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Abstract FACTORBASE is a new SQL-based framework that
leverages a relational database management system to sup-
port multi-relational model discovery. A multi-relational sta-
tistical model provides an integrated analysis of the hetero-
geneous and interdependent data resources in the database.
We adopt the BayesStore design philosophy: statistical mod-
els are stored and managed as first-class citizens inside a
database [42]. Whereas previous systems like BayesStore
support multi-relational inference, FACTORBASE supports
multi-relational learning. A case study on six benchmark
databases evaluates how our system supports a challeng-
ing machine learning application, namely learning a first-
order Bayesian network model for an entire database. Model
learning in this setting has to examine a large number of po-
tential statistical associations across data tables. Our imple-
mentation shows how the SQL constructs in FACTORBASE

facilitate the fast, modular, and reliable development of scal-
able model learning systems.
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1 Introduction

Data science brings together ideas from different fields for
extracting value from large complex datasets. The system
described in this paper combines advanced analytics from
multi-relational or statistical-relational machine learning (SRL)
with database systems. The power of combining machine
learning with database systems has been demonstrated in
several systems [3,14,19]. The novel contribution of FAC-
TORBASE is supporting machine learning for multi-relational
data, rather than for traditional learning where the data are
represented in a single table or data matrix. We discuss new
challenges raised by multi-relational model learning com-
pared to single-table learning, and how FACTORBASE solves
them using the resources of SQL (Structured Query Lan-
guage). The name FACTORBASE indicates that our system
supports learning factors that define a log-linear multi-relational
model [18]. Supported new database services include con-
structing, storing, and transforming complex statistical ob-
jects, such as factor-tables, cross-table sufficient statistics,
parameter estimates, and model selection scores.

Multi-relational data have a complex structure, that in-
tegrates heterogeneous information about different types of
entities (customers, products, factories etc.) and different
types of relationships among these entities. A statistical-relational
model provides an integrated statistical analysis of the het-
erogeneous, interdependent, and complex data resources main-
tained by the database system. Statistical-relational mod-
els have achieved state-of-the-art performance in a number
of application domains, such as natural language process-
ing, ontology matching, information extraction, entity res-
olution, link-based clustering, query optimization, etc. [4,
11,25]. Database researchers have noted the usefulness of
statistical-relational models for knowledge discovery and for
representing uncertainty in databases [39,42]. They have de-
veloped a system architecture where statistical models are
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stored as first-class citizens inside a database. The goal is to
seamlessly integrate query processing and statistical-relational
inference. These systems focus on inference given a statistical-
relational model, not on learning the model from the data
stored in the RDBMS. The FACTORBASE system comple-
ments the in-database probabilistic inference systems by pro-
viding an in-database probabilistic model learning system.

1.1 Evaluation

We evaluate our approach on six benchmark databases. For
each benchmark database, the system applies a state-of-the-
art SRL algorithm to construct a statistical-relational model.
Our experiments show that FACTORBASE pushes the scala-
bility boundary: Learning scales to databases with over 106

records, compared to less than 105 for previous systems. At
the same time it is able to discover more complex cross-table
correlations than previous SRL systems. We report experi-
ments that focus on the key services for an SRL client:

– Computing and caching sufficient statistics (event counts).
– Computing model predictions on test instances.
– Constructing, storing, and evaluating a graphical model

and the factors that define it.

For the largest benchmark database, our system handles
15M sufficient statistics. SQL facilitates block-prediction for
a set of test instances, which leads to a 10 to 100-fold speedup
compared to a simple loop over test instances.

1.2 Contributions

FACTORBASE is the first system that leverages relational
query processing for learning a multi-relational log-linear
graphical model. Whereas the in-database design philoso-
phy has been previously used for multi-relational inference,
we are the first to adapt it for multi-relational model struc-
ture learning. Pushing the graphical model inside the database
allows us to use SQL as a high-level scripting language for
SRL, with the following advantages.

1. Extensibility and modularity, which support rapid pro-
totyping. SRL algorithm development can focus on sta-
tistical issues and rely on a RDBMS for data access and
model management.

2. Increased scalability, in terms of both the size and the
complexity of the statistical objects that can be handled.

3. Generality and portability: standardized database opera-
tions support “out-of-the-box” learning with a minimal
need for user configuration.

1.3 Paper Organization

We provide an overview of the system components and flow.
For each component, we describe how the component is
constructed and managed inside an RDBMS using SQL scripts
and the SQL view mechanism. We show how the system
manages sufficient statistics and test instance predictions.
The evaluation section demonstrates the scalability advan-
tages of in-database processing. The intersection of machine
learning and database management has become a densely
researched area, so we end with an extensive discussion of
related work.

2 Background on Statistical-Relational Learning

We review background from statistical-relational models and
structure learning to motivate our system design. The exten-
sive survey by Kimmig et al. [18] provides further details.
The survey shows that SRL models can be viewed as log-
linear models based on par-factors, as follows. This includes
well-known models such as Markov Logic Networks [4] and
Parametrized Bayesian Networks [28,34]. This section gives
the general mathematical definitions for the concepts, equa-
tions, and computations required for log-linear models. The
main body of the paper describes how our FACTORBASE

system uses RDBMS capabilities and SQL to implement the
mathematical definitions.

2.1 Log-linear Template Models for Relational Data

Par-factor stands for “parametrized factor”. A par factor rep-
resents an interaction among parametrized random variables,
or par-RVs for short. We employ the following notation for
par-RVs [18, 2.2.5]. Constants are expressed in lower-case,
e.g. joe, and are used to represent entities. A type is associ-
ated with each entity, e.g. joe is a person. A first-order vari-
able is also typed, e.g. Person denotes some member of the
class of persons. A functor maps a tuples of entities to a
value. We assume that the range of possible values is finite.
An atom is an expression of the form r(τ1, . . . ,τa) where
each τi is either a constant or a first-order variable. If all
of τ1, . . . ,τa are constants, r(τ1, . . . ,τa) is a ground atom or
random variable (RV), otherwise a first-order atom or a par-
RV. A par-RV is instantiated to an RV by grounding, i.e.
substituting a constant of the appropriate domain for each
first-order variable.

A par-factor is a pair Φ = (A,φ), where A is a set of
par-RVs, and φ is a potential function from the values of
the par-RVs to the non-negative real numbers1. A factor as-
signment xA assigns a value to each par-RV in a parfactor.

1 A par-factor can also include constraints on possible groundings.
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The factor potential function maps each factor assignment
xA to a real number φ(xA).

A factor grounding assigns a constant to each first-order
variable in the par-RV set A; the result is a ground par-factor
A. Intuitively, a ground par-factor represents a set of random
variables that interact with each other locally. SRL models
use parameter tying, meaning that if two groundings of the
same par-factor are assigned the same values, they return the
same factor value. Let I (Φ) denote the set of all ground
par-RVs in par-factor Φ .

A relational log-linear model is defined by a set of par-
factors F . A set of parfactors F defines a joint probabil-
ity distribution over the ground par-RVs as follows. Let x
be a joint assignment of values to all ground random vari-
ables. Notice that this assignment determines the values of
all ground atoms. An assignment X = x is therefore equiv-
alent to a single database instance. The probability of a
database instance is given by the log-linear equation [18,
Eq.7]:

P(X = x) =
1
Z ∏

Φ=(A,φ)∈F
∏

A∈I (Φ)

φ(xA) (1)

where xA represents the values of those ground variables in
A that are necessary to compute φ , and Z is a normalization
constant. Equation 1 can be evaluated without enumerating
the ground par-factors, as follows.

1. For each par-factor Φ = (A,φ), for each possible factor
assignment xA, find the number of ground factors with
that assignment of values. This number of ground fac-
tors with the same assignment of values is known as a
sufficient statistic; we denote it by n(xA).

2. For each factor assignment, raise the potential function
value φ(xA) to the number n(xA) of ground factors that
instantiate it in the database X = x .

3. Multiply the exponentiated potential function values.

This procedure corresponds to the equation

P(X = x) =
1
Z ∏

Φ=(A,φ)∈F
∏
xA

φ(xA)n(xA) (2)

where the inner product runs over all possible factor as-
signments xA for the par-factor Φ . Notice that the set of
possible factor assigments does not depend on the data, and
is typically much smaller than the number of ground par-
factors I (Φ) indexed in the inner product of Equation 1.
Given the sufficient statistics n(xA), Equation 2 therefore
defines a computationally much more efficient method for
computing the same result as Equation 1. With finite floating-
point precision, large products give rise to 0 multiplication
issues. Therefore it is common to use the logarithmic ver-
sion of Equation 2, which defines the log-likelihood of a
database instance given a set of par-factors:

lnP(X = x) = ∑
(A,φ)∈F

∑
xA

n(xA) lnφ(xA)− ln(Z) (3)

Fig. 1 A relational ER design for a university domain.

