
Model Selection Scores for Multi-Relational Bayesian Networks∗
Extended Abstract for DeLBP Workshop at IJCAI 2017

Sajjad Gholami, Oliver Schulte
Simon Fraser University, Burnaby, Canada

{oschulte,sgholami}@cs.sfu.ca

Abstract
Many organizations maintain their data in a
relational database, which contains information
about entities, their attributes, relationships among
the entities, and attributes of the relationships.
Statistical-relational learning (SRL) aims to gen-
eralize traditional single-table machine learning
methods for multi-relational data. Many SRL
models are defined using a combination of graphs
and first-order logic. This lecture addresses the
task of learning the graph structure of a first-order
Bayesian network (BN). A key component of struc-
ture learning is a model selection score that mea-
sures how well a model fits a dataset. We introduce
a new method that generalizes for multi-relational
databases, a BN score designed for single-table
data. We present several applications that leverage
a learned model, such as modeling database statis-
tics, exception mining, and extracting features for
classification and anomaly detection.

1 Introduction: Relational Learning
Multi-relational databases in SQL format are very widely
used to store enterprise data. Relational data are also known
as network data, graph data, matrix data, and tensor data.
Traditional machine learning analyzes data represented in a
single table; such data can be viewed as a special limiting
case of multi-relational data with no relationships [Nickel
et al., 2016]. The field of statistical-relational learning
(SRL) aims to generalize single-table machine learning meth-
ods for multi-relational data; this is called upgrading the
method [Getoor and Taskar, 2007; Laer and de Raedt, 2001].
Application domains for statistical-relational models include
natural language processing, ontology matching, information
extraction, entity resolution, link-based clustering, query op-
timization, representing uncertainty in databases, etc [Domin-
gos and Richardson, 2007; Niu et al., 2011; Getoor et al.,
2001; Wang et al., 2008]. This lecture addresses the im-
portant SRL task of learning the structure of a first-order
Bayesian structure from a relational dataset. Our presentation
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describes several applications that leverage a learned model,
such as modeling database statistics, exception mining, and
extracting features for classification and anomaly detection.

The most common approach to BN structure learning is to
search for a structure that maximizes a model selection score
for a given dataset. Our companion paper [Schulte and Gho-
lami, 2017] introduces a general method for upgrading BN
model selection scores. This outline illustrates the method
for the case of likelihood-based scores, which take the form
(log-likelihood of data under model) - penalty(model, sample
size, #number parameters). The full paper defines the method
for BN scores in general, with more examples and references.

2 Background and Notation
We assume familarity with basic BN concepts such as DAGs
and conditional probability tables. We adopt a function-
based formalism for combining relational and statistical con-
cepts [Poole, 2003; Russell, 2015]. For a set of random vari-
ables X = {X1, . . . , Xn}, the notation P (X = x) ≡ P (x)
denotes the joint probability that each random variable Xi

takes on value xi.

Relational Data A multi-relational model is typically a
multi-population model. A population is a set of individu-
als of the same type (e.g., a set of Users , a set of Movies).
Individuals are denoted by constants (e.g., user3 ,thor ). A
k-ary functor, denoted f, f ′ etc., maps a tuple of k individ-
uals to a value from the functor’s domain. The arguments
of a functor are restricted to appropriate types. Throughout
the paper we assume complete data. A complete relational
database D specifies:

1. A finite sample population I1, I2 . . ., one for each type.
2. The values of each functor, for each input tuple of ob-

served sample individuals of the appropriate type.

Figure 1 shows a toy database. The example follows the
closed-world convention: if a relationship between two indi-
viduals is not listed, it does not obtain.

Relational Random Variables A population variable
ranges over a population, and is denoted in upper case such as
User ,Movie,A. A term is of the form f(τ1, . . . , τk) where
each τi is a population variable or a constant/individual of



Figure 1: Excerpt from a relational dataset/database.

