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a b s t r a c t

In this paper we consider Nash equilibria for the selfish task allocation game proposed in
Koutsoupias, Papadimitriou (1999) [26], where a set of n users with unsplittable tasks of
different size try to access m parallel links with different speeds. In this game, a player
can use a mixed strategy (where he uses different links with a positive probability); then
he is indifferent between the different link choices. This means that the player may well
deviate to a different strategy over time. We propose the concept of evolutionary stable
strategies (ESS) as a criterion for stable Nash equilibria, i.e. equilibria where no player is
likely to deviate from his strategy. An ESS is a steady state that can be reached by a user
community via evolutionary processes in which more successful strategies spread over
time. The concept has been used widely in biology and economics to analyze the dynamics
of strategic interactions.

We first define a symmetric version of a Bayesian parallel links gamewhere every player
is not assigned a task of a fixed size but instead is assigned a task drawn from a distribution,
which is the same for all players.We establish that the ESS is uniquely determined for a given
symmetric Bayesian parallel links game (when it exists). Thus evolutionary stability places
strong constraints on the assignment of tasks to links.

We characterize ESS for the Bayesian parallel links game, and investigate the structure
of evolutionarily stable equilibria: In an ESS, links acquire niches, meaning that there is
minimal overlap in the tasks served by different links. Furthermore, all links with the same
speed are interchangeable for every taskwithweightw: Every playermust place a taskwith
weightw on links having the same speedwith the same probability. Also, bigger tasksmust
be assigned to faster links and faster links must have a bigger load. Finally, we introduce
a clustering condition – roughly, distinct links must serve distinct tasks – that is sufficient
for evolutionary stability, and can be used to find an ESS in many models.

Published by Elsevier B.V.

1. Introduction

We consider the selfish task allocation game proposed in [26], where users try to access a set of parallel links. We assume
that the users have unsplittable tasks with different sizes (weight) and that the links have different speeds. This scenario
gives rise to a strategic interaction between users that combines aspects of both competition, in that users compete for
the fastest links, and coordination, in that users want to avoid overloaded links. Koutsoupias and Papadimitriou suggested
studying themodel in a game-theoretic framework [26]. They compare the cost of the worst case Nash equilibriumwith the
cost of an optimal solution; this ratio was called price of anarchy. Depending on the cost function that is used to assess the
optimal solution, the fraction between Nash equilibria (see [32]) and optimal solutions can vary greatly. For example, the
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cost of the worst case Nash equilibrium can be similar to the cost of the optimal solution (min–max function considered in
[7]), or the cost for every Nash equilibrium can be far away from that of the optimal solution [3].

It is an elementary fact that if a player plays a mixed Nash strategy, then he is indifferent between the choices that carry
positive probability. So, it is not easy to see what keeps the players from deviating to a different strategy with different
probabilities. As an example consider the following instance consisting of n users with uniform tasks and m links with the
same speed. One possible mixed Nash equilibrium is the state where every player chooses every link with a probability of
1/m. Now consider the game from the viewpoint of one fixed user. For him, all the links look identical. Hence, he can use
any probability distribution to choose between the m links (such a Nash equilibrium is called weak). Now, if he decides to
choose, say, the first link with probability one, the resulting state is not optimal any more from the viewpoint of the other
players. Such a Nash equilibrium, having a sequence of single-player strategy changes that do not alter their own payoffs
but finally lead to a non-equilibrium position, is called transient (see [12]).

The above example shows that games can have several non-stable and transient Nash equilibria, and it is unlikely that a
system will end up in one of these. Hence, instead of calculating the price of anarchy, it might be interesting to answer first
the question which Nash equilibria are stable, and then to compare the cost of stable equilibria to the cost of the optimal
solution (see [12]). Several stability models were suggested in the literature [40]. One of the most important models is
Maynard Smith’s concept of an evolutionarily stable strategy, abbreviated ESS [30]. The criterion proposed byMaynard Smith
is as follows: An equilibrium E is evolutionarily stable if there is a threshold ε < 1 for the fraction of players deviating. If the
fraction of thedeviating players falls below ε, then theplayers following the equilibrium E always dobetter than thedeviants.

The concept of an ESS has had a tremendous impact on evolutionary biology [20]. Economists have applied the concept
frequently to analyze strategic interactions between selfish agents [41]. For instance, evolutionary analysis has been applied
to analyzing road traffic patterns, which share many structural similarities with computer networks [38, Section 8]. One
of the strengths of the concept of evolutionary equilibrium is that it connects with many plausible proposals about the
dynamics of social systems, like a user community. Dynamical models specify how the frequency with which strategies
are used in a population changes over time. Many evolutionary dynamics have been proposed [41,1,40,20]; the concept of
evolutionary stability is robust in the sense that an ESS can be proven to be a stable state, or fixed point, for virtually all of
them. For instance, an ESS is an asymptotically stable steady state for the well-known replicator dynamics (the converse
also holds under various conditions though not in general) [41,33].

1.1. Previous work

Our work combines three different parts of game theory: task allocation games, games of incomplete information, and
evolutionary stability. To our knowledge, this combination of topics is new. Subsets of this combination have been studied
previously; we organize our review around them.

Parallel links model and congestion games. The Parallel Links Game was introduced by Koutsoupias and Papadimitriou [26]
(the KP model), who initiated the study of coordination ratios. In the model of [26], the cost of a collection of strategies is
the (expected) maximum load of a link (maximized over all links). The coordination ratio is defined as the ratio between
the maximum cost (maximized over all Nash equilibria) divided by the cost of the optimal solution. Koutsoupias and
Papadimitriou give bounds on the coordination ratio. These bounds are improved by Mavronicolas and Spirakis [29], and
by Czumaj and Vöcking [8] who gave an asymptotically tight bound. Since then several papers considered the problem
using different cost functions, using different link models [9,3,27,2], or studying the algorithmic complexity and efficiency
of computing equilibria [15,13,17]. The KPmodel is related to congestion games as defined by Rosenthal [36] where players
try to access subsets of the resources instead of single links. In the original definition of a congestion game a pure strategy
consists of a set of resources, and the payoff function is the same for all players. This is in contrast to parallel links games
where players can have different weights and, therefore, have different payoff functions. For a generalization of congestion
games to payoff functions that are specific for each player see [31,28].

Parallel links model and games of incomplete information. Harsanyi [21] introduced the notion of a Bayesian game to analyze
games with incomplete information where players are uncertain about some aspect of the game such as what preferences
or options the other players have. Bayesian games have found many applications in economics; eventually Harsanyi’s work
earned him the Nobel Prize. In [16] Gairing et al. introduce a Bayesian version of the selfish task allocation game. Following
Harsanyi’s approach [21], each user can have a set of possible types. Their paper presents a comprehensive collection of
results for the Bayesian task allocation game. Note that their model is more general than ours since they allow different
types for different users, whereas our users all have the same type space. In our application of the Harsanyi framework, the
type space models the uncertainty that players have about what tasks have to be processed. The paper [18] uses the type
space formalism to model the uncertainty of players about the link capacities. They show that this kind of Bayesian selfish
routing model can be reduced to a game of complete information with player-specific payoff functions.

Stability of mixed Nash equilibria. The potential instability of mixed strategy equilibria has long been recognized and much
discussed in game theory; see [34, Chapter 3.2] for a concise summary of the debate. In [40] van Damme surveys a number of
differentways of defining stability for Nash equilibria. Harsanyi’s celebrated purification theoremprovides an interpretation
of mixed equilibria without the need for any individual to randomize [22,34,19]. Harsanyi considers a matrix game with
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perfectly known payoffs as an idealization of a Bayesian game in which each player’s payoffs are perturbed by random
fluctuations. For example, in a selfish task allocation game, the latency of player i’s message may be perturbed by a random
noise term εi. Supposing that the payoff perturbations of the players are independent, and with mild assumptions about the
distribution of the perturbations (e.g., absolute continuity with Lebesgue measure), Harsanyi shows that the perturbation
of the original game has a Bayesian equilibrium in which every player chooses a deterministic or pure strategy given their
private information about their payoff. Since the payoffs randomly fluctuate, every such Bayesian equilibrium induces a
distribution over pure strategies; the purification theorem states that for almost every matrix game, all mixed equilibria in
the game are the limits of Bayesian equilibria in the perturbed game as the perturbations become arbitrarily small.

Evolutionarily stable strategies. One of the most important criteria for distinguishing stable from unstable mixed equilibria
is evolutionary stability. The concept of evolutionary stability is fundamental in evolutionary game theory, which has many
applications in theoretical biology and economics. The seminal presentation of the concept of an ESS is due to Maynard
Smith [30]. Since then, the concept has played a central role in evolutionary biology and has been used in thousands of
studies. Economists have also applied the concept to analyzemany economic and social interactions, from currencymarkets
to traffic patterns. Kontogiannis and Spirakis provide an introduction to and motivation for evolutionary analysis from
a computer science perspective [25, Section 3]. Kearns and Suri examine evolutionary stability in graphical games [24].
Evolutionary stability and Harsanyi’s perturbation concept are similar in that both consider arbitrarily small deviations from
an equilibrium point. However, in Harsanyi’s model, the payoffs for various strategies fluctuate, whereas the mutations
considered in an ESS involve only changes in the players’ strategies, while the payoff matrix remains fixed. The papers
[23,39] study evolutionary stability in a population interpretation of Harsanyi’s perturbed game, where different members
of a very large population have different payoff matrices corresponding to the payoff perturbations.

Evolutionary stability and routing/traffic models. In [14] Fischer and Vöcking adopt an evolutionary approach to a related
task allocation problem (see [37] for a definition). Sandholm proposes a pricing scheme based on evolutionary stability
for minimizing traffic congestion; he notes the potential applicability of his models to computer networks [38, Section 8].
His approach does not apply the concept of evolutionarily stable strategy. The theory of evolution in Bayesian games is
developed in [10], based on the Bayesian best response dynamic rather than ESS. To our knowledge, our combination of
congestion game + Bayesian incomplete information + ESS is new in the literature. (Ely and Sandholm remark that ‘‘nearly
all work in evolutionary game theory has considered games of complete information’’ [10, p.84].)

1.2. New results

In this paper we study evolutionarily stable equilibria for selfish task allocation in Koutsoupias and Papadimitriou’s
parallel links model [26] where the users’ tasks cannot be split. See [4] for a preliminary version of this paper. We first define
a symmetric version of a Bayesian parallel links gamewhere every player is not assigned a task of a fixed size but, instead, is
randomly assigned a task drawn from a distribution (Section 2.1). Then we argue that every ESS in this game is a symmetric
Bayesian Nash equilibrium, where every player uses the same strategy.

Link group uniqueness. In Section 3 we show that the symmetric Bayesian Nash equilibrium is unique for link groups. By link
group uniquenesswemean the following. Assume that all links with the same speed are grouped together into so-called link
groups. Then, in every symmetric Bayesian Nash equilibrium, the total probability that tasks of a certain size are sent to a link
group is unique. This implies that the only flexibility in a symmetric BayesianNash equilibrium is the probability distribution
over links from the same link group, not over different link groups. Then we show that in a symmetric equilibrium two links
with different speeds cannot both be used by two or more tasks with different weights. In fact, we show an even stronger
result: If link " is used for task w and "′ for w′ #= w, then at least one of the links will not be optimal for the other link’s task.
We also show that tasks with larger weight must be assigned to links with larger speed.