Table 1 Tables in an example database instance

Student
s id intelligence ranking
Jack 3 1
Kim 2 1
Paul 1 2

Professor
p id popularity teachingability
Jim 2 1

Oliver 3 1
David 2 2

RA
s id p id salary capability
Jack Oliver High 3
Kim Oliver Low 1
Paul Jim Med 2
Kim David High 2

2.2 Examples

SRL has developed a number of formalisms for describing
par-factors [18]. First-order probabilistic graphical models
are popular both within SRL and the database community
[18,42]. The model structure is defined by edges connecting
par-RVs. For instance, a parametrized Bayesian network
structure is a directed acyclic graph whose nodes are par-
RVs. Figure 2 shows a Bayesian network for a University
domain.

We use the university example as a toy running example
throughout the paper. The schema for the university domain
is given in Figure 1. This schema features only one relation-
ship for simplicity; FACTORBASE learns a model for any
number of relationships. While we describe FACTORBASE

abstractly in terms of par-factors, for concreteness we illus-
trate it using Bayesian networks. The system takes as input
a database instance like that shown in Table 1, and produces
as output a graphical model like that shown in Figure 2.

A par-factor in a Bayesian network is associated with
a family of nodes [18, Sec.2.2.1]. A family of nodes com-
prises a child node and all of its parents. For example, in the
BN of Figure 2, one of the par-factors is associated with the
par-RV set A = {Capability(P,S),Salary(P,S),RA(P,S)}.
For the database instance of Table 1, there are 3× 3 = 9
possible ground factors associated with this par-RV, corre-
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Fig. 2 Bayesian network for the University domain. We omit the
Registered relationship for simplicity. The network was learned from
the University dataset [30].

Table 2 Conditional Probability table Capability(P,S) CPT , for the
node Capability(P,S). Only value combinations that occur in the data
are shown. CP tables are stored in an RDBMS. This is an example
of a factor table. The table represents a par-factor Φ = (A,φ), where
A= {Capability(P,S),RA(P,S),Salary(P,S)}. Each row specifies the
value of the factor potential function for one factor assignment. For
example, the first row shows that the potential function value for the
factor assignment xA = 〈n/a,F,n/a〉 is φ(xA) = 1.

Capa(P,S) RA(P,S) Salary(P,S) CP
n/a F n/a 1
4 T high 0.45
5 T high 0.36
3 T high 0.18
3 T low 0.2
2 T low 0.4
1 T low 0.4
2 T med 0.22
3 T med 0.44
1 T med 0.33

Table 3 Contingency Table Capability(P,S) CT for the node
Capability(P,S) and its parents, which define a par-factor set A =
{Capability(P,S),RA(P,S),Salary(P,S)}. CT tables are stored in an
RDBMS. A CT table represents counts in of ground factors (sufficient
statisics) in a database. For example, for the database of Table 1, the
first row shows that the number of groundings for the factor assignment
xA = 〈n/a,F,n/a〉 is n(xA) = 203.

Count Capa(P,S) RA(P,S) Salary(P,S)
203 n/a F n/a

5 4 T high
4 5 T high
2 3 T high
1 3 T low
2 2 T low
2 1 T low
2 2 T med
4 3 T med
3 1 T med

Table 4 To illustrate computing the log-likelihood of a database in-
stance according to Equation 3. Each row corresponds to a factor as-
signment xA. For each factor assignment, the equation requires multi-
plying the par-factor instantiation count, by the logarithm of the condi-
tional probability. For example, for the assignment xA = 〈n/a,F,n/a〉,
we multiply the count n(xA) = 203, obtained from Table 3, by the loga-
rithm of the conditional probability 1, obtained from Table 2. The value
of this product is shown in the column ln(CP)*Count (with 2 digits of
precision). Equation 3 sums the values of these products for each factor
assignment; in this example, the resulting sum ∑xA equals −26.42.

CP Count ln(CP)*
Count Capa(P,S) RA(P,S) Salary(P,S)

1 203 0.00 n/a F n/a
0.45 5 -3.99 4 T high
0.36 4 -4.09 5 T high
0.18 2 -3.43 3 T high
0.2 1 -1.61 3 T low
0.4 2 -1.83 2 T low
0.4 2 -1.83 1 T low
0.22 2 -3.03 2 T med
0.44 4 -3.28 3 T med
0.33 3 -3.33 1 T med

∑−26.42

sponding to the Cartesian product of 3 professors and 3 stu-
dents. The potential function φ is a function from an assign-
ment of family node values to a non-negative real number. In
a Bayesian network, the potential function value represents
the conditional probability of the child node value given its
parent node values. These conditional probabilities are typ-
ically stored in a table as shown in Table 2. This table repre-
sents therefore the potential function φ associated with the
family par-factor. Assuming that all par-RVs have finite do-
mains, a factor can always be represented by a factor table
of the form Table 2: there is a column for each par-RV in the
factor, each row specifies a joint assignment of values to a
par-RV, and the factor column gives the value of the poten-
tial function for that assignment (cf. [18, Sec.2.2.1]).

To evaluate a joint probability P(X = x) over all ground
par-RVs using Equation 1, we must obtain the sufficient statis-
tics: count the number of times that each row in the CP-table
is instantiated in the joint assignment X = x. The sufficient
statistics for the Capability(P,S) family can be represented
in a contingency table as shown in Table 3. For example, the
first row of the contingency table indicates that the conjunc-
tion

Capability(P,S) = n/a,Salary(P,S) = n/a,RA(P,S) = F

is instantiated 203 times in the University database (publicly
available at [30]). This means that for 203 professor-student
pairs, the professor did not employ the student as an RA (and
therefore the salary and capability of this RA relationship is
undefined or n/a).

Given a factor table for a par-factor, and a contingency
table that represents the number of groundings for each fac-
tor assignment, it is straightforward to carry out the summa-
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tion of Equation 3. Table 4 illustrates the summation for our
running example.

2.3 SRL Structure Learning

Algorithm 1 shows the generic format of a statistical-relational
structure learning algorithm (adapted from [18]). The in-
stantiation of procedures in lines 2, 3, 5 and 7 determines the
exact behavior of a specific learning algorithm. The struc-
ture algorithm carries out a local search in the hypothesis
space of graphical relational models. A set of candidates is
generated based on the current model (line 3), typically us-
ing a search heuristic. For each candidate model, parameter
values are estimated that maximize a model selection score
function chosen by the user (line 5). A model selection score
is computed for each model given the parameter values, and
the best-scoring candidate model is selected (line 7).

This concludes our overview of the mathematical def-
initions and algorithms required for learning a log-linear
model. Our FACTORBASE system uses RDBMS capabil-
ities and SQL to implement the mathematical definitions.
FACTORBASE supports model discovery for any log-linear
model based on parametrized factors, which covers the com-
mon log-linear template models used in statistical-relational
learning. The remainder of the paper discusses our system
design and how it supports model discovery algorithms that
follow the outline of Algorithm 1.

2.4 Overview of System Design

Figure 3 outlines the system components and dependencies
among them. These components correspond to the mathe-
matical definitions of Sections 2.1 and 2.3 as follows.

1. The variable manager constructs the basic set of parametrized
random variables, along with metadata required by the
learning algorithm (e.g., the possible values that each
par-RV can take). The parametrized random variables
and the metadata are extracted from the schema of the in-
put database. The definition of the par-RVs and the meta-
data are stored in tables in the random variable database
VDB. The construction of the random variable database
is described in Section 3 and in the Appendix.

2. The set of par-RVs and their metadata, represented in the
random variable database (implicitly) defines the space
of possible subsets of par-RVs. The count manager pro-
vides sufficient statistics for a list of par-RVs, counting
the number of times that an assignment of values for
the par-RVs is instantiated in the input database. These
sufficient statistics are stored in contingency tables (cf.
Table 3) in the Count Database CDB. The contingency
tables are used to compute probabilistic predictions by
evaluating Equation 3, and to support structure learning.

3. The model manager stores a log-linear model using ta-
bles in the Models Database MDB. A graph structure
specifies the sets of par-RVs that define a par-RV. In the
Bayes net example of Section 2.2, each Bayes net fam-
ily comprises a factor. The model manager stores the
graph structure in MDB tables. The potential functions
that specify the factor values are stored in factor tables
(cf. Table 2). The model manager supports general struc-
ture learning following the blueprint of Algorithm 1. The
computationally most demanding step is scoring candi-
date models (line 5), which requires learning parame-
ter values. The model manager provides parameter es-
timates in the form of factor tables, utilizing the count
manager. The model manager also provides other quan-
tities for computing a model score, such as the number
of parameters in a model and the sample size.

The following section describe the components and their
implementation in detail.

Algorithm 1: Structure learning algorithm template
Input: Hypothesis space H (describing graphical models),

training data D (assignments to random variables),
scoring function score (·, D)

Output: A graph structure G representing par-factors.
1: G← /0
2: while CONTINUE(G, H , score (·, D) ) do
3: R← REFINECANDIDATES(G,H )
4: for each R ∈R do
5: R← LEARNPARAMETERS(R,score (·, D))
6: end for
7: G← argmaxG′∈R∪{G} score(G′, D)
8: end while
9: return G

3 The Random Variable Database VDB

Figure 3 gives a brief summary of the random variable man-
ager. Statistical-relational learning requires various metadata
about the par-RVs in the model. These include the following.

