
Computing Multi-Relational Sufficient Statistics for Large

Databases

Zhensong Qian
School of Computing Science
Simon Fraser University, CA

zqian@sfu.ca

Oliver Schulte
School of Computing Science
Simon Fraser University, CA

oschulte@sfu.ca

Yan Sun
School of Computing Science
Simon Fraser University, CA

sunyans@sfu.ca

ABSTRACT
Databases contain information about which relationships
do and do not hold among entities. To make this infor-
mation accessible for statistical analysis requires computing
su�cient statistics that combine information from di↵erent
database tables. Such statistics may involve any number of
positive and negative relationships. With a naive enumer-
ation approach, computing su�cient statistics for negative
relationships is feasible only for small databases. We solve
this problem with a new dynamic programming algorithm
that performs a virtual join, where the requisite counts are
computed without materializing join tables. Contingency
table algebra is a new extension of relational algebra, that
facilitates the e�cient implementation of this Möbius vir-
tual join operation. The Möbius Join scales to large datasets
(over 1M tuples) with complex schemas. Empirical evalu-
ation with seven benchmark datasets showed that informa-
tion about the presence and absence of links can be exploited
in feature selection, association rule mining, and Bayesian
network learning.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.2.4 [Systems]:
Relational databases

Keywords
su�cient statistics; multi-relational databases; virtual join;
relational algebra

1. INTRODUCTION
Relational databases contain information about attributes

of entities, and which relationships do and do not hold among
entities. To make this information accessible for knowledge
discovery requires requires computing su�cient statistics.
For discrete data, these su�cient statistics are instantia-
tion counts for conjunctive queries. For relational statis-
tical analysis to discover cross-table correlations, su�cient

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM’14, November 3–7, 2014, Shanghai, China.

Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.

http://dx.doi.org/10.1145/2661829.2662010 .

statistics must combine information from di↵erent database
tables. This paper describes a new dynamic programming
algorithm for computing cross-table su�cient statistics that
may contain any number of positive and negative relation-
ships. Negative relationships concern the nonexistence of a
relationship. Our algorithmmakes the joint presence/absence
of relationships available as features for the statistical anal-
ysis of databases. For instance, such statistics are important
for learning correlations between di↵erent relationship types
(e.g., if user u performs a web search for item i, is it likely
that u watches a video about i ?).

Whereas su�cient statistics with positive relationships
only can be e�ciently computed by SQL joins of existing
database tables, a table join approach is not feasible for
negative relationships. This is because we would have to
enumerate all tuples of entities that are not related (consider
the number of user pairs who are not friends on Facebook).
The cost of the enumeration approach is close to materializ-
ing the Cartesian cross product of entity sets, which grows
exponentially with the number of entity sets involved. It
may therefore seem that su�cient statistics with negative
relationships can be computed only for small databases. We
show that on the contrary, assuming that su�cient statistics
with positive relationships are available, extending them to
negative relationships can be achieved in a highly scalable
manner, which does not depend on the size of the database.

Virtual Join Approach. Our approach to this problem
introduces a new virtual join operation. A virtual join al-
gorithm computes su�cient statistics without materializing
a cross product [16]. Su�cient statistics can be represented
in contingency tables [5]. Our virtual join operation is a dy-
namic programming algorithm that successively builds up a
large contingency table from smaller ones, without a need to
access the original data tables. We refer to it as the Möbius
Join since it is based on the Möbius extension theorem [12].

We introduce algebraic operations on contingency tables
that generalize standard relational algebra operators. We
establish a contingency table algebraic identity that reduces
the computation of su�cient statistics with k + 1 nega-
tive relationships to the computation of su�cient statistics
with only k negative relationships. The Möbius Join applies
the identity to construct contingency tables that involve
1, 2, . . . , ` relationships (positive and negative), until we ob-
tain a joint contingency table for all tables in the database.
A theoretical upper bound for the number of contingency ta-
ble operations required by the algorithm is O(r log r), where
r is the number of su�cient statistics involving negative re-

lationships. In other words, the number of table operations
is nearly linear in the size of the required output.

Evaluation. We evaluate the Möbius Join algorithm by
computing contingency tables for seven real-world databases.
The observed computation times exhibit the near-linear growth
predicted by our theoretical analysis. They range from two
seconds on the simpler database schemas to just over two
hours for the most complex schema with over 1 million tu-
ples from the IMDB database.

Given that computing su�cient statistics for negative re-
lationships is feasible, the remainder of our experiments eval-
uate their usefulness. These su�cient statistics allow statis-
tical analysis to utilize the absence or presence of a relation-
ship as a feature. Our benchmark datasets provide evidence
that the positive and negative relationship features enhance
di↵erent types of statistical analysis, as follows. (1) Fea-
ture selection: When provided with su�cient statistics for
negative and positive relationships, a standard feature selec-
tion method selects relationship features for classification,
(2) Association Rule Mining: A standard association rule
learning method includes many association rules with rela-
tionship conditions in its top 20 list. (3) Bayesian network
learning. A Bayesian network provides a graphical sum-
mary of the probabilistic dependencies among relationships
and attributes in a database. On the two databases with the
most complex schemas, enhanced su�cient statistics lead to
a clearly superior model (better data fit with fewer parame-
ters). This includes a database that is an order of magnitude
larger than the databases for which graphical models have
been learned previously [11].

Contributions. Our main contributions are as follows.

1. A dynamic program to compute a joint contingency
table for su�cient statistics that combine several ta-
bles, and that may involve any number of positive and
negative relationships.

2. An extension of relational algebra for contingency ta-
bles that supports the dynamic program conceptually
and computationally.