Uniqueness of ESS. In Section 4 we characterize ESS for the symmetric Bayesian parallel links game.We show that every ESS
is a Bayesian Nash equilibrium, and we show that, to evaluate evolutionary stability, we have to consider only best replies
to the current strategy. Then we establish that in an ESS, we not only have link group uniqueness, but also the probability
distribution with which links of the same group are chosen by tasks has to be unique. In fact, an ESS requires treating two
links with equal speed exactly the same. This result establishes the uniqueness of ESS.

Specialization. We show that in an ESS even two links with the same speed cannot both be used by two or more tasks with
different weights. This implies that in an ESS links acquire niches, meaning that there is minimal overlap in the tasks served
by different links. We call this specialization in the following. We also show that, unfortunately, the specialization condition
is necessary for an ESS, but not sufficient.

Clustering. We introduce a sufficient condition called clustering – roughly, links must form disjoint niches – and show that
every clustered Bayesian Nash equilibrium is an ESS. Unfortunately, we also show that there exists a game that does not
have a clustered ESS, but it has an unclustered ESS, so clustering is not a necessary condition.

In general, the problem of calculating an ESS is very hard; it is contained in ΣP
2 (second level of the polynomial-time

hierarchy) and is both NP-hard and coNP-hard [11]. We expect that our uniqueness results and the structural properties of
ESS for our game will help to develop algorithms that compute an ESS.
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Table 1
Table with frequently used notation.
Symbol Meaning

N = [n] Set of users
i Variables for users
L = {"1, . . . , "m} Set of links
", "′, "′′ Variables for links
L, L′, L′′ Variables for link groups. A link group is defined as a maximal

Set of links with the same speed.
c" (cL) Speed of link " (links in link group L)
W = {w1, . . . , wk}, A finite set of task weights or sizes
w, w′, w′ Variables for task weights
w(i) Task weight assigned to user i
µ(w) Probability that a task of weight w ∈ W is assigned

To a user
σ , σ ′, σ ′′ Variables for strategies
σi Strategy for user i
σ ∗ Equilibrium strategy
(σi, σ−i) Strategy profile where user i follows strategy σi and the other

Players’ strategies are given by σ−i = σ1, . . . , σi−1, σi+1, . . . , σn
σ (k) Vector with strategy σ repeated k times (for k ≤ n users)
σ ("|w) (σ (L|w)) Probability that a strategy σ uses link " (some link " ∈ L) for

Task size w
σ ("|W ′) Probability that a fixed strategy uses link " for some task

Size w ∈ W ′ ⊂ W
load("|σ1, . . . , σn; w(1), . . . , w(n)) Load on link " given that user i (1 ≤ i ≤ n) has been assigned task

w(i), and follows strategy σi
load("|σ1, . . . , σn) Expected load on link " (sum over expected loads on link " ∈ L )
(load(L|σ1, . . . , σn) ) Given that user i follows strategy σi
u(σ ; σ1, . . . , σn−1) Payoff to a user following strategy σ when other users follow

σ1, . . . , σn−1
w ∈ opt("|σ ) Link " is optimal for task w given strategy σ
w ∈ support("|σ ) Strategy σ uses link " for task w

2. Basic models and concepts

In Section 2.1 introduce Bayesian Parallel Links Games and show some simple observations concerning link load and
utilities. In Section 2.2 we introduce population games and define evolutionary stable strategies (ESS).

2.1. Bayesian parallel links games

In this section we examine an extension of the original task allocation game called Bayesian parallel links game. Our
definition below is a special symmetric case of the definition in [16]. The standard parallel links game is not symmetric
since the payoff of a user i depends on the task w(i). We summarise our notation in Table 1.

In a Bayesian parallel links game, the uncertainty among the players concerns the task size of the opponents. An agent
knows the size of her own message, but not the size of the messages being sent by other users. The Bayesian game of [16]
models this uncertainty by a distribution that specifies the probability thatw is the task of user i. In our symmetric Bayesian
task allocation game, this distribution is the same for all agents. A natural interpretation of this assumption is that agents
are assigned tasks drawn from a common distribution.

A game is symmetric if (1) all players have the same set of strategy options, and (2) the payoffs only depend on what
strategies are chosen and how often they are chosen. The payoffs do not depend on which player is choosing a certain
strategy. Our Bayesian version of the game is symmetric, whereas the parallel links game is symmetric for uniform users
only.

The formal definition of a symmetric Bayesian task allocation model is as follows.

Definition 1. A symmetric Bayesian task allocation model is a tuple 〈N,W , µ, L〉 where

1. N = [n] is the set of users.
2. W is a finite set of k task weights, and µ : W → (0, 1] is a probability distribution over the weightsW . The distribution

µ is used to assign weights i.u.r. (independent and uniformly at random) to players 1, . . . , n.
3. L = [m] is the set of links. For " ∈ [m], link " has speed c".
4. For a fixed user i, a mixed strategy σi is a (k × n) array with one row for every weight w ∈ W . If row r corresponds to

weight w, then entry σi(r, ") is the probability that the user assigns a task with weight w to link ". A strategy profile
σ1, . . . , σn assigns a strategy σi ∈ P to each player i.

Now fix a task allocation model with strategy profile σ1, . . . , σn. In the following σi(·|w) is the row of the strategy array
of user i that corresponds to weight w. We use σi("|w) for the probability that, in strategy σi ∈ P , user i assigns a task with
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weight w to link ". For 1 ≤ i ≤ n, the quantity w(i) is the weight assigned to user i. As usual, (σi, σ−i) denotes a strategy
profile where user i follows strategy σi and the other players’ strategies are given by σ−i = σ1, . . . , σi−1, σi+1, . . . , σn.
Similarly, (w(i), w(−i)) denotes a weight vector where user i is assigned task size w(i) and the other players’ weights are
given by the vector w(−i) = w(1), . . . , w(i − 1), w(i + 1), . . . , w(n).

The concept of a mixed strategy in a symmetric Bayesian task allocation model may be interpreted as follows. Each
player chooses a strategy before the game is played. Then tasks w(1), w(2), . . . , w(n) are assigned i.u.r. to users 1 through
n according to the distributionµ. Each user learns their own task but not that of the others. Next for each user iwe ‘‘execute’’
the strategy σi given taskw(i), such that taskw(i) is sent to link "with probability σi("|w(i)). Thus, strategies have a natural
interpretation as programs that take as input a task w and output a link for w or a probability distribution over links for w.

Our definition of a mixed strategy is standard in the theory of Bayesian games, but differs from [16] in that we do not
define a mixed strategy to be a probability distribution over pure strategies. However, it is easy to see that the two concepts
are equivalent: given any probability distribution over pure strategies, there is an equivalent mixed strategy in our sense,
and vice versa (cf. [16]).

Like Koutsoupias and Papadimitriou [26], we assume that the latency of a link depends linearily on the load of a link.
Thus we have the following definition of the load on a link.
Definition 2. Let B = 〈N,W , µ, L〉 be a symmetric Bayesian task allocation model.
1. For fixed w(1), w(2), . . . , w(n), the conditional expected load on link " is

load("|σ1, . . . , σn; w(1), . . . , w(n)) = 1
c"

∑

i∈N

w(i) · σi("|w(i)).

2. The expected load on link " is

load("|σ1, . . . , σn) =
∑

w(1),...,w(n)∈Wn
load("|σ1, . . . , σn; w(1), . . . , w(n)) ·

∏

i∈N

µ(w(i)).

whereWn denotes the n-fold Cartesian product ofW .
The next observation shows that the load function is additive in the sense that the total load on link " due to n users is

just the sum of the loads due to the individual users.
Observation 2.1. Let B = 〈N,W , µ, L〉 be a symmetric Bayesian task allocation model. Then for any user i we have

load("|σ1, . . . , σn) = load("|σ−i) + load("|σi).

Therefore load("|σ1, . . . , σn) = ∑
i∈N load("|σi).

Proof. Without loss of generality we assume i = 1.

load("|σ1, . . . , σn) =
∑

w(1),...,w(n)∈Wn
load("|σ1, . . . , σn; w(1), . . . , w(n)) ·

∏

i∈N

µ(w(i))

=
∑

w(1),...,w(n)∈Wn

1
c"

·
(

∑

i∈N

w(i) · σi("|w(i))

)

·
∏

i∈N

µ(w(i))

=
∑

w(1),...,w(n)∈Wn

1
c"

·
∏

i∈N

µ(w(i)) · w(1) · σ1("|w(1))

+
∑

w(1),...,w(n)∈Wn

1
c"

·
∏

i∈N

µ(w(i)) ·
(

∑

i∈N−{1}
w(i) · σi("|w(i))

)

= load("|σ1) + load("|σ−1). !

A symmetric Bayesian task allocation game is a symmetric Bayesian task allocation model where all players have the
same utility function u. Additionally, the payoff of each player depends only on what strategies are chosen, and not on
which players choose particular strategies. This allows us to drop the index i for the user from time to time and write, for
example, (σ ; σ1, . . . , σn−1) for strategy σ played against σ1, . . . , σn−1. Here we assume that σ1, . . . , σn−1 is simply a list of
strategies without σi referring to the strategy of user i. To simplify notation for games in which several players follow the
same strategy, we write σ (k) for a σ , . . . , σ with σ repeated k times. If all players in a symmetric game follow the same
strategy, then σ (n) is the resulting strategy profile.
Definition 3. A symmetric Bayesian task allocation game G = 〈N,W , µ, L, u〉 is a task allocation model 〈N,W , µ, L〉
together with a utility function u. We write u(σ ; σ1, . . . , σn−1) to denote the payoff of following strategy σ when the other
players’ strategies are given by σ1, . . . , σn−1. Then the payoff is defined as

u(σ ; σ1, . . . , σn−1) = −
∑

w∈W

∑

"∈L

(w/c" + load("|σ1, . . . , σn−1)) · σ ("|w) · µ(w).

Note that maximizing negative utility function is equivalent to minimizing the cost of a strategy.
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Fig. 1. A Bayesian task allocation game. There are three links, each with capacity or speed 1, and two task sizes, 5 and 10. Each task size occurs equally
frequently. The figure shows one possible allocation or mixed strategy that assigns each link to each task size with equal probability.

Example 1. Consider a 2-player Bayesian task allocation game with 3 links 1, 2, 3, each with the same capacity 1 = c1 =
c2 = c3, two task sizes W = {5, 10}, each occurring equally frequently so µ(10) = µ(5) = 1/2. Let σ ∗ be the following
mixed strategy.

w σ ∗(1|w) σ ∗(2|w) σ ∗(3|w)

5 1/3 1/3 1/3
10 1/3 1/3 1/3

Fig. 1 illustrates this task allocation game and the mixed strategy σ ∗. In this example, the expected load on each link " due
to one player following strategy σ ∗ is the same for all links due to the symmetry of the model; it is given by

load("|σ ∗) =
∑

w∈{5,10}
w · σ ∗("|w) · µ(w) = 5 · 1

6
+ 10 · 1

6
= 5

2
.

Let (σ ∗, σ ∗) be the strategy profile in which each player follows strategy σ ∗. The expected load on link " due to two players
following strategy σ ∗ is given by

load("|σ ∗, σ ∗) = 1
4

·
∑

w(1)∈{5,10}

∑

w(2)∈{5,10}
load("|σ ∗, σ ∗; w(1), w(2))

= 1
4

∑

w(1)∈{5,10}

∑

w(2)∈{5,10}

(
w(1)
3

+ w(2)
3

)

= 1
4

· 1
3

· (5 + 5 + 5 + 10 + 10 + 5 + 10 + 10) = 1
3

· (5 + 10) = 5.