Domain: the set of possible values of the par-RV.
Types: Pointers to the first-order variables in the par-RV.
Data Link: Pointers to the table and/or column in the input

database associated with the par-RV.

The metadata must be machine-readable. Following the in-
database design philosophy, we store the metadata in ta-
bles so that an SRL algorithm can query it using SQL. The
schema analyzer uses an SQL script that queries key con-
straints in the system catalog database and automatically
converts them into metadata stored in the random variable
database V DB. In contrast, existing SRL systems require
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Fig. 3 FactorBase Process Diagram. All statistical objects are stored as first-class citizens in an RDBMS. Statistical objects are constructed and
managed by three different modules. 1) The Variable Manager constructs the random variable database, using an SQL script that analyzes the input
database schema. 2) The Count Manager constructs contingency tables using the metadata in the VDB. The contingency tables are constructed
by count(*) queries, which themselves are constructed by SQL metaqueries. 3) The Model Manger constructs a relational graphical model with
parameter estimates. It applies a graphical model search algorithm (specified by the user), which is supported by the metadata in the VDB, and by
SQL queries against the contingency tables in the CDB.

users to specify information about par-RVs and associated
types. Thus FACTORBASE utilizes the data description re-
sources of SQL to facilitate the “setup task” for relational
learning [41]. We illustrate the general principles with the
entity-relationship (ER) diagram of the University domain
(Figure 1).

The translation of an ER diagram into a set of functors
converts each element of the diagram into a functor, except
for entity sets and key fields [13]. Table 5 illustrates this
translation. In terms of database tables, attribute par-RVs
correspond to columns. Relationship par-RVs correspond to
tables, not columns. Including a relationship par-RV in a
statistical model allows the model to represent uncertainty
about whether or not a relationship exists between two enti-
ties [18]. The values of descriptive attributes of relationships
are undefined for entities that are not related. We represent
this by introducing a new constant n/a in the domain of a
relationship attribute [22]; see Table 7. Table 6 shows the
schema for some of the tables that store metadata for each
relationship par-RV, as follows. par-RV and FO-Var are cus-
tom types.

Relationship: The associated input data table.
Relationship Attributes: Descriptive attributes associated with

the relationship and with the entities involved.
Relationship FOVariables: The first-order variables contained

in each relationship par-RV.2

While we have described constructing the variable database
for an ER model, different structured data models can be
represented by an appropriate first-order logic vocabulary

2 The schema assumes that all relationships are binary.

Table 5 Translation from ER Diagram to Par-RVs

ER Diagram Example par-RV equivalent
Entity Set Student, Course S,C
Relationship Set RA RA(P,S)
Entity Attributes intelligence, ranking Intelligence(S), Ranking(S)
Relationship Attributes capability, salary Capability(P,S), Salary(P,S)

Table 6 Selected Tables In the Variable Database Schema.

Table Name Column Names
Relationship RVarID: par-RV, TABLE NAME: string
Relationship Attributes RVarID: par-RV, AVarID: par-RV, FO-ID: FO-Var
Relationship FOvariables RVarID: par-RV, FO-ID1: FO-Var, FO-ID2: FO-Var

Table 7 The metadata about attributes represented in VDB database
tables. The table Domain lists the domain for each functor. The table
AttributeColumns specifies which tables and columns contain the func-
tor values observed in the data. The column name is also the functor
ID.

Domain
Column Name Value
capability 1
capability 2
capability 3
capability n/a
diff 1
diff 2
grade 1
grade 2
grade 3
grade n/a

AttributeColumns
Table Name Column Name
course diff
course rating
prof popularity
prof teachingability
RA capability
RA salary
registration grade
registration sat
student intelligence
student ranking

[18], that is, an appropriate choice of functors. For exam-
ple, in a star schema, facts can be represented in the form
f (D1, . . . ,Dk), where the first-order variable Di ranges over
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the primary key of dimension table i. Attributes of dimen-
sion i can be represented by a unary functor a(Di). FAC-
TORBASE can perform structure learning for different data
models after the corresponding data format has been trans-
lated into the VDB format.

Computational Complexity. While extracting the metadata
involves a number of steps, computationally it is essentially
just reformating the primary and foreign key information,
requiring only a linear pass over the database schema cat-
alog. Finding the number of possible values for a par-RV
needs only a linear pass over each database input table.

4 The Count Manager CDB

Figure 3 above gives a brief summary of the count man-
ager and its connection to the other system components.
The count database CDB stores a set of contingency ta-
bles. Contingency tables represent sufficient statistics as fol-
lows [23]. Consider a fixed list of par-RVs. A query is an as-
signment comprising (variable = value) pairs, where each
value is of a valid type for the variable. The result set of a
query in a database D is the set of instantiations of the logi-
cal variables such that the query evaluates as true in D . For
example, in the database of Table 1, the result set for the
query RA(P,S) = T, Capability(P,S) = 3, Salary(P,S) =
high is the singleton {〈jack,oliver〉}. The count of a query
is the cardinality of its result set.

Every set of par-RVs A≡ {A1, . . . ,An} has an associated
contingency table (CT) denoted by CT(A). This is a table
with a row for each of the possible assignments of values to
the variables in V, and a special integer column called count.
The value of the count column in a row corresponding to
A1 = x1, . . . ,An = xn records the count of the corresponding
query. Table 3 showed a contingency table for the par-RVs
RA(P,S), Capability(P,S), Salary(P,S). The contingency
table problem is to compute a contingency table for par-
RVs A and an input database D .

SQL Implementation With Metaqueries. We describe how
the contingency table problem can be solved using SQL.
This is relatively easy for a fixed set of par-RVs; the chal-
lenge is a general construction that works for different sets
of par-RVs. For a fixed set, a contingency table can be com-
puted by an SQL count(*) query of the form

CREATE VIEW CT-table(<VARIABLE-LIST>) AS

SELECT COUNT(*) AS count, <VARIABLE-LIST>

FROM TABLE-LIST

GROUP BY VARIABLE-LIST

WHERE <Join-Conditions>

FACTORBASE uses SQL itself to construct the count-
conjunction query. We refer to this construction as an SQL

metaquery. We represent a count(*) query in four kinds of
tables: the Select, From, Where and Group By tables. Each
of these tables lists the entries in the corresponding count(*)
query part. Given the four metaquery tables, the correspond-
ing SQL count(*) query can be easily constructed and exe-
cuted in an application to construct the contingency table.
Given a list of par-RVs as input, the metaquery tables are
constructed as follows from the metadata in the database
VDB.

FROM LIST: Find the tables referenced by the par-RV’s. A
par-RV references the entity tables associated with its
first-order variables (Table Relationship FOvariables in
VDB). Relational par-RV’s also reference the associated
relationship table (see Table Relationship in VDB).

WHERE LIST: Add join conditions on the matching pri-
mary keys of the referenced tables in the WHERE clause.
The primary key columns are recorded in VDB.

SELECT LIST: For each attribute par-RV, find the corre-
sponding column name in the original database (Table
AttributeColumns in the VDB). Rename the column with
the ID of the par-RV. Add a count column.

GROUP BY LIST: The entries of the Group By table are
the same as in the Select table without the count column.

Table 8 shows an example of a metaquery for the uni-
versity database. This metaquery defines a view that in turn
defines a contingency table for the random variable list as-
sociated with the relationship table RA. This list includes the
entity attributes of professors and of students, as well as the
relationship attributes of the RA relationship. The Bayesian
network of Figure 2 was learned from this contingency ta-
ble. The contingency table defined by the metaquery of Ta-
ble 8 contains only rows where the value of RA is true. The
Möbius Virtual Join [31] can be used to extend this contin-
gency table to include counts for when RA is false (as illus-
trated in Table 3).

