
comes sensitive to more and more of the weaker statistically
significant dependencies, but only after the hybrid method
has detected them.

Our next two measurements concerns the behavior of the
testing strategy. A standard measure for the performance of



Fig. 3. The figure summarizes the performance of the tested methods with respect to KL divergence and adjacency f-measure as a function of sample
size and the number of nodes in the graph (average over 30 trials for each sample size/node number pair). The z-coordinate is the difference between the
measurements for GES/BDeu and IGES/BDeu, where positive values indicate better performance by the hybrid method due to the use of statistical tests.

Fig. 4. The conditional mutual information for the true dependencies
detected by the statistical test but missed by the score-based search without
testing.

a multiple hypothesis testing method is the false discovery
rate (FDR) [21], [25], which is defined as #rejected true
independence hypotheses/#tested independence hypotheses.
Figure 5 shows that in our simulations, with the significance
level fixed at α = 5%, the FDR in random graphs was on
average no greater than α, which is a good result in light
of the Bonferroni inequality. In fact, for most experimental
constellations the FDR was below 1.5%; it peaks at 3.5%
with sample size = 8,000, number of nodes = 4.

Our next measurement examines the computational over-
head incurred by carrying out statistical testing in addition

Fig. 5. False Discovery Rate for BDEU/IGES, defined by # rejected
true independence hypotheses/#tested independence hypotheses. The FDR
is smaller than the significance level α = 5%.

to score-based search. The theoretical analysis of Section
III-A suggests that the number of independence tests should
be linear in the length of the search. Our results confirm
this expectation. The exact slope of the line depends on the
sample and graph sizes; averaging over these and plotting
the number of independence tests as a function of number
of candidate graphs examined during the search, we find
that the number of tests performed is about 6 times the



Fig. 6. Comparing GES/BDeu (left) and IGES/BDeu (right) on the
Insurance network structure. For each sample size of 500, 1000, and
5000, we generated 14 random samples and compared the outputs of GES
search with the standard Tetrad parameters settings for BDeu, with and
without statistical testing. The significance level for the tests was fixed
at α = 1%. As the adjacency f-measure does not show a statistically
significant difference between the two methods, we plot the results only for
KL-divergence. The box plot shows an improvement for the hybrid method
IGES/BDeu up to sample size 5,000.

number of graphs generated. We omit the graph due to space
constraints. For off-line analysis of a dataset, the testing
overhead seems acceptable given the improvement in the
quality of the learned model. As a side benefit, the observed
correlations are often of interest in themselves to the user, and
they help to explain the construction of the learned structure.

2) Simulations with Insurance and Alarm Networks: We
followed the same simulation protocol for generating samples
and testing learning methods on two well-known real world
BNs: Alarm [26] (37 nodes) and Insurance [27] (25 nodes)
networks. We found that for larger graphs, the significance
level should be adjusted downward to maintain a suitable
false discovery rate for the testing strategy. A static approach
is to use a fixed conservative α such as 1% or 0.1% (cf. [6]).
With both α = 1% or 0.1%, we observed a uniform improve-
ment in KL-divergence for BDeu/IGES over BDeu/GES that
is statistically significant, but whose magnitude is less than
with the smaller random graphs. Moreover, the additional
statistical testing reduces the variance of the KL-divergence,
suggesting that the extra constraints make density estimation
more stable. The adjacency f-measures are virtually the same.
We plot the results for the Insurance network in Figure 6;
they are similar for Alarm.

3) Summary: For smaller graphs (10 nodes or less) and
small to medium sample sizes (1,000-2,000), our measure-
ments show a clear and uniform improvement with a standard
choice of significance level, α = 5%. With larger graphs (20
or more nodes), the number of falsely accepted dependencies
appears to lead to overly complex structures, unless the
significance level is reduced, which in turn diminishes the
gains from I-map learning. For larger graphs, we expect
further improvement from a dynamic strategy for controlling
the FDR of multiple hypothesis testing, such as the BH
procedure [21] or the recent SIN approach for graphical

models [28].