Notice that load("|σ ∗, σ ∗) = 2 · load("|σ ∗), which illustrates Observation 2.1. For the expected payoff u(σ ∗; σ ∗) for a player
following strategy σ ∗ against another player also using σ ∗ we have

u(σ ∗; σ ∗) = −
∑

w∈{5,10}

∑

"∈[3]
(w + load("|σ ∗)) · 1

3
· 1
2

= −1
6

· 3 ·
(
5 + 5

2
+ 10 + 5

2

)
= −10.

The mixed strategy σi is a best reply to σ−i if for all mixed strategies σ ′
i we have

u(σi; σ−i) ≥ u(σ ′
i ; σ−i).

A strategy profile σ1, . . . , σn is a Bayesian Nash equilibrium if every player i plays a best response strategy against σ−i. The
strategy profile σ (n) is a symmetric Bayesian Nash equilibrium if σ is a best reply to σ (n−1). Hence, a symmetric Bayesian
Nash equilibrium for a symmetric Bayesian task allocation game with n players is a Bayesian Nash equilibrium (σ (n)) in
which each player follows the same strategy. It follows from Nash’s existence proof [32] that a symmetric game, such as a
symmetric Bayesian Routing Game, has a symmetric Bayesian Nash equilibrium.

In the following we say that link " is optimal for task w of player i given σ−i iff " minimizes the function w/c" +
load("|σ−i). In this case we write w ∈ opt("|σ−i). A mixed strategy σ uses link " for task w if σ ("|w) > 0; we write
w ∈ support("|σ ).

The next proposition asserts that a best reply σi to a strategy profile σ−i uses a link for a task only if the link is optimal
for the task given σ−i. So a Bayesian Nash equilibrium requires that each player choose an optimal strategy for each task w;
a mixed strategy σi is optimal just in the case it assigns positive probability only to optimal links for a given task w. This is
a variant of the standard characterization of Nash equilibrium according to which all pure strategies in the support of an
equilibrium strategy are best replies. The proof can be done similar to the proof of the standard Nash characterization and
is omitted.
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Proposition 2.2. Let G be a Bayesian task allocation game with n players, and let σ−i be a mixed strategy profile. A strategy σi is
a best reply to σ−i ⇐⇒ for all tasks w, links ", if strategy σi uses link " for task w, then " is an optimal link for w given σ−i.

Example 2. Consider again the task allocation game and the strategy illustrated in Fig. 1. Since the speed of each link is the
same, and since each link carries the same load given the strategy σ ∗, it follows that every link is optimal for every task
given σ ∗. Hence the strategy profile (σ ∗, σ ∗) is a Bayesian Nash equilibrium.

2.2. Population games and evolutionary stability for the parallel links game

We give a brief introduction to population games and evolutionary stability. A more extended introduction from a
computer science point of view is provided in [25, Section 3].

Population equilibria. The standard population gamemodel considers a very largepopulationA of agents [41,30]. The agents
play a symmetric game like our symmetric Bayesian task allocation game. Every agent in the population follows a strategy σ
fixed before the game is played. Amatch is a particular instance of the base game that results when we match n i.u.r. chosen
agents together to play the base game. Since strategies occur with a certain frequency in the population, the probability that
a task with a given size is assigned to a link can be regarded as fixed. Hence, with a population A we can associate a mixed
strategy that we denote by σA. For example, in the task allocation game of Fig. 1, suppose that one third of the population
places both tasks of size 5 and size 10 on link 1, one third places both tasks on link 2, and one third places both tasks on
link 3. The mixed strategy that describes the aggregate behavior of this population is the one illustrated in Fig. 1, defined by
σ ∗("|w) = 1/3 for all links " ∈ [3] and task sizes w ∈ {5, 10}. This example illustrates an interesting feature of population
models: even if each individual agent chooses a deterministic strategy, mixed strategies can be interpreted as describing
the aggregate behavior of the population (cf. [34, Chapter 3.2]).

Consider now the expected payoff that an agent using strategy σ receives in a match with n − 1 opponents that are
randomly selected from a fixed population A. This payoff is the same as the payoff that results from playing strategy σ
against n − 1 opponents whose choices are determined by the same distribution, namely the population distribution σA. In
other words, the expected payoff is given by u(σ ; (σA)

(n−1)), the payoff of using strategy σ when the other n − 1 players
follow mixed strategy σA. A population is in equilibrium if no agent benefits from changing her strategy unilaterally given
the state of the population. Formally, a population A with associated mixed strategy σA is in equilibrium if every mixed
strategy σ that occurs with frequency greater than zero in the population is a best reply to (σA)

(n−1). It is easy to see that
this is the case if and only if the symmetric strategy profile (σ , σ , . . . , σ ) is a Bayesian Nash equilibrium. So population
equilibria correspond exactly to symmetric Bayesian Nash equilibria. While restricting attention to symmetric Bayesian Nash
equilibria may seem like an artificial restriction for non-populationmodels, in large populationmodels symmetric Bayesian
Nash equilibria characterize the natural equilibrium concept for a population.

Evolutionarily stable population equilibria. Themain idea in evolutionary game theory isMaynard Smith’s concept of stability
against mutations, which is a criterion for distinguishing stable from unstable population equilibria. Intuitively, a population
is evolutionarily stable if a small group of mutants cannot invade the population. In the context of evolutionary analysis, we
refer to the base population as the incumbents. Consider an incumbent population A that encounters a groupM of mutants.
Then the mixed population is A∪ M . Suppose that in this mixed population the proportion of mutants is ε. The distribution
for the mixed population is the probabilistic mixture (1 − ε)σA + εσM .

We may view a mutation M as successful if the average payoff for invaders in the mixed population is at least as
great as the average payoff for incumbents in the mixed population. If a sufficiently small mutation is successful, the
population is considered unstable. The expected payoff for a strategy σ in the mixed population A ∪ M is given by
u(σ ; [(1− ε)σA + εσM ](n−1)). So the average payoff for the incumbents is u(σA; [(1− ε)σA + εσM ](n−1)) and for the mutants
it is u(σM; [(1 − ε)σA + εσM ](n−1)). The next example illustrates the key concepts of population equilibrium and successful
mutations in our task allocation game. For readerswho are new to the concept of evolutionary stability, we provide a simpler
example in the Appendix, using the standard Hawk–Dove game.

Example 3. Consider again the task allocation game of Fig. 1 and the uniform distribution mixed strategy σ ∗ defined by
σ ∗("|w) = 1/3 for all links " ∈ [3] and task sizes w ∈ {5, 10}. A possible mutant population M may be described by the
following mixed strategy σ .

w σ (1|w) σ (2|w) σ (3|w)

5 29/60 11/60 1/3
10 7/30 13/30 1/3

Suppose that the relative sizes of the current andmutant populations are such that the mixed population A∪M is described
by the mixed strategy (1%)p + (99%)σ ∗. Then in the mixed population, the expected payoff for the incumbents is given by

u(σ ∗; (1%)σ + (99%)σ ∗) = (1%) · u(σ ∗; σ ) + (99%) · u(σ ∗; σ ∗).



Author's personal copy

P. Berenbrink, O. Schulte / Theoretical Computer Science 411 (2010) 1054–1074 1061

As calculated in the preceding section, u(σ ∗; σ ∗) = −10. We find that the loads due to σ are as follows:

load(1|σ ) = 10 · 7
30

· 1
2

+ 5 · 29
60

· 1
2

= 19
8

load(2|σ ) = 10 · 13
30

· 1
2

+ 5 · 11
60

· 1
2

= 21
8

load(3|σ ) = 5
2
.

Then we get

u(σ ∗; σ ) = −1/6 · (37.5 + 22.5) = −10,

so overall

u
(
σ ∗; (1%)σ + (99%)σ ∗) = −10.

In the mixed population, the expected payoff for the mutants is given by

u(σ ; (1%)σ + (99%)σ ∗) = (1%) · u(σ ; σ ) + (99%) · u(σ ; σ ∗).

Since all links have equal latency given the equilibrium strategy σ ∗, we have

u(σ ; σ ∗) = u(σ ∗; σ ∗) = −10.

We also find that

u(σ ; σ ) = −1
2

·
(
501
40

+ 597
80

)
= −1

2
·
(
1599
80

)
= −9.99375.

So all told,

u(σ ; (1%)σ + (99%)σ ∗) = (1%) · (−9.99375) − (99%) · 10 ≥ −10 = u(σ ∗; (1%)σ + (99%)σ ∗).

So in the mixed population, the mutants do better on average than the incumbents.

As our Bayesian task allocation game is a symmetric game, we can generalize the standard definition of an ESS [41] for
2-player games to n-player games following [6]. Note that in the following definition ε can depend on n.

Definition 4 (ESS). Let G be a symmetric Bayesian task allocation game with n players. A mixed strategy σ ∗ is an
evolutionarily stable strategy (ESS) ⇐⇒ there is an ε > 0 such that for all 0 < ε < ε and mixed strategies σ #= σ ∗ we
have u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) > u(σ ; [εσ + (1 − ε)σ ∗](n−1)).

The payoff of every mixed strategy σ ′ in a mixed population with distribution εσ + (1 − ε)σ ∗ and a base game with n
players can be computed by summing over the payoffs to σ ′ when faced with k = 0, 1, . . . , n − 1 mutants σ and n − 1 − k
incumbents σ ∗, weighted by the probability of encountering exactly k mutants. We denote the payoff from playing mixed
strategy σ ′ against kmutants σ by u(σ ′; (σ ∗)(n−1−k), σ (k)). This payoff is given by

u(σ ′; (σ ∗)(n−1−k), σ (k)) = −
∑

w∈W

∑

"∈L

[w/c" + (n − 1 − k)load("|σ ∗) + k · load("|σ )] · σ ′("|w) · µ(w).

The probability of encountering exactly k mutants is
(
n − 1

k

)
· εk · (1 − ε)n−1−k.

Overall, the payoff of using strategy σ in the mixed population can be computed as

u(σ ′; [εσ + (1 − ε)σ ∗]n−1) =
(n−1)∑

k=0

u(σ ′; (σ ∗)(n−1−k), σ (k)) ·
(
n − 1

k

)
· εk · (1 − ε)n−1−k.

3. Link group uniqueness of symmetric Bayesian Nash equilibria

This section investigates the structure of symmetric Bayesian Nash equilibria and establishes that symmetric equilibria
are uniquely determined up to the distribution of tasks within link groups. Note that, in a large population model, a
symmetric equilibrium σ (n) represents an equilibrium state of the population: given that the aggregate allocation of tasks to
links corresponds to mixed strategy σ , no single member of the population can improve his payoff by unilaterally changing
his strategy. Hence, an ESS can be considered a special case of a symmetric BayesianNash equilibrium that satisfies a stability
condition (see [6] and Section 4). So an ESS inherits the mathematical properties of symmetric Bayesian Nash equilibria.



Author's personal copy

1062 P. Berenbrink, O. Schulte / Theoretical Computer Science 411 (2010) 1054–1074

Fig. 2. A typical allocation of tasks to links in a symmetric Bayesian Nash equilibrium, as characterized by Lemma 3.1. Links in the same link group (e.g., with
speed 90 in the figure) may share two tasks (of size 300 and 290 in the figure). In contrast, the links with speeds 70 and 60 may share at most one task (of
size 260 in the figure).