Computational Complexity. Executing the views created by
the metaqueries requires only a linear pass over the metadata
in the Random Variable Database, which are stored in small
tables. The metaqueries do not require access to the original
data. The computationally demanding part is executing the
Count(*) queries to build the contingency tables. The com-
plexity of count(*) queries is well analyzed and depends on
the algorithm and file organization used; for a textbook dis-
cussion see [33, Ch.12]. We will give a highly simplified
analysis, that is however sufficient to assess the cost of this
FACTORBASE component relative to others, and to highlight
the scalability bottlenecks. Conceptually, the Count(*) oper-
ation needs to join the tables listed in the FROM clause, then
compute aggregate counts for each group. In our setting, a
group is defined by a list of values for a set of par-RVs. Our
analysis uses the following parameters.
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Table 8 Example of metaqueries and their results based on university database and the par-RV metadata (Table 6)

Metaqueries Entries
CREATE VIEW Select List AS
SELE RVarID, CONCAT(‘COUNT(*)’, ‘ AS ‘ “COUNT” ’) AS Entries
FROM VDB.Relationship UNION DISTINCT
SELECT RVarID, AVarID as Entries
FROM VDB.Relationship Attributes;

COUNT(*) AS “count”
'Popularity(P)'
'Teachingability(P)'
'Intelligence(S)'
'Ranking(S)'

CREATE VIEW From List AS
SELECT RVarID, CONCAT (‘@database@.’,TABLE NAME) AS Entries
FROM VDB.Relationship FOvariables UNION DISTINCT
SELECT RVarID, CONCAT(‘@database@.’,TABLE NAME)
AS Entries FROM VDB.Relationship;

@database@.prof AS P

@database@.student AS S

@database@.RA AS 'RA'

CREATE VIEW Where List AS
SELECT RVarID, CONCAT(RVarID,‘.’, COLUMN NAME, ‘=’,
FO ID, ‘.’, REFERENCED COLUMN NAME) AS Entries
FROM VDB.Relationship FOvariables;

'RA'.p id = P.p id

'RA'.s id = S.s id

1. t is the number of tables to be joined.
2. r is the maximum number of rows in each table.
3. n is the number of parametrized random variables for

which the contingency table is to be built.
4. d is the maximum number of values for each par-RV in

the GROUP BY clause (i.e., the maximum domain size).

An efficient general algorithm for evaluating aggregate
operator queries is the sort-merge join, with the following
analysis [33, Ch.12]. First, sort the join tables on the join
condition (WHERE clause), then merge them with a single
pass over each table. Assuming that enough memory buffer
pages are available, sorting can be done in

O(t× r× log(r))

time steps. Once the join tables are sorted on the join fields,
finding tuples matching the join condition can be done through
scanning the tables, finding matching tuples, and increment-
ing the count for the corresponding group. The number of
scans required depends on how many matching tuples there
are. A simple lower bound can be obtained by considering
the output size, since at a minimum we need one time step
to write out an aggregate count. If all possible combinations
of par-RV values appear in the data at least once, the contin-
gency table will contain O(dn) tuples, the size of the cross-
product of par-RV domains. So the overall worst-case com-
plexity can be estimated as

O(t× r× log(r)+dn).

The key point from this analysis is that contingency table
computation is scalable as long as the number of columns n
in the contingency table is small.

5 The Model Manager MDB: Parameter Learning

Figure 3 above gives a brief summary of the model man-
ager and its connection to the other system components. The

Model Manager provides three key services for statistical-
relational structure learning. In terms of Algorithm 1:

1. Estimating and storing parameter values (line 5).
2. Computing one or more model selection scores (line 7).
3. Generating, scoring, and storing candidate model struc-

tures (line 3).

FACTORBASE uses a store+score design for these ser-
vices, which is illustrated in Figure 3 above. A model struc-
ture table represents a candidate model. When a candidate
model structure is inserted, a view uses the sufficient statis-
tics from a contingency table to compute a table of parame-
ter values. Another view uses the parameter values and suf-
ficient statistics together to compute the score for the candi-
date model.

5.1 MDB tables for Parameter Learning

The relational schema for the tables that support parameter
learning is shown in Table 9. The @par-RVID@ parameter
refers to the ID of a par-RV, for instance Capability(P,S).
The model manager stores a set of factor tables (cf. Sec-
tion 2.2). In a graphical model, each factor is defined by
the local topology of the model template graph. For con-
creteness, we illustrate how factor tables can be represented
for Bayesian networks. The graph structure can be stored
straightforwardly in a database table BayesNet whose columns
are child and parent. The table entries are the IDs of par-
RVs. For each node, the MDB manages a conditional proba-
bility table. This is a factor table that represents the factor as-
sociated with the node’s family (as was shown in Table 2). In
a Bayesian network, model selection scores are decompos-
able. This means that there is a local score associated with
each family, such that the total score for the BN model is the
sum of the local scores. For each family, the local score is
stored in the Scores table indexed by the family’s child node.
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Table 9 The main tables in the Models Database MDB. For a Bayesian network, the MDB stores its structure, parameter estimates, and model
selection scores.

BayesNet(child:par-RV,parent:par-RV)
@par-RVID@ CPT(@par-RVID@:par-RV,parent1:par-RV,. . . ,parentk:par-RV,cp:real)
Scores(child:par-RV,loglikelihood:real,#par:int,aic:real)

5.2 Parameter Learning

Deriving predictions from a model requires estimating val-
ues for its parameters. Maximizing the data likelihood is the
basic parameter estimation method for Bayesian networks.
The maximum likelihood estimates equal the observed fre-
quency of a child value given its parent values.

SQL Implementation With Natural Join. Given the sufficient
statistics in a contingency table, a conditional probability
table containing the maximum likelihood estimates can be
computed by aggregation using SQL as in the example be-
low.

SELECT count/temp.parent count as CP,

Capability(P,S), RA(P,S), Salary(P,S)

FROM Capability(P,S) CT

NATURAL JOIN

(SELECT sum(Count) as parent count,

RA(P,S), Salary(P,S)

FROM Capability(P,S) CT

GROUP BY RA(P,S), Salary(P,S) ) as temp

5.3 Model Score Computation

A typical model selection approach is to maximize the like-
lihood of the data, balanced by a penalty term. For instance,
the Akaike Information Criterion (AIC) is defined as follows

AIC(G,D)≡ ln(PĜ(D))−#par(G)

where Ĝ is the BN G with its parameters instantiated to be
the maximum likelihood estimates given the database D ,
and #par(G) is the number of free parameters in the struc-
ture G. The number of free parameters for a node is the prod-
uct of (the possible values for the parent nodes)× (the num-
ber of the possible values for the child node -1). Given the
likelihood and the number of parameters, the AIC column is
computed as AIC = loglikelihood− #par. Model selection
scores other than AIC can be computed in a similar way
given the model likelihood and number of parameters.

5.3.1 Parameter Number Computation

To determine the number of parameters of the child node
@parVar-ID@, the number of possible child and parent val-
ues can be found from the VDB.Domain table in the Random
Variable Database.

5.3.2 Likelihood Computation

As explained in Section 2.1, the log-likelihood can be com-
puted by multiplying the instantiation counts of a factor by
its value. Assuming that instantiation counts are represented
in a contingency table and factor values in a factor table, this
multiplication can be elegantly performed using the Natural
Join operator. For instance, the log-likelihood score associ-
ated with the Capability(P,S) family is given by the SQL
query below.

SELECT Capability(P,S), SUM

(MDB.Capability(P,S) CPT.cp *

CDB.Capability(P,S) CT.count)

AS loglikelihood

FROM MDB.Capability(P,S) CPT

NATURAL JOIN CDB.Capability(P,S) CT

The aggregate computation in this short query illustrates
how well SQL constructs support complex computations with
structured interrelated statistical objects.

Computational Complexity. As the SQL query shows, com-
puting conditional probability parameter values essentially
involves a natural join of a contingency table with (an ag-
gregated version of) itself. This can be done in time

O(rct × log(rct))

using sort-merge (as explained in Section 4) where rct is the
number of rows in the contingency table. Finding the num-
ber of parameter values is simply a product over the domain
sizes, which are stored in the VDB metadata. As the SQL
query shows, the likeihood computation involves a similar
join of a contingency table with a conditional probability ta-
ble. The key point is that once contingency tables have been
constructed, computing parameter values and model scores
has a nearly linear cost in the size of the contingency tables.

6 The Model Manager MDB: Structure Learning

For learning the structure of a parametrized Bayesian net-
work, we used FACTORBASE to implement the previously
existing learn-and-join algorithm (LAJ) [16,35]. The LAJ
algorithm follows the general structure learning schema of
Algorithm 1. It uses a sophisticated strategy for generating
candidate graphs (Line 3 of Algorithm 1) that exploits the
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lattice nesting of relational paths. The model search strategy
of the LAJ algorithm is an iterative deepening search for cor-
relations among attributes along longer and longer chains of
relationships. A similar strategy was proposed by Friedman
et al. [7]. We use the LAJ algorithm as our main example
because it is one of the most complex, and also one of the
most effective, relational structure learning algorithms. Our
discussion shows how the FACTORBASE components con-
struct and manage the statistical objects required by the LAJ
algorithm, by leveraging SQL capabilities. The previous im-
plementation of the LAJ algorithm posted at [30], limits the
par-factors so they contain at most two relationship par-RVs;
FACTORBASE overcomes this limitation.

6.1 The learn-and-join algorithm

The algorithm takes as input a database and a lattice of rela-
tionship chains. A chain represents a path template of con-
nected entities (a metapath in the terminology of [40]). The
algorithm learns a Bayesian network for each chain in the
lattice. The presence or absence of edges learned for shorter
chains is propagated to longer chains. The final output is
the Bayesian network associated with the longest relation-
ship chain. Figure 4 illustrates the learning strategy for our
running example. Algorithm 2 presents pseudocode; the fol-
lowing sections discuss the different components of the al-
gorithm in detail.