We contribute open-source code that implements the Möbius
Join. All code and datasets are available on-line[3]. Our im-
plementation makes extensive use of RDBMS capabilities.
Like the BayesStore system [15], our system treats statistical
components as first-class citizens in the database. Contin-
gency tables are stored as database tables in addition to the
original data tables. We use SQL queries to construct ini-
tial contingency tables and to implement contingency table
algebra operations.

Paper Organization. We review background for relational
databases and statistical concepts. The main part of the pa-
per describes the dynamic programming algorithm for com-
puting a joint contingency table for all random variables. We
define the contingency table algebra. A complexity analysis
establishes feasible upper bounds on the number of contin-
gency table operations required by the Möbius Join algo-
rithm. We also investigate the scalability of the algorithm
empirically. The final set of experiments examines how the
cached su�cient statistics support the analysis of cross-table
dependencies for di↵erent learning and data mining tasks.

2. BACKGROUND AND NOTATION

Figure 1: A relational ER Design. Registration and
RA are many-to-many relationships.

We assume a standard relational schema containing a
set of tables, each with key fields, descriptive attributes, and
possibly foreign key pointers. A database instance spec-
ifies the tuples contained in the tables of a given database
schema. We assume that tables in the relational schema can
be divided into entity tables and relationship tables. This
is the case whenever a relational schema is derived from an
entity-relationship model (ER model) [14, Ch.2.2]. A table
join of two or more tables contains the rows in the Carte-
sian products of the tables whose values match on common
fields.

2.1 Relational Random Variables
We adopt function-based notation from logic for combin-

ing statistical and relational concepts [9]. A domain or pop-
ulation is a set of individuals. Individuals are denoted by
lower case expressions (e.g., bob). A functor represents a
mapping f : P1, . . . ,Pa

! V
f

where f is the name of the
functor, each P

i

is a population, and V
f

is the output type
or range of the functor. In this paper we consider only
functors with a finite range, disjoint from all populations.
If V

f

= {T,F}, the functor f is a (Boolean) predicate.
A predicate with more than one argument is called a re-
lationship; other functors are called attributes. We use
uppercase for predicates and lowercase for other functors.
Throughout this paper we assume that all relationships are
binary, though this is not essential for our algorithm.

A (Parametrized) random variable (PRV) is of the
form f(X1, . . . ,Xa

), where each X
i

is a first-order variable
[7]. Each first-order variable is associated with a popula-
tion/type.

Figure 2: Database Instance based on Figure 1.

The functor formalism is rich enough to represent the con-
straints of an entity-relationship schema via the following
translation: Entity sets correspond to populations, descrip-
tive attributes to functions, relationship tables to relation-

ER
Diagram

Type Functor Random Variable

Relation
Tables

RVars RA RA(P, S)

Entity
Attributes

1Atts intelligence, ranking
{intelligence(S), ranking(S)}
= 1Atts(S)

Relationship
Attributes

2Atts capability, salary
{capability(P, S), salary(P, S)}
= 2Atts(RA(P, S))

Table 1: Translation from ER Diagram to Random
Variables.

ships, and foreign key constraints to type constraints on the
arguments of relationship predicates. Table 1 illustrates this
translation, distinguishing attributes of entities (1Atts) and
attributes of relationships (2Atts).

2.2 Contingency Tables
Su�cient statistics can be represented in contingency ta-

bles as follows [5]. Consider a fixed list of random variables.
A query is a set of (variable = value) pairs where each
value is of a valid type for the random variable. The result
set of a query in a database D is the set of instantiations
of the first-order variables such that the query evaluates as
true in D. For example, in the database of Figure 2 the
result set for the query (intelligence(S) = 2 , rank(S) = 1 ,
popularity(P) = 3 , teachingability(P) = 1 , RA(P, S) = T) is
the singleton {hkim, oliveri}. The count of a query is the
cardinality of its result set.

For every set of variables V = {V1,. . . , Vn

} there is a con-
tingency table ct(V). This is a table with a row for each of
the possible assignments of values to the variables in V, and
a special integer column called count . The value of the count
column in a row corresponding to V1 = v1, . . . , Vn

= v
n

records the count of the corresponding query. Figure 3
shows the contingency table for the university database. The
value of a relationship attribute is undefined for entities that
are not related. Following [9], we indicate this by writing
capability(P, S) = n/a for a reserved constant n/a. The as-
sertion capability(P, S) = n/a is therefore equivalent to the
assertion that RA(P, S) = F. A conditional contingency

Figure 3: Excerpt from the joint contingency table
for the university database of Figure 2.

table, written

ct(V1, . . . , Vk

|V
k+1 = v

k+1, . . . , Vk+m

= v
k+m

)

is the contingency table whose column headers are V1, . . . , Vk

and whose rows comprise the subset that match the condi-
tions to the right of the | symbol. We assume that contin-
gency tables omit rows with count 0.

3. RELATIONAL CONTINGENCY TABLES
Many relational learning algorithms take an iterative deep-

ening approach: explore correlations along a single rela-
tionship, then along relationship chains of length 2, 3, etc.
Chains of relationships form a natural lattice structure, where
iterative deepening corresponds to moving from the bottom
to the top. The Möbius Join algorithm computes contin-
gency tables by reusing the results for smaller relationships
for larger relationship chains.

A relationship variable set is a chain if it can be ordered
as a list [R1(⌧ 1), . . . , Rk

(⌧
k

)] such that each relationship
variable R

i+1(⌧ i+1) shares at least one first-order variable
with the preceding terms R1(⌧ 1), . . . , Ri

(⌧
i

). All sets in the
lattice are constrained to form a chain. For instance, in the
University schema of Figure 1, a chain is formed by the two
relationship variables

Registration(S,C),RA(P, S).

If relationship variable Teaches(P,C) is added, we may have
a three-element chain

Registration(S,C),RA(P, S),Teaches(P,C).