A link group L in a symmetric Bayesian task allocation game G is a maximal set of links with the same speed, that is,
c" = c"′ for all ", "′ ∈ L. Then, for anymixed strategy σ , the probability that σ sends taskw to a link in link groupL is given
by

σ (L|w) ≡
∑

"∈L

σ"(w).

Themain result of this section is that in any symmetric Bayesian task allocation game the aggregate distribution over groups
of links with the same speed is uniquely determined for symmetric Bayesian Nash equilibria. In other words, the probabilities
σL are uniquely determined in a symmetric Bayesian Nash equilibrium; if σ (n) and (σ ′)(n) are Bayesian Nash equilibria in a
task allocation game B, then for every link group L and every task weight w we have σ (L|w) = σ ′(L|w).

The next lemma gives a clear picture of what a symmetric Bayesian Nash equilibrium looks like. Intuitively, this picture
is the following. (1) Tasks with bigger weights are placed on faster links. (2) Faster links have a bigger load. (3–5) For every
link " there is an ‘‘interval’’ of ordered task weights w1 < · · · < wk such that " is optimal for all and only these weights. (6)
Any pair of links with different speeds are optimal for at most one common task weight. Fig. 2 illustrates this structure.

Lemma 3.1. Let G be a symmetric Bayesian task allocation game with n players and a symmetric Bayesian Nash equilibrium σ (n).
Fix any two links " and "′.

1. If c" > c"′ , strategy σ uses " for w and "′ for w′, then w ≥ w′.
2. If c" > c"′ , then load("|σ (n)) > load("′|σ (n)), or load("|σ (n)) = load("′|σ (n)) = 0. If c" = c"′ , then load("|σ (n)) =

load("′|σ (n)).
3. If c" > c"′ , then there cannot exist tasks w > w′ such that σ uses both links " and "′ for both tasks w and w′.
4. If w ≥ w′ ≥ w′′ and link " is optimal for tasks w, w′′ given σ , then " is optimal for w′ given σ .
5. If c" > c"′ > c"′′ and links " and "′′ are both optimal for w given σ , then link "′ is optimal for w given σ .
6. If c" > c"′ , then there is at most one task w such that both links " and "′ are optimal for w given σ .

Proof. We begin with the proof of Part 1.

Part 1. We show that if c" > c"′ , link " is optimal for w given σ , and link "′ is optimal for w′ given σ , then w ≥ w′. Together
with Proposition 2.2, the claim follows.
Assume that c" > c"′ and σ uses link " for w and link "′ for w′. Suppose for contradiction that w′ > w. Since " is optimal for
w we have

w

c"
+ (n − 1) · load("|σ ) ≤ w

c"′
+ (n − 1) · load("′|σ ).

Since c" > c"′ , it follows that for any x > 0 we have
w

c"
+ x

c"
+ (n − 1) · load("|σ ) <

w

c"′
+ x

c"′
+ (n − 1) · load("′|σ ).

In particular we may take x = w′ − w which yields

w′

c"
+ (n − 1) · load("|σ ) <

w′

c"′
+ (n − 1) · load("′|σ ).

But then link "′ is not optimal forw′ given σ (n−1), which contradicts the hypothesis that σ (n) is a Bayesian Nash equilibrium.

Part 2. If load("′|σ (n)) = 0, the claim follows immediately. Suppose that load("′|σ (n)) > 0; then there is a task w such that
σ uses "′ for w. For a contradiction, assume load("|σ (n)) ≤ load("′|σ (n)). We show that then "′ is not optimal for w. Using
Observation 2.1 we get load("|σ (n)) = n · load("|σ ), and it is sufficient to show (n − 1) · load("|σ ) ≤ (n − 1) · load("′|σ ).
Hence, since c" > c ′

",
w

c"
+ (n − 1) · load("|σ ) <

w

c"′
+ (n − 1) · load("′|σ ),

showing that "′ is not optimal for w. That contradicts the hypothesis that σ (n) is a Bayesian Nash equilibrium.
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Part 3. Follows immediately from Part 1.

Part 4. Suppose that it is not the case that w′ ∈ opt("|σ ). Then there is some link "′ #= " such that w′ ∈ opt("′|σ ). Note
that c" #= c"′ for otherwise both " and "′ are optimal for w′. First suppose that c"′ > c". Then, since w ∈ opt("|σ ),

w

c"′
+ (n − 1) · load("′|σ ) ≥ w

c"
+ (n − 1) · load("|σ ).

Let x = w′ − w < 0. Then
w

c"′
+ x

c"′
+ (n − 1) · load("′|σ ) >

w

c"
+ x

c"
+ (n − 1) · load("|σ ),

so
w′

c"′
+ (n − 1) · load("′|σ ) >

w′

c"
+ (n − 1) · load("|σ ),

which contradicts the hypothesis that link "′ is optimal forw′. The case inwhich c"′ < c" is symmetric withw′′ instead of w.

Part 5. We show the stronger claim that opt("′|σ ) = {w}.Suppose for contradiction that w′ ∈ opt("′|σ ) holds and w #= w′.
If w < w′, then w ∈ opt("′|σ ) because otherwise we would violate Part 1. Similarly, if w′ < w, then w ∈ opt("′|σ ) because
otherwise we would violate Part 1 (this time with " and "′ reversed). This shows that w = w′, and so opt("′|σ ) ⊆ {w}. It is
also easy to see that there must be some weight on "2 or else "3 is not optimal for any weight.

Part 6. Suppose for contradiction that w and w′ are each in opt("|σ ) ∩ opt("′|σ ) where w #= w′. Then we have
w

c"
+ (n − 1) · load("|σ ) = w

c"′
+ (n − 1) · load("′|σ ).

This is equivalent to

(n − 1) · (load("|σ ) − load("′|σ )) = w

c"′
− w

c"
.

The same holds for w′. Hence
w

c"′
− w

c"
= w′

c"′
− w

c"
⇐⇒ (w − w′)

c"′
= (w − w′)

c"
.

Since w #= w′, this implies that c" = c"′ , which is a contradiction. !
We note that Lemma 3.1 holds for Bayesian Nash equilibria in general, not just symmetric ones. Specifically, let σ ′ be

a Bayesian Nash equilibrium for a symmetric Bayesian task allocation game, and fix any player i such that σ ′ = (σ ′
i , σ

′
−i).

Then Lemma 3.1 holds if we replace a mixed strategy σ with σ ′
i , and σ (n−1) with σ ′

−i, and σ (n) with (σ ′
i , σ

′
−i).

We extend our notation for links to link groups L such that cL denotes the speed of all links in group L. We also define

load(L|σ (n)) ≡
∑

"∈L

load("|σ (n)).

The next theorem is the main result of this section. It states that for a user population in equilibrium (corresponding to
a symmetric Bayesian Nash equilibrium), the distribution of tasks to link groups is uniquely determined. Thus the only way
in which population equilibria can differ is by how tasks are allocated within a link group. This result is the first key step for
establishing the uniqueness of an ESS for a symmetric Bayesian task allocation game.
Theorem 3.2 (Link Group Uniqueness). Let G be a symmetric Bayesian task allocation game with n players and two symmetric
Bayesian Nash equilibria σ (n) and (σ ′)(n). Then we have σ (L|w) = σ ′(L|w) and load(L|σ (n)) = load(L|(σ ′)(n)) for all task
sizes w and link groups L of B.
Proof. Due to Lemma 3.1 (Parts 1 and 2), for every fixed load distribution there is at most onemixed strategy σ that induces
this load distribution over link groups. So it suffices to show load(L|σ (n)) = load(L|(σ ′)(n)). Due to Observation 2.1, this is
equivalent to showing that load(L|σ ) = load(L|σ ′).

For a contradiction, assume there exists a link groupLwith load(L|σ ) #= load(L|σ ′). If there are several such link groups
choose L such that cL > cL′′ for all groups L′′ with load(L′′|σ ) #= load(L′′|σ ′). Without loss of generality we can assume
that load(L|σ ) > load(L|σ ′). Due to Lemma 3.1 (Part 1) and the fact that we have monotone (linear) latency functions,
there has to exist a link group L′ with load(L′|σ ) < load(L′|σ ′). If there exist several such link groups choose L′ such that
cL′ > cL′′ for all link group L′′ with load(L′′|σ ) < load(L′′|σ ′). This gives us

∑

L′′: cL′′>cL′

load(L′′|σ ) >
∑

L′′: cL′′>cL′

load(L′′|σ ′). (1)

Due to Lemma 3.1 the task distribution in any Bayesian Nash equilibrium looks as follows. Assume that the link groups
are ordered from left to right in non-increasing order of the capacities of their links. Then the tasks are assigned to the links
of the link groups in non-increasing order, starting at the leftmost link group. Hence, for c" > c"′ the tasks assigned to link
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" are not smaller than the tasks assigned to "′ (Part 1 of Lemma 3.1). Let K be the set of link groups L′′ with c" > c"′ for
" ∈ L′′ and "′ ∈ L′. Then there exists a task w such that w is the smallest task that is assigned to any link in K by σ . Let p
(p′) be the probability that w is assigned to a task in K by σ (σ ′). Then p > p′ (see Eq. (1) above). Note that p′ = 0 is the case
the tasks assigned to links in K in σ ′ is a proper subset of the tasks assigned to links in K in σ .

Now letw′ ≥ w be the largest job used by a task in K such that σ ′ uses links inL′ forw′. σ uses a groupL′′ with cL′′ > cL′
for some fraction of w (see Lemma 3.1). Note that due to Lemma 3.1 (Part 2) the load of all links in L is the same. The same
holds for the link load of L′ and L′′. Now pick arbitrary links "′′ ∈ L′′, "′ ∈ L′, and " ∈ L. Then we get

w′

c"′′
+ load("′′|σ ) ≤ w′

c"′
+ load("′|σ )

<
w′

c"′
+ load("′|σ ′)

≤ w′

c"′′
+ load("′′|σ ′)

≤ w′

c"′′
+ load("′′|σ ).

The first inequality holds since σ is a Bayesian Nash equilibrium. The second strict inequality is due to the choice of L′. The
third inequality follows because σ ′ is a Bayesian Nash equilibrium. The last inequality holds since c"′′ > c"′ and since L′ is
from all link groups with load(L′|σ ) < load(L′|σ ′) the one with the largest speed. !

In the task allocation game of Fig. 1, there is only one link group, since all links have the same capacity 1. So Theorem 3.2
implies that there is only symmetric Bayesian Nash equilibrium in this game, which corresponds to the uniform distribution
of tasks to links. The next section begins the investigation of evolutionarily stable equilibria;we beginwith a characterization
of ESS for a symmetric Bayesian task allocation game that provides a simple necessary and sufficient condition for a deviation
from a current population state to be successful.

4. Characterization of evolutionary stability

Following the usual convention of evolutionary game theory, we use σ ∗ to refer to the mixed strategy associated with
the incumbent population. In this sectionwe prove a necessary and sufficient condition for amixed strategy σ ∗ to be an ESS.
The next proposition shows that for sufficiently small sizes of mutations, only best replies to the incumbent distribution σ ∗

have the potential to do better than the incumbent. The proposition also implies that an ESS corresponds to a symmetric
Bayesian Nash equilibrium (Corollary 4.2).