6.2 The Lattice of Relationship Chains

We represent sets of relationship par-RVs by lists without re-
peating elements. Assuming an ordering of relationship par-
RVs, a relationship set R = {R1(τ1), . . . ,Rk(τk)} translates
into a relationship list [R] = [R1(τ1), . . . ,Rk(τk)]. For order-
independent concepts we refer to sets rather than to lists. A
relationship list [R1(τ1), . . . ,Rk(τk)] is a chain if each func-
tor Ri+1(τi+1) shares at least one population variable with
the preceding terms R1(τ1), . . . ,Ri(τi).3 In the following we
use the set notation R for both chains and the associated
relationship set. For instance, in the University schema of
Figure 1, a relationship chain of length 2 is the list

[RA(P,S),Registered(S,C)]. (4)

A three-element chain is

[RA(P,S),Registered(S,C),TA(C,S)]. (5)

A relationship chain R is a subchain of another chain
R′, written RvR′, if every relationship par-RV in R occurs
also in R′. For example, the chain (4) is a subchain of the

3 Essentially the same concept is called a slot chain in PRM mod-
elling [9].

Algorithm 2: Learn-and-Join Structure Learning
Input: Database D ; parametrized random variables F ;

relationship chain lattice L with maximum chain
length m.

Output: A Bayes multi-net BR for relationship chains in L .
Calls BNL: Any propositional Bayes net learner that accepts
edge constraints and a single table of cases as input.

Notation: BNL(T,Econstraints) is the output DAG of the Bayes
net learner given data table T and edge constraints.

1: for each entity type E do {compute BN for each entity type}
2: TE := the contingency table for the attribute nodes of E
3: BE := BNL(TE, /0)
4: end for
5: for each relationship node R do {compute BN for each

relationship node}
6: Find constraintsR propagated from entity BNs {Constraint 1}
7: TR := CT(Vars(R) {the contingency table for the nodes

associated with R}
8: BR := BNL(TR,constraintsR)
9: end for

10: for chain length `← 2,3, . . . ,m do
11: for each chain R of length ` do
12: Find constraintsR propagated from shorter chains R∗ ⊂ R

{Constraint 2}
13: TR := CT(Vars(R) {the contingency table for the nodes

associated with R}
14: BR := BNL(TR,constraintsR)
15: end for
16: end for

chain (5). Two chains are equivalent in case they contain the
same relationship variables. The relationship lattice con-
tains a representative chain from each equivalence class. A
representative chain for a set of relationship variables can be
generated using any fixed order on relationship variables. In
the following we do not distinguish between a relationship
chain and its equivalence class unless there is risk of confu-
sion. The subchain relation v defines a lattice on (equiva-
lence classes of) relationship chains. Figure 5 illustrates the
lattice for the relationship nodes in the University schema
of Figure 2. For reasons that we explain below, entity tables
are also included in the lattice and linked to relationships
that involve the entity in question.

6.3 The Bayesian Multinet

Each chain in the lattice corresponds to a subset R of re-
lationship variables. Associated with the chain is a set of
par-RVs Vars(R), comprising the following:

– All relationship par-RVs in R.
– Each attribute par-RV associated with a relationship par-

RV in R.

For each chain R, the learn-and-join algorithm learns a
Bayesian network BR whose nodes comprise the set Vars(R).
This network is learned from the contingency table CT(Vars(R)).
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Fig. 4 Overview of the learn-and-join hierarchical structure learning method. The hierarchy is shown for two relationships, Registered and RA.
For each relationship chain, SQL meta queries compute a contingency table. Solid block lines: The inclusion relations among points in the
relationship chain lattice. Solid arrows: For each relationship chain, a single table Bayesian network learner constructs a Bayesian network,
given the contingency table for each relationship chain. Dashed lines: The absence and presence of Bayesian network edges learned for a shorter
relationship chain are propagated as constraints for learning for a longer relationship chain.

The lattice structure defines a multinet rather than a sin-
gle Bayes net. Multinets are a classic Bayes net formalism
for modelling context-sensitive dependencies among vari-
ables. Geiger and Heckerman contributed a standard refer-
ence article for the multinet formalism [8]. In the learn-and-
join algorithm, the context of a multinet is defined by a chain
of relationship functor nodes. Distinguishing these different
contexts allows us to represent that the existence of certain
dependencies among attributes of entities depend on which
kind of links exist between the entities. The final output of
the learn-and-join algorithm is a single Bayes net derived
from the multinet.

6.4 Edge Inheritance In the Relationship Lattice

These constraints state that the presence or absence of edges
in graphs associated with join tables lower in the lattice is
inherited by graphs associated with join tables higher in the
lattice. The motivation for these constraints is that depen-
dencies should be assessed in the most specific context pos-
sible. The first constraint states that edges from an entity ta-
ble are inherited by relationship tables that involve the entity
in question.

Constraint 1 Let A be the first-order variable for an entity
type associated with entity table E. Let R be any relation-
ship set that contains the first-order variable A. Then the
Bayes net associated with R contains an edge f (A)→ g(A)
connecting two descriptive attributes of A if and only if the
Bayes net associated with E contains the edge f (A)→ g(A).

The second constraint states that edges learned on smaller
relationship sets are inherited by larger relationship sets. If
the smaller sets are ambiguous with regard to the direction of
an adjacency, the larger relationship set must contain the ad-
jacency; the direction is then resolved by applying Bayes net
learning to the larger relationship set. We write am expres-
sion such as f (τ) to denote a parametrized random variable
with functor f and first-order variables τ .

Constraint 2 Suppose that nodes f (τ),g(τ ′) appear in the
variables Vars(R). Then

1. If f (τ) and g(τ ′) are not adjacent in any DAG BR∗ asso-
ciated with a relationship subset R∗ ⊂ R, then f (τ) and
g(τ ′) are not adjacent in the graph associated with the
relationship set R.

2. Else if all subset graphs agree on the orientation of the
adjacency f (τ)− g(τ ′), the graph associated with the
relationship set R inherits this orientation.

3. Else the graph associated with the relationship set R.
must contain the edge f (τ)→ g(τ ′) or the edge f (τ)←
g(τ ′).

Examples. Figure 5 presents a trace of the LAJ algorithm
for part of our running example.

Constraint 1. The Bayes net for the entity type Professor
contains the edge Popularity(P)→Teaching ability(P). There-
fore the length 1 chain RA(P,S) is required to contain this
edge as well. The Bayes net graph for the entity type Course
does not contain the edge Difficulty(C)→ Level(C), so the
Bayes net for the length 1 chain Registered(S,C) must not
contain the edge Difficulty(C)→ Level(C).
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Table 10 Tables supporting structure learning

LatticeMember(Member:par-RV, Chain: rchain)
LatticeOrder(Subchain:rchain,SuperChain:rchain)
ChainBayesNets(Chain:rchain,child:par-RV,parent:par-RV)
RequiredEdges(Chain:rchain,child:par-RV,parent:par-RV)
ForbiddenEdges(Chain:rchain,child:par-RV,parent:par-RV)

Constraint 2. The Bayes net for the length 1 chain RA(P,S)
contains an edge Salary(P,S)→ Capability(P,S), and does
not contain Popularity(P)→ Salary(P,S). So for the length
2 chain Registered(S,C),RA(P,S), the edge Salary(P,S)→
Capability(P,S) is required. The edge Difficulty(C)→Level(C)

is forbidden. We next discuss how FACTORBASE leverages
SQL to implement the LAJ algorithm.

6.5 SQL Implementation

Table 10 shows the main tables that support Bayesian net-
work structure learning. These comprise two groups: Lattice
tables related to relationship chains and graph tables related
to edges among par-RVs.

Table 11 The Lattice tables

LatticeMember
Member Chain
RA(P,S) [RA(P,S), Registered(S,C) ]

Registered(S,C) [RA(P,S), Registered(S,C) ]

LatticeOrder
Subchain SuperChain
RA(P,S) [RA(P,S), Registered(S,C) ]

Registered(S,C) [RA(P,S), Registered(S,C) ]

6.5.1 Lattice Tables

The lattice tables support SQL access to the internal struc-
ture of a relationship chain: The LatticeMember table lists,
for each valid relationship chain, the relationship nodes that
are members of this chain. The LatticeOrder table lists for
each relationship chain, its immediate subchain. Table 11
shows the lattice tables for our running example. Concate-
nating the IDs for a relationship par-RV defines an ID for a
relationship chain. The relationship par-RVs are listed in the
Variable Database.

We generate IDs for valid relationship chains using an
application language outside of SQL. (Java in our system).
The space of possible relationship chains can be constructed
to reflect domain knowledge. In our experiments, we follow

the suggested default for the LAJ algorithm [35]: include
all relationship chains, of any length, that contain at most 3
first-order variables.

6.5.2 Graph Tables

For each relationship chain, a Bayesian network is stored
using the tabular representation described in Section 5. Ta-
ble 12 illustrates this representation in our running example.

Table 12 Tabular representation of the Bayesian multi-net from Fig-
ure 4. Top: Edges learned for the relationship chain RA(P,S). Bot-
tom: Edges learned for first-order variables Prof and Student. Bayes
net learning found no edges (correlations) for attributes of Courses. P
ranges over professors, S over students.