The subset ordering defines a lattice on relationship sets/chains.
Figure 4 illustrates the lattice for the relationship variables
in the university schema. For reasons that we explain be-
low, entity tables are also included in the lattice and linked
to relationships that involve the entity in question. With

Figure 4: A lattice of relationship sets for the univer-
sity schema of Figure 1. The Möbius Join constructs
contingency table tables for each relationship chain
for each level ` of the lattice. We reference the lines
of the pseudo-code in Algorithm 2.

each relationship chain R (Rchain for short) is associated a
ct-table ctR. The variables in the ct-table ctR comprise the
relationship variables in R, and the unary/binary descrip-
tive attributes associated with each of the relationships. To
define these, we introduce the following notation (cf. Ta-
ble 1).

• 1Atts(A) denotes the attribute variables of a first-order
variable A collectively (1 for unary).

• 1Atts(R) denotes the set of entity attribute variables
for the first-order variables that are involved in the
relationships in R.

• 2Atts(R) denotes the set of relationship attribute vari-
ables for the relationships in R (2 for binary).

• Atts(R) ⌘ 1Atts(R) [2Atts(R) is the set of all at-
tribute variables in the relationship chain R.

In this notation, the variables in the ct-table ctR are de-
noted asR[Atts(R). The goal of the Möbius Join algorithm
is to compute a contingency table for each chain R. In the
example of Figure 4, the algorithm computes 10 contingency
tables. The ct-table for the top element of the lattice is the
joint ct-table for the entire database.

If a conjunctive query involves only positive relationships,
then it can be computed using SQL’s count aggregate func-
tion applied to a table join. To illustrate, we show the SQL
for computing the positive relationship part of the ct-table
for the RA(P, S) chain.

CREATE TABLE ct
T

AS
SELECT Count(*) as count, student.ranking,
student.intelligence, professor.popularity,
professor.teachingability, RA.salary, RA.capability
FROM professor, student, RA
WHERE
RA.p id = professor.p id and RA.s id = student.s id
GROUP BY student.ranking, student.intelligence,
professor.popularity, professor.teachingability, RA.salary,
RA.capability

Even more e�cient than SQL count queries is the Tuple ID
propagation method, a Möbius Join method for computing
query counts with positive relationships only [16]. In the
next section we assume that contingency tables for positive
relationships only have been computed already, and consider
how such tables can be extended to full contingency tables
with both positive and negative relationships.

4. COMPUTING CONTINGENCY TABLES
FOR NEGATIVE RELATIONSHIPS

We describe a Virtual Join algorithm that computes the
required su�cient statistics without materializing a cross
product of entity sets. First, we introduce an extension of
relational algebra that we term contingency table alge-
bra. The purpose of this extension is to show that query
counts using k + 1 negative relationships can be computed
from two query counts that each involve at most k relation-
ships. Second, a dynamic programming algorithm applies
the algebraic identify repeatedly to build up a complete con-
tingency table from partial tables.

4.1 Contingency Table Algebra
We introduce relational algebra style operations defined

on contingency tables.

4.1.1 Unary Operators

Selection �
�

ct selects a subset of the rows in the ct-table
that satisfy condition �. This is the standard relational
algebra operation except that the selection condition
� may not involve the count column.

Projection ⇡
V1,...,Vkct selects a subset of the columns in

the ct-table, excluding the count column. The counts
in the projected subtable are the sum of counts of rows
that satisfy the query in the subtable. The ct-table
projection ⇡

V1,...,Vkct can be defined by the following
SQL code template:

SELECT SUM(count) AS count, V1, . . . , V
k

FROM ct
GROUP BY V1, . . . , V

k

Conditioning �
�

ct returns a conditional contingency ta-
ble. Ordering the columns as (V1, . . . , Vk

, . . . , V
k+j

),
suppose that the selection condition is a conjunction
of values of the form

� = (V
k+1 = v

k+1, . . . , Vk+j

= v
k+j

).

Conditioning can be defined in terms of selection and
projection by the equation:

�
�

ct = ⇡
V1,...,Vk (��

ct)

4.1.2 Binary Operators
We use V, U in SQL templates to denote a list of col-

umn names in arbitrary order. The notation ct1.V = ct2.V
indicates an equijoin condition: the contingency tables ct1
and ct2 have the same column set V and matching columns
from the di↵erent tables have the same values.

Cross Product The cross-product of ct1(U), ct2(V) is
the Cartesian product of the rows, where the product
counts are the products of count. The cross-product
can be defined by the following SQL template:

SELECT
(ct1.count ⇤ ct2 .count) AS count , U, V
FROM ct1, ct2

Addition The count addition ct1(V) + ct2(V) adds the
counts of matching rows, as in the following SQL tem-
plate.

SELECT ct1.count+ct2.count AS count , V
FROM ct1, ct2
WHERE ct1.V = ct2.V

If a row appears in one ct-table but not the other,
we include the row with the count of the table that
contains the row.

Subtraction The count di↵erence ct1(V)�ct2(V) equals
ct1(V) + (�ct2(V)) where �ct2(V) is the same as
ct2(V) but with negative counts. Table subtraction
is defined only if (i) without the count column, the
rows in ct1 are a superset of those in ct2, and (ii) for
each row that appears in both tables, the count in ct1
is at least as great as the count in ct2.

4.1.3 Implementation
The selection operator can be implemented using SQL as

with standard relational algebra. Projection with ct-tables
requires use of the GROUP BY construct as shown in Sec-
tion 4.1.1.

For addition/subtraction, assuming that a sort-merge join
is used [14], a standard analysis shows that the cost of a sort-
merge join is size(table1)+ size(table2)+ the cost of sorting
both tables.

The cross product is easily implemented in SQL as shown
in Section 4.1.2. The cross product size is quadratic in the
size of the input tables.