Proposition 4.1. Let G be a symmetric Bayesian task allocation game with n players, and let σ ∗ be a mixed strategy. Then there
is a threshold ε such that for all ε with 0 < ε < ε, for all mixed strategies σ :

1. If u(σ ∗; (σ ∗)(n−1)) > u(σ ; (σ ∗)(n−1)), then

u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) > u(σ ; [εσ + (1 − ε)σ ∗](n−1)).

2. If u(σ ∗; (σ ∗)(n−1)) < u(σ ; (σ ∗)(n−1)), then

u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) < u(σ ; [εσ + (1 − ε)σ ∗](n−1)).

Proof. The proof requires only standard techniques from evolutionary game theory [41] and is omitted. Intuitively, the
result holds because we can choose our threshold ε small enough (as a function of B and σ ∗) so that any difference in the
case in which the mutant and incumbent face 0 mutants outweighs the differences in their payoffs when they face one or
more mutants. !

Proposition 4.1(1) says that if a mutation σ is sufficiently small and a worse reply to the distribution σ ∗ than σ ∗ itself,
then the mutation does worse in the mixed population than the incumbent. Similarly, the second part of the proposition
says that if a mutation σ is sufficiently small and a better reply to the distribution σ ∗ than σ ∗ itself, then the mutation does
better in the mixed population than the incumbent. Corollary 4.2 shows that an ESS must correspond to a Bayesian Nash
equilibrium, and that we need only consider best replies to an incumbent strategy to evaluate evolutionary stability. Then
we provide a necessary and sufficient condition for a best reply to be a successful mutation.

Corollary 4.2. Let G be a symmetric Bayesian task allocation game with n players, and let σ ∗ be an ESS. Then (σ ∗)(n) is also a
Bayesian Nash equilibrium.

Proof. If σ ∗ is not a best reply to (σ ∗)(n−1), then there is a mutant σ such that u(σ ; (σ ∗)(n−1)) > u(σ ∗; (σ ∗)(n−1)).
Proposition 4.1(2) then implies that σ is a successful mutation no matter how low we choose the positive threshold ε. !
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The next Lemma 4.3 provides a necessary and sufficient condition for when a best reply is a successful mutation, which
is key for our analysis of evolutionarily stable strategies in a given network game. In the following let

σ ("|W ) :=
∑

w∈W

σ ("|w) · µ(w).

Then the condition of the lemma is as follows: consider an equilibrium strategy σ ∗ and a mutation σ #= σ ∗ that is a best
reply to σ ∗. Then σ is successful if and only if

∑

"∈L

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )] < 0.

The condition of Lemma 4.3may be interpreted as follows. For a fixed link ", the expression load("|σ ∗)−load("|σ )measures
the difference between the loads on " caused by the incumbent population σ ∗ and caused by the mutant population σ . In
the first case, load("|σ ) > load("|σ ∗). Then, the mutation increases the load on link ". Therefore, in the mutant population,
link " is slower compared to the link in the incumbent population. Hence, the cost of a strategy σ ′ with respect to link
" increases as the probability σ ′("|W ) increases. In particular, if a) σ ∗("|W ) > σ ("|W ), then the mutation does relatively
better on link ". In this case load("|σ ∗)−load("|σ ) < 0 andσ ∗("|W )−σ ("|W ) > 0 so the product [load("|σ ∗)−load("|σ )]·
[σ ∗("|W ) − σ ("|W )] is negative. If b) σ ∗("|W ) < σ ("|W ), then σ ∗("|W ) − σ ("|W ) < 0 and the product is positive. In the
second case load("|σ ∗) > load("|σ ). Then similarly the product [load("|σ ∗)− load("|σ )] · [σ ∗("|W )−σ ("|W )] is negative
if the decrease benefits the mutants more than the incumbents, and positive otherwise.

Example 4. Consider again the task allocation game of Fig. 1 and the uniform distribution mixed strategy σ ∗ defined by
σ ∗("|w) = 1/3 for all links l ∈ [3]. The task sizes w ∈ {5, 10}, each size is generated with probability 1/2. A possible
mutant populationM may be described by the following mixed strategy σ .

w σ (1|w) σ (2|w) σ (3|w)

5 29/60 11/60 1/3
10 7/30 13/30 1/3

Since given the uniform distribution σ ∗, all links are optimal for every task, every mutant distribution is a best reply to σ ∗;
in particular, we found in Section 2.2 that u(σ ∗; σ ∗) = u(σ ; σ ∗) = −10.

The aggregate probabilities of σ ∗ are the same for all links:

σ ∗("|W ) = 1
3

· 1
2

+ 1
3

· 1
2

= 1
3
.

For σ we have

σ (1|W ) = 7
30

· 1
2

+ 29
60

· 1
2

= 43
120

σ (2|W ) = 13
30

· 1
2

+ 11
60

· 1
2

= 37
120

σ (3|W ) = 1
3

= σ (3|W ).

So the differences in the aggregate probabilities are as follows:

σ ∗(1|W ) − σ (1|W ) = 1
3

− 43
120

= −1
40

σ ∗(2|W ) − σ (2|W ) = 1
3

− 37
120

= 1
40

σ ∗(3|W ) − σ (3|W ) = 1
3

− 1
3

= 0.

The load differences due to the incumbent and mutant strategies are as follows (see Example 3):

load(1|σ ∗) − load(1|σ ) = 20
8

− 19
8

= 1
8

load(2|σ ∗) − load(2|σ ) = 20
8

− 21
8

= −1
8

load(3|σ ∗) − load(3|σ ) = 20
8

− 20
8

= 0.

Now comparing the aggregate usage, we find that there is no difference with respect to link 3 since both strategies use it
in the same way. The mutant strategy uses link 1 more often overall than the incumbent (σ ∗(1|W ) − σ (1|W ) < 0) and



Author's personal copy

1066 P. Berenbrink, O. Schulte / Theoretical Computer Science 411 (2010) 1054–1074

places less load on it (load(1|σ ∗) − load(1|σ ) > 0). The mutant strategy uses link 2 less often overall than the incumbent
(σ ∗(2|W ) − σ (2|W ) > 0) and places more load on it (load(2|σ ∗) − load(2|σ ) < 0). So the sum

∑

"∈L

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )]

is strictly negative, which according to the following lemma is necessary and sufficient for a successfulmutation.We verified
in Section 2.2 directly that σ describes a successful mutation at a relative size of 1% compared to the incumbent population.
Lemma 4.3. Let G be a symmetric Bayesian task allocation game with n players. Let (σ ∗)(n) be a Bayesian Nash equilibrium, and
consider any best reply σ to (σ ∗)(n−1). Then the sum

∑

"∈L

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )]

1. is negative if and only if for all ε with 0 < ε < 1,
u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) < u(σ ; [εσ + (1 − ε)σ ∗](n−1))

(i.e., if and only if the mutation does better in the mixed population).
2. is positive if and only if for all ε with 0 < ε < 1,

u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) > u(σ ; [εσ + (1 − ε)σ ∗](n−1))

(i.e., if and only if the mutation does worse in the mixed population).
Proof. We begin with two preliminary claims. As discussed in Section 2.2, for deviant strategies that are best replies to the
current equilibrium, the success of themutation depends on howwell themutation and the incumbent strategies do against
k = 1, . . . , n − 1 mutants respectively. That is, we have to compare u(σ ∗; (σ ∗)(n−k−1); σ k) with u(σ ; (σ ∗)(n−k−1); σ k) for
k = 1, . . . , n − 1. The next claims helps to compute these differences.
Claim 1. Let G be a symmetric task allocation gamewith n players andmixed strategies σ , σ ∗, σ ′. Then for each kwith 0 ≤ k < n
we have

u(σ ′; (σ ∗)(n−k−2), σ (k+1)) − u(σ ′; (σ ∗)(n−k−1), σ (k)) =
∑

w∈W

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
· σ ′("|w) · µ(w).

Proof of claim. By definition

u(σ ′; (σ ∗)(n−k−2), σ (k+1)) − u(σ ′; (σ ∗)(n−k−1), σ (k))

= −
∑

w∈W

∑

"∈L

(
w

c"
+ (n − k − 2) · load("|σ ∗) + (k + 1)load("|σ )

)
· σ ′("|w) · µ(w)

+
∑

w∈W

∑

"∈L

(
w

c"
+ (n − k − 1) · load("|σ ∗) + k · load("|σ )

)
· σ ′("|w) · µ(w)

=
∑

w∈W

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
· σ ′("|w) · µ(w).

Claim 2.
∑

"∈L

[
load("|σ ∗) − load("|σ )

] [
σ ∗("|W ) − σ ("|W )

]
=

[
u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ∗; (σ ∗)(n−k−1), σ (k))

]

−
[
u(σ ; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−1), σ (k))

]
.

Proof of claim. Using Claim 1 we get
[
u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ∗; (σ ∗)(n−k−1), σ (k))

]
−

[
u(σ ; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−1), σ (k))

]

=
∑

w∈W

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
· σ ∗("|w) · µ(w) −

∑

w∈W

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
· σ ("|w) · µ(w)

=
∑

w∈W

∑

"∈L

[load("|σ ∗) − load("|σ )] · µ(w) · [σ ∗("|w) − σ ("|w)]

=
∑

"∈L

[
load("|σ ∗) − load("|σ )

]
·
∑

w∈W

µ(w) ·
(
σ ∗("|w) − σ ("|w)

)
.

By definition
∑

w∈W

µ(w) ·
(
σ ∗("|w) − σ ("|w)

)
=

∑

w∈W

σ ∗("|w) · µ(w) −
∑

w∈W

σ ("|w) · µ(w) = [σ ∗("|W ) − σ ("|W )],

and the claim follows.
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Proof of Lemma 4.3 continued. Now we present the proof of Part (1) of Lemma 4.3. The proofs of Part (2) and (3) can be done
in the same way.

Suppose that∑

"∈L

[
load("|σ ∗) − load("|σ )

]
·
[
σ ∗("|W ) − σ ("|W )

]
< 0.

We show by induction on k that whenever 0 ≤ k < n − 1, the difference
u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−2), σ (k+1)) < 0.

Since the payoff difference u(σ ∗; [εσ + (1 − ε)σ ∗](n−1)) − u(σ ; [εσ + (1 − ε)σ ∗](n−1)) can be computed as the sum of
differences over the numbers k of mutants that strategy σ or σ ∗ may encounter, it follows that this difference is negative,
which establishes the lemma.

Base case, k = 0. Since both σ ∗ and σ are best replies to (σ ∗)(n−1), we have u(σ ∗; (σ ∗)(n−1)) = u(σ ; (σ ∗)(n−1)). So, using
Claim 2

u(σ ∗; (σ ∗)(n−2), σ ) − u(σ ; (σ ∗)(n−2), σ )

= [u(σ ∗; (σ ∗)(n−2), σ ) − u(σ ∗; (σ ∗)(n−1))] − [u(σ ; (σ ∗)(n−2), σ ) − u(σ ; (σ ∗)(n−1))]
=

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
·
[
σ ∗("|W ) − σ ("|W )

]
< 0.

Inductive step: Assume the hypothesis for k and consider k + 1 < n. By inductive hypothesis we get
u(σ ∗; (σ ∗)(n−k−1), σ (k)) − u(σ ; (σ ∗)(n−k−1), σ (k)) < 0.