ChainBayesNets
Rchain child parent

RA(P,S) Capability(P,S) RA(P,S)
RA(P,S) Intelligence(S) RA(P,S)
RA(P,S) Popularity(P) RA(P,S)
RA(P,S) Popularity(P) Teachingability(P)
RA(P,S) Ranking(S) Intelligence(S)
RA(P,S) Salary(P,S) RA(P,S)
RA(P,S) Salary(P,S) Capability(P,S)

EntityBayesNets
FOVariable child parent
Prof Popularity(P) Teachingability(P)
Student Ranking(S) Intelligence(S)

For each relationship node (e.g. RA(P,S)), the Required
Edges are the edges learned for the associated FOVariables
(contained in the EntityBayesNets table). For each relation-
ship chain, the required edges are the union of learned edges
for shorter chains. Similarly for Forbidden Edges. Required
and forbidden edges are exported as constraints for Bayesian
network learning. Table 13 illustrates this representation.

The RequiredEdges table is implemented as a view shown
in Figure 6. The view mechanism automatically adds new
required edges when new learned edges are added to the
ChainBayesNets table. There is a similar view (not shown)
that adds forbidden edges, based on which edges are not
added to the ChainBayesNets table.

Computational Complexity. We have already discussed the
complexity of scoring a candidate model in Section 5.3.2.
We now consider how many candidate models are typically
generated during a local search. This topic is extensively
analyzed in the literature on graphical model learning [1].
As in previous sections, we present a simplified analysis
that focuses on comparing model generation to other aspects
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Fig. 5 Trace of the learn-and-join hierarchical structure learning method of Figure 4 for the University domain. The trace is shown for the
RA relationship only. For each relationship chain, the figure shows the complete Bayesian network structures learned, and excerpts from the
contingency tables. Notice that the edges learned for the Professor table and for the Student table are propagated to the Bayesian network for the
RA table.

Table 13 Required and Forbidden edges for the relationship chain
RA(P,S). Horizontal lines separate constraints for different relationship
chains. P ranges over professors, S over students, C over courses.

RequiredEdges
Rchain child parent

RA(P,S) Popularity(P) Teachingability(P)
RA(P,S) Ranking(S) Intelligence(S)

Reg.(S,C),
RA(P,S) Capability(P,S) Salary(P,S)

Reg.(S,C),
RA(P,S) Popularity(P) Teachingability(P)

Reg.(S,C),
RA(P,S) Popularity(P) Teachingability(P)

ForbiddenEdges
Rchain child parent

Reg.(S,C) Level(C) Difficulty(C)
Reg.(S,C) Difficulty(C) Level(C)

Reg.(S,C),
RA(P,S) Capability(P,S) Salary(P,S)

Reg.(S,C),
RA(P,S) Level(C) Difficulty(C)

Reg.(S,C),
RA(P,S) Difficulty(C) Level(C)

of FACTORBASE. Typical local search algorithms consider
only local operations such as adding or deleting an edge
at a time from the current Bayesian network. The GES al-
gorithm that we employ in our experiments starts with the
empty graph. In its forward stage, it considers only adding
edges. In its second backward stage, it considers only delet-
ing edges. Given n nodes (par-RVs), this means that at each
step, the search considers

(n
2

)
edge additions/deletions. The

maximum number of steps in each phase is
(n

2

)
, so the over-

CREATE VIEW RequiredEdges AS

SELECT DISTINCT

LatticeOrder.Superchain AS Rchain,

ChainBayesNets.child AS child,

ChainBayesNets.parent AS parent

FROM

ChainBayesNets,

LatticeOrder

WHERE

LatticeOrder.Subchain =

ChainBayesNets.Rchain

UNION

SELECT DISTINCT

RNodes pvars.rnid AS Rchain,

Entity BayesNets.child AS child,

Entity BayesNets.parent AS parent

FROM

RNodes pvars, Entity BayesNets

WHERE

RNodes pvars.pvid = Entity BayesNets.pvid

Fig. 6 SQL for a view that computes required edges from learned
edges stored in ChainBayesNets.

all number of candidates generated is O(
(n

2

)2
). So a loose

worst-case bound is O(n4). In practice, the number of steps
in each phase is much smaller, on the order of the number of
nodes [35], and the observed complexity is closer to

O(n×
(

n
2

)
).

The key point is that model structure algorithm scales well
in the number of parametrized random variables. Even for
non-relational data represented in a single data table, the
cost of computing sufficient statistics dominates model search [23].
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This is even more the case for relational data where suffi-
cient statistics require table joins with their potentially ex-
ponential cost.

This completes our description of how the modules of
FACTORBASE are implemented using SQL. We next show
how these modules support a key learning task: computing
the predictions of an SRL model on a test instance.

7 Test Set Predictions

Computing probabilities over the label of a test instance is
important for several tasks.

– Classifying the test instance, which is one of the main
applications of a machine learning system for end users.

– Comparing the class labels predicted against true class
labels is a key step in several approaches to model scor-
ing [18].

– Evaluating the accuracy of a machine learning algorithm
by the train-and-test paradigm, where the system is pro-
vided a training set for learning and then we test its pre-
dictions on unseen test cases.

We first discuss how to compute a prediction for a single
test case, then how to compute an overall prediction score
for a set of test cases. Class probabilities can be derived from
Equation 1 as follows [18, Sec.2.2.2]. Let Y denote a ground
par-RV to be classified, which we refer to as the target vari-
able. For example, a ground atom may be Intelligence(jack).
In this example, we refer to jack as the target entity. Write
x−Y for a database instance that specifies the values of all
ground par-RVs, except for the target, which are used to
predict the target node. Let [x−Y ,y] denote the completed
database instance where the target node is assigned value y.
The log-linear model uses the likelihood P([x−Y ,y]) as the
joint score of the label and the predictive features. The con-
ditional probability is proportional to this score:

P(y|x−Y) ∝ P([x−Y ,y]) (6)

where the joint distribution on the right-hand side is defined
by Equation 1, and the scores of the possible class labels
need to be normalized to define conditional probabilities.

SQL Implementation. The obvious approach to comput-
ing the log-linear score would be to use the likelihood com-
putation of Section 5.3 for the entire database. This is in-
efficient because only instance counts that involve the tar-
get entity change the classification probability. This means
that we need only consider query instantiations that match
the appropriate logical variable with the target entity (e.g.,
S = jack).

Assuming that for each node with ID @parRVID@, a
target contingency table named CDB.target @parRVID@ CT
has been built in the Count Database CDB, the log-likelihood

Table 15 Target contingency tables for target = jack and for target =
jill.

jack Capability (P,S) CT
sid Count Cap.(P,S) RA(P,S) Salary(P,S)

Jack 5 N/A N/A F
Jack 5 4 high T
. . . . . . . . . . . . . . .

jill Capability (P,S) CT
sid Count Cap.(P,S) RA(P,S) Salary(P,S)
Jill 3 N/A N/A F
Jill 7 4 high T
. . . . . . . . . . . . . . .

SQL is as in Section 5.3. For instance, the contribution of
the Capability(P,S) family is computed by the SQL query
shown, but with the contingency table jack Capability(P,S) CT
in place of Capability(P,S) CT. The new problem is finding
the target contingency table. SQL allows us to solve this eas-
ily by restricting counts to the target entity in the WHERE
clause. To illustrate, suppose we want to modify the con-
tingency table query of Table 8 to compute the contingency
table for S = jack. We add the student id to the SELECT
clause, and the join condition S.s id = jack to the WHERE
clause; see Table 14. The FROM clause is the same as in Ta-
ble 8. The metaquery of Table 8 is easily changed to produce
these SELECT and WHERE clauses.

Next consider a setting where a model is to be scored
against an entire test set. For concreteness, suppose the prob-
lem is to predict the intelligence of a set of students
Intelligence(jack), Intelligence(jill), Intelligence(student3),
. . . , Intelligence(studentm). An obvious approach is to loop
through the set of test instances, repeating the likelihood
query above for each single instance. Instead, SQL supports
block access where we process the test instances as a block.
Intuitively, instead of building a contingency table for each
test instance, we build a single contingency table that stacks
together the individual contingency tables (Table 15). Blocked
access can be implemented in a beautifully simple manner
in SQL: we simply add the primary key id field for the target
entity to the GROUP BY list; see Table 14.

8 Evaluation

Our experimental study describes how FACTORBASE can be
used to implement a challenging machine learning applica-
tion: Constructing a Bayesian network model for a relational
database. Bayesian networks are a good illustration of typ-
ical challenges and how RDBMS capabilities can address
them because: (1) Bayesian networks are widely regarded
as a very useful model in machine learning and AI, that sup-
ports decision making and reasoning under uncertainty. At
the same time, they are considered challenging to learn from
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Table 14 SQL queries for computing target contingency tables supporting test set prediction. <Attribute-List> and <Key-Equality-List> are as
in Table 8.