C. Comparison with BIC Score
Figure 7 (overleaf) compares the BDeu score with the

widely-used BIC score [3, Ch.8.3.2]. To compare absolute
performance metrics, we fix the number of nodes at 10;
the results are similar for smaller graph sizes. The results
show that the incremental improvement of adding testing
to the BIC criterion (i.e., BIC/IGES vs. BIC/GES), while
statistically significant, is not as great as the improvement
with the BDeu criterion. The improvement is greater for
ternary than for binary variables. The absolute performance
is best with the BDeu/IGES combination, in the sense that
this combination gets a better structural measure and a
similar KL divergence, meaning that it approximates the
target distribution using more correct adjacencies.

Discussion. This finding illustrates three general points. (1)
Most model selection scores trade off model complexity vs.
data fit. For scores that place relatively more weight on data
fit, such as BIC, the incremental improvement from including
observed dependencies is relatively less. (2) While scores
that place more weight on data fit benefit less from additional
statistical testing, their overall performance is often worse, at
least in the sense that they produce overly complex models.
Taking the BIC score as an example, a replication of the v-
structure experiment from Section I-.0.c shows that it often
introduces adjacencies whose corresponding dependencies
are not statistically significant. In other simulations we ob-
served a strong overfitting tendency of the BIC score in linear
models with continuous variables, because in these models
the number of parameters is relatively small compared to the
complexity of the graph structure (the number of parameters
for each node is linear in the number of its parents). (3)
Whether a model selection criterion strikes the right balance
between model complexity and data fit depends on the
application domain. For a user it is therefore difficult to
know a priori which model selection criterion is best. An
advantage of I-map learning is that it expands a sparse model
in a dynamic, data-driven manner by accommodating the
observed statistically significant correlations. Thus the user
can start with a score that has a relatively strong bias towards
simple models (e.g., BDeu), and use the hybrid method to
expand the model as necessary to accommodate the data. The
spirit of our approach is similar to regularization methods,
which introduce a scalar λ to weight the likelihood (data fit)
term, and use data-driven methods (e.g., cross-validation) to
estimate this weight.

V. CONCLUSION AND FUTURE WORK

This paper introduced a new criterion for learning Bayes
nets: find the graph G that maximizes a given score, subject
to the constraint that G cover the dependencies detected by
a statistical test. This is a hybrid criterion that combines the
basic idea behind CB approaches—to treat the output of a
statistical test as constraints on the learned structure—with
the search+score framework. The practical motivation for the
hybrid criterion is that many standard scoring criteria based



Fig. 7. Comparison of two different scores on synthetic data (10 nodes, ternary variables, averaged over 30 data sets): BDeu and BIC, each with and
without statistical hypothesis testing. For each of the four methods, we give the KLD divergence and the f-measure with respect to adjacencies. Of the two
model selection criteria without dependency constraints added, BIC performs better than BDeu, but among the hybrid methods, performance is best with
the BDeu/IGEs combination.

on parameter counts tend to produce overly sparse graphs;
our criterion selects expanded graphs that fit the observed
statistically significant correlations.

We showed how to adapt a generic local search+score
procedure for the constrained optimization required by the
hybrid criterion. For BN structures with discrete variables,
the number of parameters is large compared to the number
of variables, and thus the penalization term tends to lead
to underfitting. Evidence from simulation studies with the
well-established BDeu and BIC criteria indicates that fitting
statistically significant dependencies leads to better learning,
as evaluated both by distributional and topological criteria.
Our statistical testing strategy achieves this improvement
without the need for the user to apply different model
selection scores or select parameters for a given model
selection score. We observed the improvement to be greatest
when the number of variables is around 10 or less, and the
sample size around 1,000-2,000.

In summary, our hybrid criterion is a bridge between
the score-based and the constrained-based frameworks that
combines frequentist and Bayesian prior-based methods. It
appears to be a principled and effective way to address
underfitting tendencies in Bayes net learning.
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