Hence

u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−2), σ (k+1))

< u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−2), σ (k+1)) + u(σ ; (σ ∗)(n−k−1), σ (k)) − u(σ ∗; (σ ∗)(n−k−1), σ (k))

= [u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ∗; (σ ∗)(n−k−1), σ (k))] − [u(σ ; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−1), σ (k))]
=

∑

"∈L

[
load("|σ ∗) − load("|σ )

]
·
[
σ ∗("|W ) − σ ("|W )

]
< 0.

The last equality follows from Claim 2. So overall we have

u(σ ∗; (σ ∗)(n−k−2), σ (k+1)) − u(σ ; (σ ∗)(n−k−2), σ (k+1))

<
∑

"∈L

[
load("|σ ∗) − load("|σ )

]
·
[
σ ∗("|W ) − σ ("|W )

]
< 0,

which completes the inductive step. !
The proof of Lemma 4.3 shows that a best reply σ to (σ ∗)(n−1) that has a negative sum∑

"∈L

[load("|σ ) − load("|σ ∗)] · [σ ∗("|W ) − σ ("|W )]

is successful in the following strong sense. The best reply yields a better payoff than the incumbent strategy σ ∗ regardless
of the size of ε.

It will be convenient to say that a mutation σ defeats the incumbent strategy σ ∗ if the sum is negative. Similarly, we
say that a mutation σ equals an incumbent σ ∗ if the sum is zero. In this terminology our results so far yield the following
characterization of evolutionary stability. The proof directly follows from Proposition 4.1 and Lemma 4.3.
Corollary 4.4. Let G be a symmetric Bayesian task allocation game with n players. A mixed strategy σ ∗ is an ESS for G ⇐⇒ the
strategy profile (σ ∗)(n) is a Bayesian Nash equilibrium, and no best reply σ #= σ ∗ to (σ ∗)(n−1) defeats or equals σ ∗.

Lemma 3.1 clarified the structure of user populations in equilibrium. The next section applies the criterion from
Corollary 4.4 to establish additional properties of populations in an evolutionarily stable equilibrium. In fact, these properties
imply that an evolutionarily stable equilibrium is unique when it exists.

5. Uniqueness and structure of evolutionary stable strategies

We analyze the structure of evolutionary equilibria and show the uniqueness of ESS. For the first point, our focus is on
the allocation of tasks to links that are consistent with evolutionary stability. Such results tell us how the structure of the
network shapes evolutionary dynamics. They can be helpful for the development of algorithms calculating an ESS for a given
system. The next theorem shows that in an evolutionary equilibrium there isminimal overlap in the tasks served by different
links, in that two distinct links (evenwith the same speed)may not be used by tasks with different weights. In fact the result
is stronger in that if link " is used for taskw and "′ forw′ #= w, then at least one of the linksmust not be optimal for the other
link’s task. This specialization result can be regarded as a stronger version of Lemma 3.1(6), where " and "′ can have the
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Fig. 3. A typical allocation of tasks to links in an ESS illustrating the necessary condition of Theorem 5.1. Links in the same link group (e.g., with speed 90
in the figure) may be allocated at most one task size (300 in the figure). Links that are the only ones with a given speed may be allocated more than one
task size (see the links with speeds 70 and 60 in the figure), but may share at most one task size (260 in the figure).

Fig. 4. To illustrate the construction for the proof of Theorem 5.1: Suppose that two links are respectively used by two tasks. Then a mutant distribution
can increase the load on one of the two links – 2 in the example – while using it less frequently on average, and it can decrease the load on the other link
– 1 in the example – while using it more frequently on average.

same speed. Unfortunately, the specialization condition of the Theorem is necessary but not sufficient, as Observation 5.3
will show. Fig. 3 illustrates the specialization condition.

The idea of the proof of the next theorem is that if two distinct links " and "′ are used with a probability > 0 by users
with different tasks, it is possible to create a ‘‘better’’ mutant distribution. Themutant distribution increases the load on one
of the two links, say " (by putting the task with the bigger weight with a larger probability onto ", and, in turn, by putting
the smaller task with smaller probability onto "′), but uses the link overall with a smaller probability. Note that this strategy
is possible only if we have different task weights.

Example 5. Consider again the task allocation game and the strategy illustrated in Fig. 1, where the uniform assignment of
tasks to links is denoted σ ∗. As we saw in Section 4, the mutation σ shifts load between links 1 and 2 to increase the load
on 2 while decreasing its overall usage, and to decrease the load on 1 while increasing its overall usage. Fig. 4 diagrams this
shift.

Theorem 5.1 (Specialization). Let G be a symmetric Bayesian task allocation game with mixed strategy σ ∗. Assume w #= w′,
" #= "′ with c" ≥ c"′ , and suppose the following conditions are fulfilled.

1. w ∈ support("|σ ∗) and w′ ∈ support("′|σ ∗),
2. w, w′ ∈ opt("|σ ∗), and w, w′ ∈ opt("′|σ ∗).

Then there is a mutation σ that defeats σ ∗, and hence σ ∗ is not evolutionarily stable.

Proof. To show a contradiction suppose that (σ ∗)(n) is a Bayesian Nash equilibrium and, without loss of generality, assume
that w > w′. We now want to define a mutant strategy that defeats the original strategy σ ∗. For that we adjust the
probabilities σ ∗("|w), σ ∗("′|w), σ ∗("|w′), and σ ∗("′|w′) by d1 and d2. The quantities d1 and d2 are chosen such that the
following inequalities are fulfilled.

1. µ(w) · d1 < µ(w′) · d2, and d1 · µ(w) · w > d2 · µ(w′) · w′.
2. σ ∗("|w) − d1 > 0, σ ∗("|w′) + d2 < 1, σ ∗("′|w) + d1 < 1, and σ ∗("′|w′) − d2 > 0.

In the following we assume for the time being that these quantities d1, d2 exist with d1 #= 0 and d2 #= 0; at the end of the
proof we show how to compute suitable values for d1 and d2. Then we define a mutant σ as follows. First, if w′′ /∈ {w, w′}
or "′′ /∈ {", "′} then σ ("′′|w′′) = σ ∗("′′|w′′). Thus for all links "′′ /∈ {", "′} we have load("′′|σ ∗) = load("′′|σ ). For the rest of
the links and tasks we define σ as follows.

• σ ("|w) = σ ∗("|w) − d1, and σ ("|w′) = σ ∗("|w′) + d2,
• σ ("′|w) = σ ∗("′|w) + d1, and σ ("′|w′) = σ ∗("′|w′) − d2.
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By the hypothesis of the theorem that the links ", "′ are optimal for bothw andw′ it follows that σ is a best reply to (σ ∗)(n−1).
Observation 5.2 implies that

∑

"′′∈L

[load("′′|σ ∗) − load("′′|σ )] · [σ ∗("′′|W ) − σ ("′′|W )] = [load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )]

+ [load("′|σ ∗) − load("′|σ )] · [σ ∗("′|W ) − σ ("′|W )] < 0.

By Lemma 4.3 σ is a successful mutation, contradicting the hypothesis that σ ∗ is an ESS.
It remains to show the existence of d1, d2. It is easy to see that the first condition in the definition of d1 and d2 gives us

µ(w′)

µ(w)
>

d1
d2

>
µ(w′) · w′

µ(w) · w
.

Also, the conditions for d1 are equivalent to d1 < min{σ ∗("|w), 1 − σ ∗("′|w)}. Since 1 − σ ∗("′|w) ≥ σ ∗("|w) it is enough
to show that we can find d1 such that d1 < σ ∗("|w). Similarly, we can argue that is enough to show that we can find d2 such
that d2 < σ ∗("′|w′). Altogether we have the following conditions equivalent to the original ones:

µ(w′)

µ(w)
>

d1
d2

>
µ(w′) · w′

µ(w) · w
, σ ∗("|w) > d1, and σ ∗("′|w′) > d2.

Since w > w′ we have w′/w < 1. Therefore

µ(w′)

µ(w)
>

µ(w′) · w′

µ(w) · w
.

Now by the density of rationals there is a rational between any two reals, and so there is a rational a/b such that

µ(w′)

µ(w)
>

a
b

>
µ(w′) · w′

µ(w) · w
.

Since σ ∗ uses link " for w we have σ ∗("|w) > 0, and similarly σ ∗("′|w′) > 0. Choose an integer k such that 1/(b · k) <
σ ∗("|w) and 1/(a · k) < σ ∗("′|w′). Now setting d1 = 1/(b · k) and d2 = 1/(a · k) satisfies the second two inequalities. Also
we have d1/d2 = (a · k)/(b · k) = a/b, and the first equation of the new specification of d1 and d2 is fulfilled. !

Observation 5.2. Under the conditions of Theorem 5.1 we have
(
load("|σ ∗) − load("|σ )

)
·
(
σ ∗("|W ) − σ ("|W )

)
< 0

and
(
load("′|σ ∗) − load("′|σ )

)
·
(
σ ∗("′|W ) − σ ("′|W )

)
< 0.

Proof. To show this result we show the following inequalities.

1. load("|σ ∗) − load("|σ ) > 0.
2. σ ∗("|W ) − σ ("|W ) < 0.
3. load("′|σ ∗) − load("′|σ ) < 0.
4. σ ∗("′|W ) − σ ("′|W ) > 0.

1. We have

load("|σ ∗) − load("|σ ) =
∑

w′′∈W

µ(w′′) · w′′

c"
· σ ∗("|w′′) −

∑

w′′∈W

µ(w′′) · w′′

c"
· σ ("|w′′)

=
∑

w′′∈W

µ(w′′) · w′′

c"
· (σ ∗("|w′′) − σ ("|w′′))

= 1
c"

·
(
µ(w) · w · d1 − µ(w′) · w′ · d2

)
> 0.

The last inequality follows from the conditions on d1, d2.
2. Consider the difference in the marginal probabilities on the links. It is easy to see that for all "′′ ∈ L we have

σ ∗("′′|W ) − σ ("′′|W ) = µ(w) · (σ ∗("′′|w) − σ ("′′|w)) + µ(w′) · (σ ∗("′′|w′) − σ ("′′|w′)).

By definition of σ we have and the choice of d1 and d2 we have

σ ∗("|W ) − σ ("|W ) = µ(w) ·
(
σ ∗("|(w) − (σ ∗("|w) − d1)

)
+ µ(w′) · (σ ∗("|w′) − (σ ∗("|w′) + d2))

= µ(w) · d1 − µ(w′) · d2 < 0.
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3. Similar to (1)

load("′|σ ∗) − load("′|σ ) =
∑

w′′∈W

µ(w′′) · w′′

c"′
· (σ ∗("′|w′′) − σ ("′|w′′))

= 1
c"′

·
(
µ(w′) · w′ · d2 − µ(w) · w · d1

)
< 0.

4. Similarly to (2) we have

σ ∗("′|W ) − σ ("′|W ) = µ(w) · (σ ∗("′|w) − (σ ∗("′|w) + d1)) + µ(w′) · (σ ∗("′|w′) − (σ ∗("′|w′) − d2))
= µ(w′) · d2 − µ(w) · d1 > 0. !

Theorem 3.2 implies that there is only one symmetric Bayesian Nash equilibrium for the task allocation game of Fig. 1,
which by the construction of Fig. 4 is not an ESS; so there is no ESS in this task allocation game.More generally, Theorems 3.2
and 5.1 imply that there is no ESS in a task allocation game with more than one link and more than one task size where all
links have the same speed.

The next observation gives a counterexample showing that the specialization condition from Theorem 5.1 is necessary
but unfortunately not sufficient for an ESS.