Figure 5: Top: Equation (1) is used to compute the conditional contingency table ctF = ct(1Atts(R)|R = F).
(Set Vars = ;, R = RA(P, S), R = ;). Bottom: The Pivot operation computes the contingency table ct

RA(P,S)
for the relationship RA(P, S) := R

pivot

. The ct-table operations are implemented using dynamic SQL queries
as shown. Lists of column names are abbreviated as shown and also as follows. CL(ct⇤) = CL(temp) = CL(ct

F

),
CL(ct) = CL(ct+F) = CL(ct+T). We reference the corresponding lines of Algorithms 1 and 2.

4.2 Lattice Computation of Contingency Ta-
bles

This section describes a method for computing the con-
tingency tables level-wise in the relationship chain lattice.
We start with a contingency table algebra equivalence that
allows us to compute counts for rows with negative rela-
tionships from rows with positive relations. Following [5],
we use a “don’t care” value ⇤ to indicate that a query does
not specify the value of a node. For instance, the query
R1 = T, R2 = ⇤ is equivalent to the query R1 = T.

Proposition 1. Let R be a relationship variable and let
R be a set of relationship variables. Let Vars be a set of
variables that does not contain R nor any of the 2Atts of R.
Let X1, . . . ,Xl

be the first-order variables that appear in R
but not in Vars, where l is possibly zero. Then we have

ct(Vars [1Atts(R)|R = T,R = F) = (1)

ct(Vars|R = T,R = ⇤)⇥ ct(X
1

)⇥ · · ·⇥ ct(X
l

)

� ct(Vars [1Atts(R)|R = T,R = T).

If l = 0, the equation holds without the cross-product term.

The proof is available at [8]. Figure 5 illustrates Equa-
tion (1). The construction of the ctF table in Algorithm 1
provides pseudo-code for applying Equation (1) to compute
a complete ct-table, given a partial table where a specified

Algorithm 1: The Pivot function returns a conditional
contingency table for a set of attribute variables and
all possible values of the relationship R

pivot

, includ-
ing R

pivot

= F. The set of conditional relationships
R = (R

pivot

, . . . , R
`

) may be empty in which case the
Pivot computes an unconditional ct-table.

Input: Two conditional contingency tables ctT :=
ct(Vars, 2Atts(R

pivot

)|R
pivot

= T,R = T) and
ct⇤ := ct(Vars|R

pivot

= ⇤,R = T) .
Precondition: The set Vars does not contain the
relationship variable R

pivot

nor any of its descriptive
attributes 2Atts(R

pivot

).;
Output: The conditional contingency table

ct(Vars, 2Atts(R
pivot

),R
pivot

|R = T) .
1: ctF := ct⇤ � ⇡

Vars

ctT.
{Implements the algebra Equation 1 in proposition 1.}

2: ct+F := extend ctF with columns R
pivot

everywhere
false and 2Atts(R

pivot

) everywhere n/a.
3: ct+T := extend ctT with columns R

pivot

everywhere
true.

4: return ct+F [ct+T

relationship variable R is true, and another partial table
that does not contain the relationship variable. We refer to
R as the pivot variable. For extra generality, Algorithm 1
applies Equation (1) with a condition that lists a set of re-
lationship variables fixed to be true. Figure 5 illustrates
the Pivot computation for the case of only one relationship.
Algorithm 2 shows how the Pivot operation can be applied
repeatedly to find all contingency tables in the relationship
lattice. Figures 4 and 6 provide illustration. The outline of
this computation is as follows.

Initialization. Compute ct-tables for entity tables. Com-
pute ct-tables for each single relationship variable R , con-
ditional on R = T. If R = ⇤, then no link is specified
between the first-order variables involved in the relation R.
Therefore the individual counts for each first-order variable
are independent of each other and the joint counts can be
obtained by the cross product operation. Apply the Pivot
function to construct the complete ct-table for relationship
variable R.

Lattice Computation. The goal is to compute ct-tables
for all relationship chains of length > 1. For each relation-
ship chain, order the relationship variables in the chain ar-
bitrarily. Make each relationship variable in order the Pivot
variable R

i

. For the current Pivot variable R
i

, find the
conditional ct-table where R

i

is unspecified, and the sub-
sequent relations R

j

with j > i are true. This ct-table
can be computed from a ct-table for a shorter chain that
has been constructed already. The conditional ct-table has
been constructed already, where R

i

is true, and the sub-
sequent relations are true (see loop invariant). Apply the
Pivot function to construct the complete ct-table, for any
Pivot variable R

i

, conditional on the subsequent relations
being true.

4.3 Complexity Analysis
The key point about the Möbius Join (MJ) algorithm

is that it avoids materializing the cross product of entity
tuples. The algorithm accesses only existing tuples, never
constructs nonexisting tuples. The number of ct-table oper-
ation is therefore independent of the number of data records
in the original database. We bound the total number of ct-
algebra operations performed by the Möbius Join algorithm
in terms of the size of its output: the number of su�cient
statistics that involve negative relationships.

Proposition 2. The number of ct-table operations per-
formed by the Möbius Join algorithm is bounded as

#ct ops = O(r · log
2

r)

where r is the number of su�cient statistics that involve
negative relationships.

The proof is available at [8]. Since the time cost of any
algorithm must be at least as great as the time for writing
the output, which is as least as great as r, the Möbius Join
algorithm adds at most a logarithmic factor to this lower
bound. This means that if the number r of su�cient statis-
tics is a feasible bound on computational time and space,
then computing the su�cient statistics is feasible. In our
benchmark datasets, the number of su�cient statistics was
feasible, as we report below. In Section 8 below we discuss
options in case the number of su�cient statistics grows too
large.