Access SELECT WHERE GROUP BY
Single COUNT(*) AS count, <Attribute-List>, S.sid <Key-Equality-List> AND S.s id = jack <Attribute-List>
Block COUNT(*) AS count, <Attribute-List>, S.sid <Key-Equality-List> <Attribute-List>, S.sid

data. (2) Database researchers have proposed Bayesian net-
works for combining databases with uncertainty [42]. (3) A
Bayesian network with par-RVs can be easily converted to
other first-order relational models, such as a Markov Logic
Network; see [4,36].

We describe the system and the datasets we used. Code
was written in MySQL Script and Java, JRE 1.7.0. and ex-
ecuted with 8GB of RAM and a single Intel Core 2 QUAD
Processor Q6700 with a clock speed of 2.66GHz (no hyper-
threading). The operating system was Linux Centos 2.6.32.
The MySQL Server version 5.5.34 was run with 8GB of
RAM and a single core processor of 2.2GHz. All code and
datasets are available on-line [30].

8.1 Datasets

We used six benchmark real-world databases. For detailed
descriptions and the sources of the databases, please see
[30] and the references therein. Table 16 summarizes ba-
sic information about the benchmark datasets. IMDb is the
largest dataset in terms of number of total tuples (more than
1.3M tuples) and schema complexity. It combines the Movie-
Lens database4 with data from the Internet Movie Database
(IMDb)5 following [27].

Table 16 Datasets characteristics. #Tuples = total number of tuples
over all tables in the dataset.

Dataset #Relationship
Tables/ Total # par-RV #Tuples

Movielens 1 / 3 7 1,010,051
Mutagenesis 2 / 4 11 14,540
UW-CSE 2 / 4 14 712
Mondial 2 / 4 18 870
Hepatitis 3 / 7 19 12,927
IMDb 3 / 7 17 1,354,134

Table 16 provides information about the number of par-
RVs generated for each database. More complex schemas
generate more random variables.

4 www.grouplens.org, 1M version
5 www.imdb.com, July 2013

8.2 Bayesian Network Learning

We applied to each dataset our new SQL-based implemen-
tation of the LAJ algorithm described in Section 6.

A major design decision is how to make sufficient statis-
tics available to the LAJ algorithm. In our experiments we
followed a pre-counting approach where the count manager
constructs a joint contingency table for all par-RVs in the
random variable database. An alternative would be on-demand
counting, which computes many contingency tables, but only
for factors that are constructed during the model search [21].
Pre-counting is a form of data preprocessing: Once the joint
contingency table is constructed, local contingency tables
can be built quickly by summing (Group By). Different struc-
ture learning algorithms can therefore be run quickly on
the same joint contingency table. For our evaluation, pre-
counting has several advantages.

– Constructing the joint contingency table presents a max-
imally challenging task for the count manager.

– Separating counting/data access from model search al-
lows us to assess separately the resources required for
each task.

Limitations of pre-counting. Although a pre-counting ap-
proach has advantages and is suitable for evaluating FAC-
TORBASE, it presents a scalabilty bottleneck. As our anal-
ysis showed above, the worst-case complexity of comput-
ing a contingency table scales as O(dn), the possible num-
ber of sufficient statistics. Therefore pre-counting does not
scale to larger numbers of par-RVs n. In database terms, it
does not scale to databases with many columns. On-demand
counting may help; a rough complexity analysis will illus-
trate the payoffs. The motivation for on-demand counting is
the observation that Bayes net learning typically introduces
a small number of parents only that can be treated as a con-
stant k (Lv et al. suggest that k is typically 4 [21]). In the
worst-case, on-demand counting needs to construct n×

(n
k

)
different contingency tables, one for each node and for each
possible parent set of size k. Each of these contingency ta-
bles contains at most dk+1 sufficient statistics (rows), so the
overall number of sufficient statistics that need to be man-
aged is bounded by

O(n×
(

n
k

)
×dk+1),
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compared to O(dn) for the pre-counting approach. Thus on-
demand counting computes a polynomial number of small
contingency tables, whereas pre-counting computes a single
exponential-size contingency table.

8.3 Results

Table 17 reports the number of sufficient statistics for con-
structing the joint contingency table. This number depends
mainly on the number of par-RVs. The number of suffi-
cient statistics can be quite large, over 15M for the largest
dataset IMDb. Even with such large numbers, constructing
contingency tables using the SQL metaqueries is feasible,
taking just over 2 hours for the very large IMDb set. The
number of Bayesian network parameters is much smaller
than the number of sufficient statistics. The difference be-
tween the number of parameters and the number of suffi-
cient statistics measures how compactly the BN summarizes
the statistical information in the data. Table 17 shows that
Bayesian networks provide very compact summaries of the
data statistics. For instance for the Hepatitis dataset, the ratio
is 12,374,892/569 > 20,000. The IMDb database is an out-
lier, with a complex correlation pattern that leads to a dense
Bayesian network structure.

Table 17 Count Manager: Sufficient Statistics and Parameters

Dataset # Database
Tuples

# Sufficient
Statistics (SS)

SS
Computing
Time (s)

#BN
Parameters

Movielens 1,010,051 252 2.7 292
Mutagenesis 14,540 1,631 1.67 721
UW-CSE 712 2,828 3.84 241
Mondial 870 1,746,870 1,112.84 339
Hepatitis 12,927 12,374,892 3,536.76 569
IMDb 1,354,134 15,538,430 7,467.85 60,059

Table 18 shows that the graph structure of a Bayesian
network contains a small number of edges relative to the
number of parameters. The model manager provides fast
maximum likelihood estimates for a given structure. This is
because computing a local contingency table for a BN fam-
ily is fast given the joint contingency table.

Table 18 Model Manager Evaluation.

Dataset # Edges in
Bayes Net

# Bayes Net
Parameters

Parameter
Learning
Time (s)

Movielens 72 292 0.57
Mutagenesis 124 721 0.98
UW-CSE 112 241 1.14
Mondial 141 339 60.55
Hepatitis 207 569 429.15
IMDb 195 60,059 505.61

Figure 7 compares computing predictions on a test set
using an instance-by-instance loop, with a separate SQL query
for each instance, vs. a single SQL query for all test in-
stances as a block (illustrated in Table 14). Table 19 specifies
the number of test instances for each dataset. We split each
benchmark database into 80% training data, 20% test data.
The test instances are the ground atoms of all descriptive
attributes of entities. The blocked access method is 10-100
faster depending on the dataset. The single access method
did not scale to the large IMDb dataset (timeout after 12
hours).

Fig. 7 Times (s) for Computing Predictions on Test Instances. The
right white column shows the time for looping over single instances us-
ing the Single Access Query of Table 14. The left black column shows
the time for the Blocked Access Query of Table 14.

Table 20 reports result for the complete learning of a
Bayesian network, structure and parameters. It benchmarks
FACTORBASE against functional gradient boosting, a state-
of-the-art multi-relational learning approach [24]. Functional
gradient boosting learns models with highly competitive pre-
dictive accuracy, and it is the only structure learning sys-
tem that scales to the relatively large datasets we use in
this study (besides the LAJ method). MLN Boost learns a
Markov Logic Network, and RDN Boost a Relational De-
pendency Network. We used the Boostr implementation [17].
To make the results easier to compare across databases and
systems, we divide the total running time by the number of
par-RVs for the database (Table 16). Table 20 shows the to-
tal runtimes for the different methods. FB-Total is the run-
time for our FACTORBASE implementation of the LAJ al-
gorithm. We separately report the cost of pre-computing the
large contingency table in the last FB-Count column. The ta-
ble shows that structure learning with FACTORBASE is fast:
even the large complex database IMDb requires only around
8 minutes/par-RV. Compared to the boosting methods, FAC-
TORBASE shows excellent scalability: neither boosting method
terminates on the IMDb database, and while RDN Boost
terminates on the MovieLens database, it is almost 5,000
times slower than FACTORBASE. Much of the speed of our
implementation is due to quick access to sufficient statis-
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Table 19 # of Test Instances

Dataset Movielens Mutagenesis UW-CSE Mondial Hepatitis IMDb
#instance 4,742 3,119 576 505 2,376 46,275

tics. As the last FB-Count column of Table 20 shows, on
the larger datasets FACTORBASE spends about 80% of com-
putation time on gathering sufficient statistics via the count
manager. This suggests that a large speedup for the boosting
algorithms could be achieved if they used the FACTORBASE

in-database design for managing sufficient statistics.
We do not report detailed accuracy results because pre-

dictive accuracy is not the focus of this paper. On the stan-
dard conditional log-likelihood metric, as defined by Equa-
tion 6, the model learned by FACTORBASE performs better
than the boosting methods on all databases. This is consis-
tent with the results of previous studies [35].