Figure 2: Example First-Order Bayesian networks: left = B1 with
graph G1, right = B+

1 with graph G+
1 .

the appropriate type. A first-order random variable (FORV)
is a term with at least one population variable [Wang et al.,
2008]. A first-order Bayesian network (FOB) [Wang et al.,
2008], aka Parametrized BN [Kimmig et al., 2014], is a BN
whose nodes are FORVs. Figure 2 shows two FOBs. The
rating value is n/a (for “not applicable”) if and only if the
user has not rated the movie (cf. [Russell and Norvig, 2010]).
Throughout the paper, conditional probability estimates are
computed from the IMDb database.

The database frequency [Halpern, 1990] of an assignment
X = x is the number of satisfying groundings over the num-
ber of possible groundings:

PD(X = x) =
n [X = x;D]
N [X = x;D]

(1)

where n [X = x;D] denotes the number of satisfying
groundings that satisfy the assignment in database D, and
N [X = x;D] denotes the total number of possible ground-
ings of the variables in the list X .

Using the standard BN product formula, a FOB B repre-
sents a joint distribution over assignments to first-order ran-
dom variables, written PB(X = x). A model selection score
measures how well the model distribution PB fits the empiri-
cal or database distribution PD(X = x). Table 1 compares
database frequencies using the IMDb dataset to BN model
probabilities. The expanded BN B+

1 matches the database
distribution perfectly but at the cost of more parameters.

3 Relational Likelihood Score
A fundamental model score is the class likelihood function,
which measures how likely the data is given the model. In
previous work on parameter learning, [Xiang and Neville,
2011; Schulte, 2011], the log-likelihood score LL for i.i.d.

Table 1: The IMDb database frequency of a joint assignment to first-
order random variables, compared to the BN probabilities computed
using the network parameters of Figure 2.

X = x Age(User) = 0
Age(User) = 0 ,
Rating(User ,Movie) = 1

n [X = x;D] 376 2,524
N [X = x;D] 941 1,582,762
PD(X = x) 376/941 ≈ 0.3996 2, 524/1, 582, 762 ≈ 0.0016
PB1

(X = x) 0.3996 0.00297 · 0.3996 ≈ 0.0012
PB+

1
(X = x) 0.3996 0.00297 · 0.53692 ≈ 0.0016

data was upgraded by the normalized log-likelihood score
NLL. The NLL score can be computed in closed-form given
the BN sufficient statistics, which we denote as follows. Let
Xi = xik,Pa

G
i = paGij be the assignment that sets node i to

its k-th value, and its parents to their j-th possible configura-
tion.
• nGijk(D) ≡ n

[
Xi = xik,Pa

G
i = paGij ;D

]
is the number

of groundings that satisfy the ijk assignment.
• nGij(D) ≡

∑
k n

G
ijk(D) is the number of groundings that

satisfy the j-th parent assignment.
• nGi (D) ≡

∑
j

∑
k n

G
ijk(D) is the number of possible

groundings for node i, called the local sample size.
In relational sufficient statistics the local sample size

nGi (D) depends on the graph structure whereas in i.i.d. data,
the number of data points defines a global sample size that
is the same for all nodes and all graph structures. The NLL
score is defined as

LLi(G,D) ≡
∑
i

1

nGi (D)
∑
j

∑
k

nGijk(D)·log2

(
nGijk(D)
nGij(D)

)
The normalization 1/nGi (D) converts different sufficient

statistics to proportions and therefore the same [0,1] scale.
Table 2 illustrates the importance of re-scaling counts. The
LLi(·,n·ijk(·)) column shows the likelihood score with in-
stantiation counts. This term is an order of magnitude lower
for the expanded BN structure G+

1 (-2266 vs. -497), sim-
ply because the expanded structure increases the local sample
size by the number of Movies.