Presentation Title At Venue

lines Operation Resulting ct-table

 11 Reg(S,C) = T, RA(P,S) = T Current_ct

 13-14 i = 1, Reg(S,C) = *, RA(P,S) = T ct*

 20 PIVOT Current_ct

 16-18 i = 2, RA(P,S) = * ct*

 20 PIVOT Final ct-table for Reg(S,C),RA(P,S)

Figure 6: Illustrates the relationship chain loop
of Algorithm 2 (lines 11-21) for the chain R =
Reg(S,C),RA(P, S). This loop is executed for each re-
lationship chain at each level.

5. EVALUATION OF CONTINGENCY TA-
BLE COMPUTATION

We describe the system and the datasets we used. Code
was written in Java, JRE 1.7.0. and executed with 8GB
of RAM and a single Intel Core 2 QUAD Processor Q6700
with a clock speed of 2.66GHz (no hyper-threading). The
operating system was Linux Centos 2.6.32. The MySQL
Server version 5.5.34 was run with 8GB of RAM and a single
core processor of 2.2GHz. All code and datasets are available
on-line [3].

Dataset
#Relationship
Tables/ Total

#Self
Relationships

#Tuples #Attributes

Movielens 1 / 3 0 1,010,051 7
Mutagenesis 2 / 4 0 14,540 11
Financial 3 / 7 0 225,932 15
Hepatitis 3 / 7 0 12,927 19
IMDB 3 / 7 0 1,354,134 17
Mondial 2 / 4 1 870 18
UW-CSE 2 / 4 2 712 14

Table 2: Datasets characteristics. #Tuples = total
number of tuples over all tables in the dataset.

5.1 Datasets
We used seven benchmark real-world databases. For de-

tailed descriptions and the sources of the databases, please
see reference [11]. Table 2 summarizes basic information
about the benchmark datasets. A self-relationship relates
two entities of the same type (e.g. Borders relates two coun-
tries in Mondial). Random variables for each database were
defined as described in Section 2.1 (see also [11]). IMDB
is the largest dataset in terms of number of total tuples
(more than 1.3M tuples) and schema complexity. It com-
bines the MovieLens database1 with data from the Internet
Movie Database (IMDB)2 following [6].

5.2 Contingency Tables With Negative Rela-
tionships: Cross Product vs. Möbius Join

In this subsection we compare two di↵erent approaches for
constructing the joint contingency tables for all variables to-
gether, for each database: Our Möbius Join algorithm (MJ)
vs. materializing the cross product (CP) of the entity tables
for each first-order variable (primary keys). Cross-checking
the MJ contingency tables with the cross-product contin-

1www.grouplens.org, 1M version
2www.imdb.com, July 2013

Algorithm 2: Möbius Join algorithm for Computing the Contingency Table for Input Database

Input: A relational database D; a set of variables
Output: A contingency table that lists the count in the database D for each possible assignment of values to each

variable.
1: for all first-order variables X do
2: compute ct(1Atts(X)) using SQL queries.
3: end for
4: for all relationship variable R do
5: ct⇤ := ct(X)⇥ ct(Y) where X,Y are the first-order variables in R.
6: ctT := ct(1Atts(R)|R = T) using SQL joins.
7: Call Pivot(ctT, ct⇤) to compute ct(1Atts(R), 2Atts(R),R).
8: end for
9: for Rchain length ` = 2 to m do
10: for all Rchains R = R1, . . . , R`

do
11: Current ct := ct(1Atts(R

1

, . . . ,R
`

), 2Atts(R
1

, . . . ,R
`

)|R
1

= T, . . . ,R
`

= T) using SQL joins.
12: for i = 1 to ` do
13: if i equals 1 then
14: ct⇤ := ct(1Atts(R

2

, . . . ,R
`

), 2Atts(R
2

, . . . ,R
`

)|R
1

= ⇤,R
2

= T, . . . ,R
`

= T)⇥ ct(X) where X is the first-order
variable in R1, if any, that does not appear in R2, . . . , R`

{ct⇤ can be computed from a ct-table for a Rchain of
length `� 1.}

15: else
16: 1Atts

¯

i

:= 1Atts(R
1

, . . . ,R
i�1

,R
i+1

, . . . ,R
`

).
17: 2Atts

¯

i

:= 2Atts(R
1

, . . . ,R
i�1

,R
i+1

, . . . ,R
`

).
18: ct⇤ := ct(1Atts

¯

i

, 2Atts
¯

i

,R
1

, . . . ,R
i�1

)|R
i

= ⇤,R
i+1

= T, . . . ,R
`

= T)⇥ ct(Y) where Y is the first-order
variable in R

i

, if any, that does not appear in R.
19: end if
20: Current ct := Pivot(Current ct , ct⇤).
21: end for{Loop Invariant: After iteration i, the table Current ct equals

ct(1Atts(R
1

, . . . ,R
`

), 2Atts(R
1

, . . . ,R
`

),R
1

, . . . ,R
i

|R
i+1

= T, . . . ,R
`

= T)}
22: end for{Loop Invariant: The ct-tables for all Rchains of length ` have been computed.}
23: end for
24: return the ct-table for the Rchain involves all the relationship variables.

Dataset MJ-time(s) CP-time(s) CP-#tuples #Statistics
Compress
Ratio

Movielens 2.70 703.99 23M 252 93,053.32
Mutagenesis 1.67 1096.00 1M 1,631 555.00
Financial 1421.87 N.T. 149,046,585M 3,013,011 49,467,653.90
Hepatitis 3536.76 N.T. 17,846M 12,374,892 1,442.19
IMDB 7467.85 N.T. 5,030,412,758M 15,538,430 323,740,092.05
Mondial 1112.84 132.13 5M 1,746,870 2.67
UW-CSE 3.84 350.30 10M 2,828 3,607.32

Table 3: Constructing the contingency table for each
dataset. M = million. N.T. = non-termination.
Compress Ratio = CP-#tuples/#Statistics.

gency tables confirmed the correctness of our implementa-
tion. Table 3 compares the time and space costs of the MJ
vs. the CP approach. The cross product was materialized
using an SQL query. The ratio of the cross product size to
the number of statistics in the ct-table measures how much
compression the ct-table provides compared to enumerating
the cross product. It shows that cross product materializa-
tion requires an infeasible amount of space resources. The
ct-table provides a substantial compression of the statistical
information in the database, by a factor of over 4,500 for the
largest database IMDB.