Observation 5.3. There exists a symmetric Bayesian task allocation game Gwith a strategy σ such that σ meets the specialization
condition of Theorem 5.1 for any w #= w′ and " #= "′, but σ is not an ESS.

Proof. Assume three resources 1, 2, 3 with speeds c1 = 6, c2 = 4, and c3 = 2 and two task sizes w = 21 and w′ = 1. We
define µ(21) = 2/3 and µ(1) = 1/3. The strategy σ is defined as follows.

w σ (1|w) σ (2|w) σ (3|w)

1 0 1/3 2/3
21 19/21 2/21 0

σ defines a symmetric Bayesian Nash equilibrium fulfilling the necessary condition for an ESS established by Theorem 5.1.
The next strategy σ ′ constitutes a successful mutation.

w σ ′(1|w) σ ′(2|w) σ ′(3|w)

1 0 1/3 − 0.008 2/3 + 0.008
21 19/21 − 0.001 2/21 + 0.001 0 !

Theorem5.1 is the last result required to establish the uniqueness of an ESS for symmetric Bayesian task allocation games.

Theorem 5.4 (Uniqueness). Let G be a symmetric Bayesian task allocation game with ESS σ ∗.

1. Fix any two links " #= "′ with the same speed, i.e. c" = c"′ . Then for all task weights w we have σ ∗("|w) = σ ∗("′|w) and
|support("|σ ∗)| ≤ 1.

2. The ESS σ ∗ is the unique ESS for G.

Proof. Recall that, in a Bayesian Nash equilibrium, two links " and "′ with the same speed have always the same load
(Lemma 3.1(2)).

Part 1. We show for contradiction that if c" = c"′ and there is a weight w ∈ W such that σ ∗("|w) #= σ ∗("′|w), then there is
amutation σ that defeats σ ∗. W.l.o.g., suppose that σ ∗("|w) > 0.We know that σ ∗ is a best reply to (σ ∗)(n−1). Since c" = c"′
and the loads on links " and "′ are equal, it follows that for all tasks w, either both " and "′ are optimal for w, or both are not
optimal for w. We have to consider several cases.

1. σ ∗ uses " and "′ for task w but not for any other tasks (i.e., support("|σ ∗) = support("′|σ ∗) = {w}). Then since
load("|σ ∗) = load("′|σ ∗) we immediately get σ ∗("|w) = σ ∗("′|w), which is a contradiction.

2. There is a task w′ #= w such that σ ∗ uses link "′ for task w′. Then we have two distinct tasks w, w′ such that σ ∗ uses link
" forw and link "′ forw′. Since for all tasksw, either both " and "′ are optimal or both are not optimal, and due to the fact
that σ ∗ is a best reply to (σ ∗)(n−1), we have " and hence "′ is optimal for w. Similarly, "′ and " are optimal for w′ given
(σ ∗)(n−1). So Theorem 5.1 applies, and there is a mutation σ that defeats σ ∗.

3. σ ∗("′|w′) = 0 for all w′ #= w. Then σ ∗ must use link "′ for task w, since load("′|σ ∗) = load("|σ ∗) > 0. Since Case 1
does not hold, there is a task w′ #= w such that σ ∗ uses link " for w′. So again we have link " is optimal for w and link "′

is optimal for w′ given (σ ∗)(n−1), Theorem 5.1 applies, and there is a mutation σ that defeats σ ∗.

This establishes that σ ∗("|w) = σ ∗("′|w) for all task sizes w. Thus support("|σ ∗) = support("′|σ ∗). Now if σ ∗ uses "
and "′ for more than one task size, we have two different task sizes both optimal for " and "′, Theorem 5.1 applies, and there
is a mutation σ that defeats σ ∗. Therefore |support("|σ ∗)| ≤ 1 as required.
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Fig. 5. A typical allocation of tasks to links in a clustered symmetric Bayesian Nash equilibrium,which is guaranteed to be an ESS by Theorem 5.5. Links in the
same link group (e.g., with speed 90 in the figure) may be allocated at most one task size (300 in the figure). Links with different speeds may be allocated
more than one task size, but then tasks with that size are not allocated anywhere else (e.g., in the figure, the link with speed 60 exclusively serves tasks of
size 250 and 255).

Part 2. The first part of this theorem implies that two links ", "′ with the same speed can share at most one task, that is,
|support("|σ ) ∩ support("′|σ )| ≤ 1. (For two links with different speeds the bound on the shared support follows already
from Lemma 3.1(6).) By Theorem 3.2, all symmetric equilibria σ agree on the distribution σL on a link group L. Now there
are two cases.

Case 1: L = {"}. The distribution σ ∗("|·) is uniquely determined since the distribution σ ∗(L|·) is.
Case 2: |L| > 1. Then by Theorem 5.4(1), there is at most one task size w such that σ ∗(L|w) > 0. If there is exactly one
task size w with σ ∗(L|w) > 0 then for all links " ∈ L we have σ ∗("|w) = 1/|L| for any ESS σ ∗. Otherwise (no task weight
w with σ ∗(L|w) > 0) for all links " ∈ L we have σ ∗("|w) = 0 for any ESS σ ∗. In either case again, the distribution for each
link " ∈ L is uniquely determined. !

Now we give a structural condition that is sufficient for an ESS. It can be used to construct an ESS in a wide variety of
models where the ESS exists. Theorem 5.1 shows that an ESS requires links to ‘‘specialize’’ in tasks where distinct links do
not share two distinct tasks. A stronger condition is to require that if a link is optimal for two distinct tasks, then no other
link is optimal for either of the tasks. We call such a distribution clustered.

Definition 5. In an n-player symmetric Bayesian task allocation game G, a symmetric strategy profile σ (n) is clustered if for
any two distinct tasks w, w′ and any link ", if " is optimal for both w and w′ given σ n−1, then no other link is optimal for w
or w′ given σ n−1.

Fig. 5 illustrates clustering. The next theorem establishes that every clustered symmetric Bayesian Nash equilibrium is an
ESS. Intuitively, the reason for this is as follows. Assuming the clustering condition, there are three cases for a given Bayesian
Nash equilibrium σ ∗ and a possible mutation σ that is a best reply to σ ∗. First, a link " may be optimal for no task size given
σ ∗. Then neither σ ∗ nor σ use ", so this link makes no difference to the relative performance of σ and σ ∗. Second, a link "
may be optimal for more than one task size given σ ∗, say task sizesw, w′. Then clustering requires that " is the only optimal
link for w and w′, so both σ ∗ and σ use " with probability 1 for w and w′, and there is again no difference between them
with respect to ". Third, a link " may be optimal for exact one task w". Then all links optimal for w are optimal for w only. In
that case the cluster of these links forms a Bayesian Nash equilibrium on its own with the single task w; it is easily shown
that with just one task size to consider, any equilibrium is an ESS since there is no room to shift links from one task size to
another.

Theorem 5.5 (Clustering). Every clustered Bayesian Nash equilibrium is an ESS, but not vice versa. More precisely:

1. Let G be a symmetric Bayesian task allocation game. If (σ ∗)(n) is a clustered Bayesian Nash equilibrium in G, then σ ∗ is an ESS
in G.

2. There is a symmetric Bayesian task allocation game G that has a non-clustered ESS and no clustered ESS.

Proof. We first prove (1), the sufficiency of the clustering condition.

Part 1. To establish that a clustered Bayesian Nash equilibrium is an ESS, let σ be any best reply to (σ ∗)(n−1). We show that
∑

"∈L

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )] > 0

thus by Lemma 4.3 σ ∗ is an ESS. Our argument decomposes the sum above into two groups; the first group contains links l
that are optimal for exactly one task given (σ ∗)(n−1). The second group contains all links that are optimal for more than one
task size and links that are optimal for none task size. The set of links in the first group are denoted by S ⊆ L. For each link
" ∈ S, we write w" for the unique task such that " is optimal for w" given (σ ∗)(n−1). The set of links in the second group are
denoted by S̄ ⊆ L.
Group 1. If " ∈ S, then clustering implies that all links optimal for task w" are optimal only for w". The application of
Proposition 2.2 and the fact that both σ and σ ∗ are best replies to (σ ∗)(n−1) shows that

support("|σ ∗) ⊆ {w"}
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Fig. 6. An example of an ESS that is not clustered, so clustering is sufficient but not necessary for an ESS.

and
support("|σ ) ⊆ {w"}.

Therefore the differences in load and frequency of use of link " depend only on the task weight w", which implies that
[
load("|σ ∗) − load("|σ )

]
·
[
σ ∗("|W ) − σ ("|W )

]
=

[
w"

c"
· σ ∗("|w") − σ ("|w")

]
·
[
σ ∗("|w") − σ ("|w")

]

= w"

c"
·
[
σ ∗("|w") − σ ("|w")

]2 ≥ 0. (2)

Group2.Herewe argue that, if a link " ∈ S̄, thenσ ∗ andσ agree on the distribution of tasks on ". If a link " ∈ S̄ is optimal for no
task size given (σ ∗)(n−1), then by Proposition 2.2, neither σ ∗ nor σ use " for any task size w, that is, σ ∗("|w) = σ ("|w) = 0
for all task sizes w.

If a link " ∈ S̄ is optimal formore than one task size, then clustering requires that " is uniquely optimal for these task sizes.
That is, for allw ∈ opt("|(σ ∗)n−1), no other link "′ #= " is optimal forw given (σ ∗)n−1).With Proposition 2.2, this implies that
for all w ∈ opt("|(σ ∗)n−1) we have σ ∗("|w) = σ ("|w) = 1. For all w #∈ opt("|(σ ∗)n−1), we have σ ∗("|w) = σ ("|w) = 0.

The above two cases showed that we can assume
σ ∗("|w) = σ ("|w)

and for all links " ∈ S̄ and task sizes w we have
[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )]. (3)

Since σ #= σ ∗, there is a link "δ and a task w"δ
such that

σ ∗("δ|w"δ
) #= σ ("δ|w"δ

).

As the two strategies agree on links optimal for 0 or more than task size (Eq. (3)), we have " ∈ S. So Eq. (2) and the fact that
both w"δ

and c"δ
are strictly positive imply that

[
load("δ|σ ∗) − load("δ|σ )

]
·
[
σ ∗("δ|W ) − σ ("δ|W )

]
= w"δ

c"δ

·
[
σ ∗("δ|w"δ

) − σ ("δ|w"δ
)
]2

> 0. (4)

Combining Eqs. (2)–(4) yields the desired result:
∑

"∈L

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )] =
∑

"∈S̄

[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )]

+
∑

"∈S−{"δ}
[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )] + [load("δ|σ ∗) − load("δ|σ )]

· [σ ∗("δ|W ) − σ ("δ|W )]
=

∑

"∈S−{"δ}
[load("|σ ∗) − load("|σ )] · [σ ∗("|W ) − σ ("|W )] + w"δ

c"δ

·
[
σ ∗("δ|w"δ

) − σ ("δ|w"δ
)
]2

> 0.

Part 2. Now we show that there exists a task allocation game G that has a non-clustered ESS. The game G has two links 1
and 2 with c1 = 10 and c2 = 2. We have two task sizes 2 and 99, distributed as µ(99) = 1/4 and µ(2) = 3/4. Then the
state σ ∗(1|99) = 1, σ ∗(2|99) = 0, σ ∗(1|2) = 1/2, and σ ∗(2|2) = 1/2 is an ESS. (Mainly because the only optimal link for
task size 99 is link 1.) It is not clustered since link 1 is used for both tasks, and both links are used for task size 2. It is also
easy to see that there is no clustered Bayesian Nash equilibrium, and, hence, no clustered ESS in this task allocation game.
Fig. 6 illustrates this counterexample. !