Table 20 Learning Time Comparison (sec) with other statistical-
relational learning systems. NT = non-termination

Dataset RDN Boost MLN Boost FB-Total FB-Count
MovieLens 5,562 N/T 1.12 0.39
Mutagenesis 118 49 1 0.15
UW-CSE 15 19 1 0.27
Mondial 27 42 102 61.82
Hepatitis 251 230 286 186.15
IMDb N/T N/T 524.25 439.29

Conclusion. FACTORBASE leverages RDBMS capabili-
ties for scalable management of statistical analysis objects.
It efficiently constructs and stores large numbers of suffi-
cient statistics and parameter estimates. The RDBMS sup-
port for statistical-relational learning translates into orders
of magnitude improvements in speed and scalability.

9 Related Work

The design space for combining machine learning with data
management systems offers a number of possibilities, sev-
eral of which have been explored in previous and ongoing
research. We selectively review the work most relevant to
our research. Figure 8 provides a tree structure for the re-
search landscape.

9.1 Single-Table Machine Learning

Most machine learning systems, such as Weka or R, support
learning from a single table or data matrix only. The single-
table representation is appropriate when the data points rep-
resent a homogeneous class of entities with similar attributes,
where the attributes of one entity are independent of those
of others [18]. The only way a single-table system can be

Fig. 8 A tree structure for related work in the design space of machine
learning × data management

applied to multi-relational data is after an extract-transform-
load preprocessing step where multiple interrelated tables
are converted to a single data table. When the learning task
is classification, such preprocessing is often called proposi-
tionalization [18]. This “flattening” of the relational struc-
ture typically involves a loss of information. The Clowd-
Flows system [20] allows a user to specify a MySQL database
as a data source, then converts the MySQL data to a single-
table representation using propositionalization.

9.1.1 RDBMS Learning

Leveraging RDBMS capabilities through SQL programming
is the unifying idea of the recent MADLib framework [14].
An advantage of the MADLib approach that is shared by
FACTORBASE is that in-database processing avoids export-
ing the data from the input database. The Apache Spark [2]
framework includes MLBase and SparkSQL that provide
support for distributed processing, SQL, and automatic re-
finement of machine learning algorithms and models [19].
Other RDBMS applications include gathering sufficient statis-
tics [12], and convex optimization [6]. The MauveDB sys-
tem [3] emphasizes the importance of several RDBMS fea-
tures for combining statistical analysis with databases. As in
FACTORBASE, this includes storing models and associated
parameters as objects in their own right, and using the view
mechanism to update statistical objects as the data change. A
difference is that MauveDB presents model-based views of
the data to the user, whereas FACTORBASE presents views
of the models to machine learning applications.
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9.1.2 RDBMS Inference

Wong et al. applied SQL operators such as the natural join
to perform log-linear inference with a single-table graphi-
cal model [44] stored in an RDBMS. Monte Carlo methods
have also been implemented with an RDBMS to perform in-
ference with uncertain data [15,43]. The MCDB system [15]
stores parameters in database tables like FACTORBASE.

9.2 Multi-Relational Learning

For overviews of multi-relational learning please see [4,10,
18]. Most implemented systems, such as Aleph and Alchemy,
use a logic-based representation of data derived from Pro-
log facts that originated in the Inductive Logic Programming
community [5].

9.2.1 RDBMS Learning

Singh and Graepel [39] present an algorithm that analyzes
the relational database system catalog to generate a set of
nodes and a Bayesian network structure. This approach uti-
lizes SQL constructs as a data description language in a way
that is similar to our Schema Analyzer. Differences include
the following. (1) The Bayesian network structure is fixed
and based on latent variables, rather than learned for observ-
able variables only, as in our case study. (2) The RDBMS
is not used to support learning after random variables have
been extracted from the schema.

Qian et al. [31] discuss work related to the contingency
table problem and introduce contingency table algebra. Their
paper focuses on a Virtual Join algorithm for computing suf-
ficient statistics that involve negated relationships. They do
not discuss integrating contingency tables with other struc-
tured objects for multi-relational learning.

Quakkelaar [32] builds on the FACTORBASE system by
leveraging database technology such as dynamic views to
increase the efficiency of computing contingency tables and
parameter values.

9.2.2 RDBMS Inference

Database researchers have developed powerful probabilistic
inference algorithms for multi-relational models. The BayesStore
system [42] introduced the principle of treating all statisti-
cal objects as first-class citizens in a relational database as
FACTORBASE does. The Tuffy system [25] achieves highly
reliable and scalable inference for Markov Logic Networks
(MLNs) with an RDBMS. It leverages inference capabili-
ties to perform MLN parameter learning. RDBMS support
for local search parameter estimation procedures, rather than
closed-form maximum-likelihood estimation as in our case
study, has also been explored [6,25,26].

10 Conclusion and Future Work

Compared to traditional learning with a single data table,
learning for multi-relational data requires new system ca-
pabilities. In this paper we described FACTORBASE, a sys-
tem that leverages the existing capabilities of an SQL-based
RDBMS to support statistical-relational learning. FACTOR-
BASE supports model discovery for any log-linear model
based on parametrized factors, which covers the common
log-linear template models used in statistical-relational learn-
ing. Representational tasks include specifying metadata about
structured parametrized random variables, and storing the
structure of a learned model. Computational tasks include
storing and constructing sufficient statistics, and computing
parameter estimates and model selection scores. We showed
that SQL scripts can be used to implement these capabilities,
with multiple advantages. These advantages include:

– Fast program development through high-level SQL con-
structs for complex table and count operations.

– Managing large and complex statistical objects that are
too big to fit in main memory. For instance, some of our
benchmark databases require storing and querying mil-
lions of sufficient statistics.

While FACTORBASE provides good solutions for each
of these system capabilities in isolation, the ease with which
large complex statistical-relational objects can be integrated
via SQL queries is a key feature. Empirical evaluation on
six benchmark databases showed significant scalability ad-
vantages from utilizing the RDBMS capabilities: Both struc-
ture and parameter learning scaled well to millions of data
records, beyond what previous multi-relational learning sys-
tems can achieve.

Future Work. FACTORBASE opens a number of avenues
for future work, such as exploring alternative designs with
different trade-offs, and developing challenging applications.

Alternative Designs. The scalability bottleneck in our
current system is the number of parametrized random vari-
ables (columns in the input database). This limitation is not
due to an inherent limitation of FACTORBASE but arises be-
cause we used FACTORBASE with a pre-counting design
that requires computing an exponential-size contingency ta-
ble before model search. An alternative would be on-demand
counting [21], which computes polynomially many small
contingency tables. On-demand counting raises the issue of
how to construct and manage many contingency tables, and
how to store and cache them to be reused as much as possi-
ble. Extending our in-database design to many contingency
tables offers a promising approach to this challenge.

Our current implementation leverages an RDBMS to store
statistical objects on disk, which minimizes the amount of
main memory required, but incurs latency through disk ac-
cesses. The Apache Spark [2] framework supports machine
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learning that leverages a main memory cluster (e.g. ML-
Base). Spark was designed to be SQL-friendly (e.g. Spark-
SQL), which makes it very suitable for our SQL-based ap-
proach. For example, the SQL queries and scripts we have
described can be used, with minimal modifications, to create
suitable Spark dataframes that represent factor tables, graph
structures, model scores etc. The portability of SQL to dif-
ferent system environments like Spark is one of the advan-
tages of FACTORBASE.

Applications. Further potential application areas for FAC-
TORBASE include managing massive numbers of aggregate
features for classification [29], and collective matrix fac-
torization [38,39]. There are opportunities for optimizing
RDBMS operations for the workloads required by statistical-
relational structure learning. These include view material-
ization and the key scalability bottleneck of computing multi-
relational sufficient statistics. NoSQL databases can exploit
a flexible data representation for scaling to very large datasets.
However, SRL requires count operations for random com-
plex join queries, which is a challenge for less structured
data representations. An important goal is a single RDBMS
package for both learning and inference that integrates FAC-
TORBASE with inference systems such as BayesStore and
Tuffy.
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A Appendix: The Random Variable Database Layout

We provide details about the Schema Analyzer. A complete SQL script
that implements the Schema Analyzer is available [37]. Table 21 shows
the relational schema of the Random Variable Database. Figure 9 shows
dependencies between the tables of this schema.
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tecture for in-RDBMS analytics. In: SIGMOD Conference, pp.
325–336 (2012)

7. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning prob-
abilistic relational models. In: IJCAI, pp. 1300–1309. Springer-
Verlag (1999)

8. Geiger, D., Heckerman, D.: Knowledge representation and infer-
ence in similarity networks and bayesian multinets. Artificial In-
telligence 82(1-2), 45–74 (1996)

9. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Proba-
bilistic relational models. In: Introduction to Statistical Relational
Learning [10], chap. 5, pp. 129–173

10. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learn-
ing. MIT Press (2007)

11. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using
probabilistic models. ACM SIGMOD Record 30(2), 461–472
(2001)



20 Oliver Schulte, Zhensong Qian

12. Graefe, G., Fayyad, U.M., Chaudhuri, S.: On the efficient gath-
ering of sufficient statistics for classification from large SQL
databases. In: KDD, pp. 204–208 (1998)

13. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-
relationship models, PRMs, and plate models. In: Getoor and
Taskar [10]
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