Computation Time. The numbers shown are the complete
computation time for all statistics. For faster processing,
both methods used a B+tree index built on each column
in the original dataset. The MJ method also utilized B+ in-
dexes on the ct-tables. We include the cost of building these

indexes in the reported time. The Möbius Join algorithm
returned a contingency table with negative relationships in
feasible time. On the biggest dataset IMDB with 1.3 million
tuples, it took just over 2 hours.

The cross product construction did not always terminate,
crashing after around 4, 5, and 10 hours on Financial, IMDB
and Hepatitis respectively. When it did terminate, it took
orders of magnitude longer than the MJ method except for
the Mondial dataset. Generally the higher the compression
ratio, the higher the time savings. On Mondial the com-
pression ratio is unusually low, so materializing the cross-
product was faster.

Dataset Link On Link O↵ #extra statistics extra time (s)
MovieLens 252 210 42 0.27
Mutagenesis 1,631 565 1,066 0.99
Financial 3,013,011 8,733 3,004,278 1416.21
Hepatitis 12,374,892 2,487 12,372,405 3535.51
IMDB 15,538,430 1,098,132 14,440,298 4538.62
Mondial 1,746,870 0 1,746,870 1112.31
UW-CSE 2,828 2 2,826 3.41

Table 4: Number of Su�cient Statistics for Link
Analysis On and O↵. Extra Time refers to the total
MJ time (Table 3 Col.2) minus the time for comput-
ing the positive statistics only.

Figure 7: Möbius Join Extra Time (s)

5.3 Contingency Tables with Negative Rela-
tionships vs. Positive Relationships Only

In this section we compare the time and space costs of
computing both positive and negative relationships, vs. pos-
itive relationships only. We use the following terminology.
Link Analysis On refers to using a contingency table with
su�cient statistics for both positive and negative relation-
ships. An example is table ct in Figure 5. Link Analysis
O↵ refers to using a contingency table with su�cient statis-
tics for positive relationships only. An example is table ct+T
in Figure 5. Table 4 shows the number of su�cient statis-
tics required for link analysis on vs. o↵. The di↵erence
between the link analysis on statistics and the link analysis
o↵ statistics is the number of Extra Statistics. The Extra
Time column shows how much time the MJ algorithm re-
quires to compute the Extra Statistics after the contingency
tables for positive relationships are constructed using SQL
joins. As Figure 7 illustrates, the Extra Time stands in a
nearly linear relationship to the number of Extra Statistics,
which confirms the analysis of Section 4.3. Figure 8 shows
that most of the MJ run time is spent on the Pivot compo-
nent (Algorithm 1) rather than the main loop (Algorithm 2).
In terms of ct-table operations, most time is spent on sub-
traction/union rather than cross product.

Figure 8: Breakdown of MJ Total Running Time

6. STATISTICAL APPLICATIONS
We evaluate using link analysis on three di↵erent types of

cross-table statistical analysis: feature selection, association
rule mining, and learning a Bayesian network.

6.1 Feature Selection
For each database, we selected a target for classification,

then used Weka’s CFS feature subset selection method (Ver-
sion 3.6.7) to select features for classification [2], given a
contingency table. The idea is that if the existence of rela-
tionships is relevant to classification, then there should be

a di↵erence between the set selected with link analysis on
and that selected with link analysis o↵. We measure how
di↵erent two feature sets are by 1-Jaccard’s coe�cient:

Distinctness(A,B) = 1 � A \ B
A [B

.

Dataset Target variable
Selected Attributes

DistinctnessLink
Analysis O↵

Link Analysis
On / Rvars

MovieLens Horror(M) 2 2 / 0 0.0
Mutagenesis inda(M) 3 3 / 0 0.0
Financial balance(T) 3 2 / 1 1.0
Hepatitis sex(D) 1 2 / 1 0.5
IMDB avg revenue(D) 5 2 / 1 1.0
Mondial percentage(C) Empty CT 4 / 0 1.0
UW-CSE courseLevel(C) 1 4 / 2 1.0

Table 5: Selected Features for Target variables for
Link Analysis O↵ vs. Link Analysis On. Rvars de-
notes the number of relationship features selected.

Distinctness measures how di↵erent the selected feature
subset is with link analysis on and o↵, on a scale from 0 to 1.
Here 1 = maximum dissimilarity. Table 5 compares the fea-
ture sets selected. In almost all datasets, su�cient statistics
about negative relationships generate new relevant features
for classification. In 4/7 datasets, the feature sets are dis-
joint (coe�cient = 1). For the Mutagenesis and MovieLens
data sets, no new features are selected.

While Table 5 provides evidence that relationship features
are relevant to the class label, it is not straightforward to
evaluate their usefulness by adding them to a relational clas-
sifier. The reason for this is that relational classification re-
quires some kind of mechanism for aggregating/combining
information from a target entity’s relational neighborhood.
There is no standard method for performing this aggregation
[1], so one needs to study the interaction of the aggregation
mechanism with relationship features. We leave for future
work experiments that utilize relationship features in com-
bination with di↵erent relational classifiers.

6.2 Association Rules
A widely studied task is finding interesting association

rules in a database. We considered association rules of the
form body ! head , where body and head are conjunctive
queries. An example of a cross-table association rule for
Financial is

statement freq .(Acc) = monthly ! HasLoan(Acc,Loan) = T.