4 Relational Likelihood-Based Scores
In i.i.d. data, a likelihood-based score S subtracts a model
complexity term from the log-likelihood score. We subtract a
model complexity term from the NLL score to compare two
BN structuresG andG+. Assuming thatG+ adds edges toG,
our method is to compute, the improvement or normalized
gain of G+ over G as follows:

[LLi(G
+,D)− fi(G

+)

nG
+

i (D)
]− [LLi(G,D)−

fi(G)

nG
+

i (D)
] (2)

where for the smaller BN B, the local complexity fi(B) is
computed using the sample size for the larger structure. Nor-
malizing both penalty terms by the same sample size mea-
sures them on the same scale. Table 3 gives the formulas for



Family Configuration nijk nij ni nijk/ni CP LLi(·,n·ijk(D))
LLi(·,n·

ijk(D))

nG+
i (D)

Age(User)=0 376 — 941 0.3996 0.3996 -497.6217 -0.5288
Age(User)=0,
Rating(User,Movie)=1 2524 4703 1582762 0.0016 0.5367 -2266.2224 -0.0014

Table 2: For the node Age(User), and the IMDb dataset, the contribution of one family configuration to the unnormalized resp. normalized
log-likelihood score. Top: For the G1 structure of Figure 2. Bottom: For the expanded structure G+

1 .

the AIC and BIC penalty terms. Table 4 shows example
values for the gains.

Since the normalized gain term for the smaller structure G
depends on the sufficient statistics for the comparison struc-
ture G+, the normalized gain cannot be represented as the
differential of two single-model scores. Our baseline single-
model scores extend the normalized log-likelihood score LL
with a penalty term. The count method simply adds the
penalty term fi(G); the normalized method divides the
penalty term by the local sample size (i.e., fi(G)/nGi (D)).

AICi BICi

(#parsG
+

i −#parsGi )

nG+
i (D)

(#parsG
+

i −#parsGi ) log2 (n
G+

i (D))

2nG+
i (D)

Table 3: Relational Local Penalty Terms for the AIC and BIC

scores. #parsG
+

i is the number of parameters for node i. The nor-
malized gain adds the penalty term to the normalized log-likelihood
differential (2).

5 Theoretical Analysis
We formalize consistency for relational data following pre-
vious work [Sakai and Yamanishi, 2013; Xiang and Neville,
2011]. The notation N(D) → ∞ from denotes that each
population size Ii goes to infinity. Chickering and Meek
2002 introduced the concept of local consistency, which we
adapt for gain functions. Let p be the data generating dis-
tribution. A gain function is locally consistent if the fol-
lowing hold as N(D) → ∞, for any graph G and expan-
sion G+ that adds a single edge X+ → Xi to G: The gain
of a DAG model is (1) positive for any edge that is neces-
sary for representing the generative distribution p, and (2) is
negative for any edge that is unnecessary. These clauses en-
sure statistical consistency—necessary edges are learned—
and optimality—only necessary edges are learned . A rela-
tional upgrade method preserves local consistency if local
consistency for a single-table gain function entails local con-
sistency for its upgrade.

Theorem 1 The normalized gain upgrade preserves local
consistency, and therefore consistency. The single-model
comparison scores do not preserve local consistency.

6 Empirical Results
We learn Bayesian network structures with the three model
comparison criteria shown in Table 3 on 6 benchmark
datasets. The count score selects the empty graph on all.
The normalized score selects graphs with many edges (almost

complete). The normalized gain selects informative struc-
tures that strike a desirable balance between overly sparse and
overly dense graphs.

7 Conclusion
Generalizing single-table model scores for multi-relational
data is an important fundamental topic for relational learning.
The normalized gain, which measures the difference in data
fit between two first-order Bayesian network structures, is a
novel scalable method for generalizing a BN score. For com-
plete data, it can be computed in closed form given the BN
sufficient statistics. Normalized gain functions preserve con-
vergence guarantees, and show good empirical performance:
they select structures that succinctly represent the data corre-
lations, compared with baseline single-model scores.
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