6. Conclusions and future work

We proposed the notion of an evolutionarily stable strategy as a refinement of Bayesian Nash equilibrium that (1)
provides a criterion for separating stable from unstable equilibria, and (2) corresponds to a steady state of evolutionary
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Table 2
A Hawk–Dove game.

Hawk (H) Dove (D)

Hawk −2, −2 6, 0
Dove 0, 6 3, 3

process in whichmore successful strategies spread in a user community over time.We investigated the symmetric Bayesian
task allocation game, a selfish task allocation game which is a special case of general Bayesian task allocation games. Our
results provide a necessary and sufficient condition under which a deviation (mutation) from a Bayesian Nash equilibrium
is evolutionarily successful. If the structure of task–link allocations is consistent with evolutionary stability, then links have
to ‘‘specialize’’ in tasks in that they may serve at most one task in common with another link. Finally, we established the
uniqueness of evolutionarily stable strategies.

An important openquestion is to determine the computational complexity of finding evolutionary equilibria in a Bayesian
task allocation game. Both our necessary condition (specialization) and our sufficient condition (clustering) for an ESS can
be checked in polynomial time for a given candidate ESS. Generating a candidate ESS involves finding a symmetric Bayesian
Nash equilibrium. Research into computing BayesianNash equilibria shows that symmetric equilibria are significantly easier
to find than Bayesian Nash equilibria in general, and highly optimized local iterative search techniques are available [35,5].
So we expect that in many symmetric Bayesian task allocation games evolutionary analysis can proceed efficiently by first
finding a symmetric Bayesian Nash equilibrium, and then checking the clustering criterion to establish that the equilibrium
is an ESS, or checking the specialization criterion to establish that there is no ESS. The difficult equilibria to analyze are the
ones that are specialized but not clustered, because in this case evolutionary stability depends on the exact magnitudes of
the parameters of the model, as Observation 5.3 shows.

Another important avenue for future research is to investigate evolutionary dynamics in the symmetric Bayesian task
allocation game, for example the replicator dynamics, and to obtain bounds on the speed of convergence to an ESS (cf.
[14]).
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Appendix. Evolutionary stability in the Hawk–Dove game

This section introduces the concept of evolutionary stability in a simple 2× 2matrix game that is often used to illustrate
ESS in biological game theory. A 2-player Hawk–Dove game can be represented with the payoff matrix shown in Table 2.
The two players have the same strategy set S = {H,D}. By convention, the row player is player 1, column player 2 and the
row player’s payoff is given first. Thus

u1(H,H) = −2 = u2(H,H).

One interpretation of this game is that it represents a struggle between two animals over a food source of value 6. Each
animal may engage in hawkish or in dovish behavior. A hawk gains all the food against a dove. Two doves share the food
equally. Two hawks fight, with a risk of injury to each, leading to an expected payoff of −2.

Let H3/5 denote the mixed strategy in which hawk is chosen with probability 3/5. It is easy to see that the only mixed
strategy equilibrium for the Hawk–Dove game is the symmetric equilibrium (H3/5,H3/5) where each player chooses H3/5. A
possible population whose distribution corresponds to H3/5 is the multiset

P∗ = [H,H,H,H,H,H,D,D,D,D].
The mixed strategy H3/5 represents an equilibrium state of this population.

Suppose we have a group of mutantsM = [H,H,D,D]. Then
P ∪ M = [H,H,H,H,H,H,D,D,D,D,H,H,D,D].

By inspection, the corresponding population distribution assigns frequency (6 + 2)/(10 + 4) = 4/7 to Hawk. The relative
size of the mutant group is ε = 4/14. Thus the mixture (1− ε)π + επPM assigns 10/14 · 6/10+ 4/14 · 2/4 to Hawk, which
is equal to 4/7. Thus, the payoff from choosing H in the mixed population is

u(H, 4/7) = −2 · 4/7 + 6 · 3/7 = 10/7,
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whereas the payoff from choosing D is

u(D, 4/7) = 3 · 3/7 = 9/7.

Since u(H, 4/7) > u(D, 4/7), the more probability a mixed strategy assigns to H , the higher payoff it achieves against the
distribution 4/7. Now for the original distribution P(H) = 3/5, whereas for the mutants πM(H) = 1/2, so πP(H) > πM(H)
and it follows that

u(πP , 4/7) > u(πM , 4/7).

So a mutation whose strategy distribution is πM(H) = 1/2 fails if its relative size is below ε = 2/7.

References

[1] P. Battigalli, M. Gilli, M.C. Molinari, Learning and Convergence to Equilibrium in Repeated Strategic Interactions: An Introductory Survey, in: Ricerche
Economiche, vol. 46, 1992, pp. 335–377.

[2] R. Beier, A. Czumaj, P. Krysta, B. Vöcking, Computing equilibria for congestion games with (im)perfect information, in: Proc. 13th Annual Symposium
on Discrete Algorithms, SODA, 2004, pp. 746–755.

[3] P. Berenbrink, L.A. Goldberg, P. Goldberg, R. Martin, Utilitarian resource assignment, Journal of Discrete Algorithms 4 (4) (2006) 567–587.
[4] P. Berenbrink, O. Schulte, Evolutionary equilibrium in Bayesian routing games: Specialization and Niche formation, in: Proc. of 15th European

Symposium on Algorithms, ESA, 2007, pp. 29–40.
[5] N.A.R. Bhat, K. Leyton-Brown, Computing Nash equilibria of action-graph games, in: Proc. of 20th Conference on Uncertainty in Artificial Intelligence,

UAI, 2004, pp. 35–42.
[6] M. Broom, C. Cannings, G.T. Vickers, Multi-player matrix games, Bulletin of Mathematical Biology 59 (5) (1997) 931–952.
[7] George Christodoulou, E. Koutsoupias, The price of anarchy of finite congestion games, in: Proc. of the 37th Annual Symposium on Theory of

Computing, STOC, 2005, pp. 67–73.
[8] A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, in: Proc. of 13th Annual Symposium on Discrete Algorithms, SODA, 2002, pp. 413–420.
[9] A. Czumaj, P. Krysta, B. Vöcking, Selfish traffic allocation for server farms, in: Proc. of 34th Annual Symposium on Theory of Computing, STOC, 2002,

pp. 287–296.
[10] J.C. Ely, W.H. Sandholm, Evolution in Bayesian games I: Theory, Games and Economic Behavior 53 (1) (2005) 83–109.
[11] K. Etessami, A. Lochbihler, The computational complexity of evolutionarily stable strategies, Electronic Colloquium on Computational Complexity 55

(2004).
[12] A. Fabrikant, A. Luthra, E.N. Maneva, C.H. Papadimitriou, S. Shenker, On a network creation game, in: Proc. of 22nd Symposium on Principles of

Distributed Computing, PODC, 2003, pp. 347–351.
[13] R. Feldmann, M. Gairing, T. Lücking, B. Monien, M. Rode, Nashification and the coordination ratio for a selfish routing game, in: Proc.of 30th

International Colloquium on Automata, Languages and Programming, ICALP, 2003, pp. 514–526.
[14] S. Fischer, B. Vöcking, On the evolution of selfish routing, in: Proc. of 12th European Symposium on Algorithms, ESA, 2004, pp. 323–334.
[15] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game,

in: Proc. of 29th International Colloquium on Automata, Languages, and Programming, ICALP, 2002, pp. 123–134.
[16] M. Gairing, B. Monien, K. Tiemann, Selfish routing with incomplete information, Theory of Computing Systems 42 (1) (2008) 91–130.
[17] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, Computing Nash equilibria for scheduling on restricted parallel links, in: Proc. of the 36th Annual

Symposium on Theory of Computing, STOC, 2004, pp. 613–622.
[18] C. Georgiou, T. Pavlides, A. Philippou, Selfish routing in the presence of network uncertainty, Parallel Processing Letters 19 (1) (2009) 141–157.
[19] S. Govindan, P.J. Reny, A.J. Robson, A short proof of Harsanyi’s purification theorem, Games and Economic Behavior 45 (2) (2003) 369–374.
[20] P. Hammerstein, R. Selten, Game Theory and Evolutionary Biology, in: R.J. Aumann, S. Hart (Eds.), Handbook of Game Theory, vol. 2, Elsevier, 1994,

pp. 929–993 (Chapter 2).
[21] J.C. Harsanyi, Gameswith incomplete informationplayedby ‘Bayesian players’, Parts I, II, and III,Management Science 14 (1967) 159–182, pp. 320–334,

and pp. 486–502.
[22] J.C. Harsanyi, Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points, International Journal of Game Theory

2 (1973) 1–23.
[23] J. Hofbauer, W.H. Sandholm, Evolution in games with randomly disturbed payoffs, Journal of Economic Theory 132 (2007) 47–69.
[24] M.S. Kearns, S. Suri, Networks preserving evolutionary equilibria and the power of randomization, in: Proc. of the 7th Conference on Electronic

Commerce 2006, 2006, pp. 200–207.
[25] S. Kontogiannis, P. Spirakis, The contribution of game theory to complex systems, in: Proc. of 10th Panhellenic Conference on Informatics, PCI, 2005,

pp. 101–112.
[26] E. Koutsoupias, C.H. Papadimitriou,Worst-case equilibria, in: Proc. of the 16th Annual Symposium on Theoretical Aspects of Computer Science, STACS,

1999, pp. 404–413.
[27] T. Lücking, M. Mavronicolas, B. Monien, M. Rode, A new model for selfish routing, in: Proc. of the 21st Annual Symposium on Theoretical Aspects of

Computer Science, STACS, 2004, pp. 547–558.
[28] M. Mavronicolas, I. Milchtaich, B. Monien, K. Tiemann, Congestion games with player-specific constants, in: Proc. of Mathematical foundations of

Computer Science, MFCS, 2007, pp. 633–644.
[29] M. Mavronicolas, P. Spirakis, The price of selfish routing, in: Proc. of the 33rd Annual Symposium on Theory of Computing, STOC, 2001, pp. 510–519.
[30] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
[31] I. Milchtaich, Congestion games with player-specific payoff functions, Games and Economic Behavior 13 (1) (1996) 111–124.
[32] J.F. Nash, Equilibrium points in N-person games, Proceedings of the National Academy of Sciences of the United States of America 36 (1950) 48–49.
[33] M. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, Belknap Press, 2006.
[34] M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
[35] C.H. Papadimitriou, T. Roughgarden, Computing equilibria in multi-player games, in: Proc. of the Symposium on Discrete algorithms, SODA, 2005, pp.

82–91.
[36] R.W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, International Journal of Game Theory 2 (1973) 65–67.
[37] T. Roughgarden, É. Tardos, How bad is selfish routing? Journal of the ACM 49 (2) (2002) 236–259.
[38] W.H. Sandholm, Evolutionary implementation and congestion pricing, Review of Economic Studies 69 (2002) 667–689.
[39] W.H. Sandholm, Evolution in Bayesian games II: Stability of purified equilibrium, Journal of Economic Theory 136 (1) (2007) 641–667.
[40] E. van Damme, Stability and Perfection of Nash Equilibria, 2nd edition, Springer-Verlag, Berlin, 1991.
[41] J. Weibull, Evolutionary Game Theory, The MIT Press, Cambridge, MA, 1995.