We searched for interesting rules using both the link analy-
sis o↵ and the link analysis on contingency tables for each
database. The idea is that if a relationship variable is rel-
evant for other features, it should appear in an association
rule. With link analysis o↵, all relationship variables always
have the value T, so they do not appear in any association
rule. We used Weka’s Apriori implementation to search for
association rules in both modes. The interestingness met-
ric was Lift. Parameters were set to their default values.
Table 6 shows the number of rules that utilize relationship
variables with link analysis on, out of the top 20 rules. In
all cases, a majority of rules utilize relationship variables, in
Mutagenesis and IMDB all of them do.

Dataset MovieLens Mutagenesis Financial Hepatitis IMDB Mondial UW-CSE
rules 14/20 20/20 12/20 15/20 20/20 16/20 12/20

Table 6: Number of top 20 Association Rules that
utilize relationship variables.

Dataset Link Analysis On Link Analysis O↵
Movielens 1.53 1.44
Mutagenesis 1.78 1.96
Financial 96.31 3.19
Hepatitis 416.70 3.49
IMDB 551.64 26.16
Mondial 190.16 N/A
UW-CSE 2.89 2.47

Table 7: Model Structure Learning Time in seconds.

6.3 Learning Bayesian Networks
Our most challenging application is constructing a Bayesian

network (BN) for a relational database. For single-table
data, Bayesian network learning has been considered as a
benchmark application for precomputing su�cient statistics
[5, 4]. A Bayesian network structure is a directly acyclic
graph whose nodes are random variables. Given an assign-
ment of values to its parameters, a Bayesian network rep-
resents a joint distribution over both attributes and rela-
tionships in a relational database. Several researchers have
noted the usefulness of constructing a graphical statistical
model for a relational database [13, 15]. For data ex-
ploration, a Bayes net model provides a succinct graphical
representation of complex statistical-relational correlations.
The model also supports probabilistic reasoning for answer-
ing “what-if” queries about the probabilities of uncertain
outcomes.

We used the previously existing learn-and-join method
(LAJ), which is the state of the art for Bayes net learn-
ing in relational databases [11]. The LAJ method takes as
input a contingency table for the entire database, so we can
apply it with both link analysis on and link analysis o↵ to
obtain two di↵erent BN structures for each database. Our
experiment is the first evaluation of the LAJ method with
link analysis on. We used the LAJ implementation provided
by its creators. We score all learned graph structures us-
ing the same full contingency table with link analysis on,
so that the scores are comparable. The idea is that turn-
ing link analysis on should lead to a di↵erent structure that
represents correlations, involving relationship variables, that
exist in the data.

6.3.1 Structure Learning Times
Table 7 provides the model search time for structure learn-

ing with link analysis on and o↵. Structure learning is fast,
even for the largest contingency table IMDB (less than 10
minutes run-time). With link analysis on, structure learn-
ing takes more time as it processes more information. In
both modes, the run-time for building the contingency ta-
bles (Table 3) dominates the structure learning cost. For
the Mondial database, there is no case where all relation-
ship variables are simultaneously true, so with link analysis
o↵ the contingency table is empty.

6.3.2 Statistical Scores.
We report two model metrics, the log-likelihood score, and

the model complexity as measured by the number of pa-

rameters. The log-likelihood is denoted as L(Ĝ,d), where
Ĝ is the BN G with its parameters instantiated to be the
maximum likelihood estimates given the dataset d, and the
quantity L(Ĝ,d) is the log-likelihood of Ĝ on d. We use
the relational log-likelihood score defined in [10], which dif-
fers from the standard single-table Bayes net likelihood only
by replacing counts by frequencies so that scores are com-
parable across di↵erent nodes and databases. To provide
information about the qualitative graph structure learned,
we report edges learned that point to a relationship variable
as a child. Such edges can be learned only with link analysis
on. We distinguish edges that link relationship variables—
R2R—and that link attribute variables to relationships—
A2R.

Movielens log-likelihood #Parameter R2R A2R
Link Analysis O↵ -4.68 164 0 0
Link Analysis On -3.44 292 0 3

Mutagenesis log-likelihood #Parameter R2R A2R
Link Analysis O↵ -6.18 499 0 0
Link Analysis On -5.96 721 1 5

Financial log-likelihood #Parameter R2R A2R
Link Analysis O↵ -10.96 11,572 0 0
Link Analysis On -10.74 2433 2 9

Hepatitis log-likelihood #Parameter R2R A2R
Link Analysis O↵ -15.61 962 0 0
Link Analysis On -16.58 569 3 6

IMDB log-likelihood #Parameter R2R A2R
Link Analysis O↵ -13.63 181,896 0 0
Link Analysis On -11.39 60,059 0 11

Mondial log-likelihood #Parameter R2R A2R
Link Analysis O↵ N/A N/A N/A N/A
Link Analysis On -18.2 339 0 4

UW-CSE log-likelihood #Parameter R2R A2R
Link Analysis O↵ -6.68 305 0 0
Link Analysis On -8.13 241 0 2

Table 8: Comparison of Statistical Performance of
Bayesian Network Learning.

Structure learning can use the new type of dependencies
to find a better, or at least di↵erent, trade-o↵ between model
complexity and model fit. On two datasets (IMDB and Fi-
nancial), link analysis leads to a superior model that achieves
better data fit with fewer parameters. These are also the
datasets with the most complex relational schemas (see Ta-
ble 2). On IMDB in particular, considering only positive
links leads to a very poor structure with a huge number of
parameters. On four datasets, extra su�cient statistics lead
to di↵erent trade-o↵s: On MovieLens and Mutagenesis, link
analysis leads to better data fit but higher model complexity,
and the reverse for Hepatitis and UW-CSE.

7. RELATED WORK
Su�cient Statistics for Single Data Tables. Several data

structures have been proposed for storing su�cient statistics
defined on a single data table. One of the best-known are

ADtrees [5]. An ADtree provides a memory-e�cient data
structure for storing and retrieving su�cient statistics once
they have been computed. In this paper, we focus on the
problem of computing the su�cient statistics, especially for
the case where the relevant rows have not been materialized.
Thus ADtrees and contingency tables are complementary
representations for di↵erent purposes: contingency tables
support a computationally e�cient block access to su�cient
statistics, whereas ADtrees provide a memory e�cient com-
pression of the su�cient statistics. An interesting direction
for future work is to build an ADtree for the contingency
table once it has been computed.

Relational Su�cient Statistics. Schulte et al. review pre-
vious methods for computing statistics with negative rela-
tionships [12]. They show that the fast Möbius transform
can be used in the case of multiple negative relationships.
Their evaluation considered only Bayes net parameter learn-
ing with only one relationship. We examined computing
joint su�cient statistics over the entire database. Other
novel aspects are the ct-table operations and using the rela-
tionship chain lattice to facilitate dynamic programming.

8. CONCLUSION
Utilizing the information in a relational database for sta-

tistical modelling and pattern mining requires fast access
to multi-relational su�cient statistics, that combine infor-
mation across database tables. We presented an e�cient
dynamic program that computes su�cient statistics for any
combination of positive and negative relationships, starting
with a set of statistics for positive relationships only. Our
dynamic program performs a virtual join operation, that
counts the number of statistics in a table join without actu-
ally constructing the join. We showed that the run time of
the algorithm is O(r log r), where r is the number of su�-
cient statistics to be computed. The computed statistics
are stored in contingency tables. We introduced contin-
gency table algebra, an extension of relational algebra, to el-
egantly describe and e�ciently implement the dynamic pro-
gram. Empirical evaluation on seven benchmark databases
demonstrated the scalability of our algorithm; we compute
su�cient statistics with positive and negative relationships
in databases with over 1 million data records. Our experi-
ments illustrated how access to su�cient statistics for both
positive and negative relationships enhances feature selec-
tion, rule mining, and Bayesian network learning.

Limitations and Future Work. Our dynamic program
scales well with the number of rows, but not with the num-
ber of columns and relationships in the database. This lim-
itation stems from the fact that the contingency table size
grows exponentially with the number of random variables in
the table. In this paper, we applied the algorithm to con-
struct a large table for all variables in the database. We em-
phasize that this is only one way to apply the algorithm. The
Möbius Join algorithm e�ciently finds cross-table statistics
for any set of variables, not only for the complete set of all
variables in the database. An alternative is to apply the vir-
tual join only up to a prespecified relatively small relation-
ship chain length. Another possibility is to use postcount-
ing [4]: Rather than precompute a large contingency table
prior to learning, compute many small contingency tables
for small subsets of variables on demand during learning.

In sum, our Möbius Virtual Join algorithm e�ciently com-
putes query counts which may involve any number of pos-

itive and negative relationships. These su�cient statistics
support a scalable statistical analysis of associations among
both relationships and attributes in a relational database.

Acknowledgments
This research was supported by a Discovery grant to Oliver
Schulte by the Natural Sciences and Engineering Research
Council of Canada. Zhensong Qian was supported by a
grant from the China Scholarship Council.

9. REFERENCES
[1] S. Dzeroski and N. Lavrac. Relational Data Mining.

Springer, Berlin, 2001.
[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten. The WEKA data
mining software: an update. SIGKDD Explorations,
11(1):10–18, 2009.

[3] H. Khosravi, T. Man, J. Hu, E. Gao, and O. Schulte.
Learn and join algorithm code.
http://www.cs.sfu.ca/~oschulte/jbn/.

[4] Q. Lv, X. Xia, and P. Qian. A fast calculation of
metric scores for learning Bayesian network. Int. J. of
Automation and Computing, 9:37–44, 2012.

[5] A. W. Moore and M. S. Lee. Cached su�cient
statistics for e�cient machine learning with large
datasets. J. Artif. Intell. Res. (JAIR), 8:67–91, 1998.

[6] V. Peralta. Extraction and integration of MovieLens
and IMDB data. Technical report, Laboratoire
PRiSM, Universite de Versailles, 2007.

[7] D. Poole. First-order probabilistic inference. In IJCAI,
pages 985–991, 2003.

[8] Z. Qian, O. Schulte, and Y. Sun. Computing
multi-relational su�cient statistics for large databases.
Preprint Archive. arXiv:1408.5389[cs.LG].

[9] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2010.

[10] O. Schulte. A tractable pseudo-likelihood function for
Bayes nets applied to relational data. In SIAM SDM,
pages 462–473, 2011.

[11] O. Schulte and H. Khosravi. Learning graphical
models for relational data via lattice search. Machine
Learning, 88(3):331–368, 2012.

[12] O. Schulte, H. Khosravi, A. Kirkpatrick, T. Gao, and
Y. Zhu. Modelling relational statistics with bayes nets.
Machine Learning, 94:105–125, 2014.

[13] S. Singh and T. Graepel. Automated probabilistic
modelling for relational data. In CIKM, pages
1497–1500, 2013.

[14] J. D. Ullman. Principles of Database Systems. W. H.
Freeman & Co., 2 edition, 1982.

[15] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M.
Hellerstein. BayesStore: managing large, uncertain
data repositories with probabilistic graphical models.
PVLDB, 1(1):340–351, 2008.

[16] X. Yin, J. Han, J. Yang, and P. S. Yu. Crossmine:
E�cient classification across multiple database
relations. In ICDE, pages 399–410. IEEE Computer
Society, 2004.

