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Abstract. This paper studies efficient learning with respect to mind changes.
Our starting point is the idea that a learner that is efficient with respect to mind
changes minimizes mind changes not only globally in the entire learning prob-
lem, but also locally in subproblems after receiving some evidence. Formalizing
this idea leads to the notion of uniform mind change optimality. We character-
ize the structure of language classes that can be identified with at most α mind
changes by some learner (not necessarily effective): A language class L is iden-
tifiable with α mind changes iff the accumulation order of L is at most α. Accu-
mulation order is a classic concept from point-set topology. To aid the construc-
tion of learning algorithms, we show that the characteristic property of uniformly
mind change optimal learners is that they output conjectures (languages) with
maximal accumulation order. We illustrate the theory by describing mind change
optimal learners for various problems such as identifying linear subspaces and
one-variable patterns.

1 Introduction

One of the goals of computational learning theory is to design learning algorithms for
which we can provide performance guarantees. Identification in the limit is a central
performance goal in Gold’s language learning paradigm [9]. A well-studied refinement
of this notion is identification with bounded mind changes [8, 1]. In this paper we in-
vestigate a further refinement that we term uniform mind change optimality (UMC-
optimality). Briefly, a learner is UMC-optimal if the learner achieves the best possible
mind change bound not only for the entire problem, but also relative to data sequences
that the learner may observe.

The general theory in this paper has two main goals. (1) To provide necessary and
sufficient conditions for a language collection to be identifiable with a given (ordinal)
mind-change bound by some learner (not necessarily effective). (2) To provide neces-
sary and sufficient conditions for a learner to be UMC-optimal. The results addressing
(1) help us determine when a UMC-optimal learning algorithm exists, and the results
addressing (2) help us to construct optimal learning algorithms when they do exist.

We situate our study in the framework of point-set topology. Previous work has
shown the usefulness of topology for learning theory [25, Ch.10], [21, 14, 4]. We show
how to view a language collection as a topological space; this allows us to apply Can-
tor’s classic concept of accumulation order which assigns an ordinal acc(L) to a lan-
guage collection, if L has bounded accumulation order. We show that a language collec-
tion L is identifiable with mind change bound α by a learner if and only if acc(L) = α.



This result establishes a purely information-theoretic and structural necessary condition
for identification with bounded mind changes. Based on the concept of accumulation
order, we provide necessary and sufficient conditions for a learner to be UMC-optimal.
These results show that UMC-optimality strongly constrains the conjectures of learners.
We illustrate these results by analyzing various learning problems, such as identifying
a linear subspace and a one-variable pattern.

The paper is organized as follows. Sect. 2 reviews standard concepts for language
identification and presents our definition of mind change optimality. Then we establish
the correspondence between mind change complexity and accumulation order. Sect. 4
gives necessary and sufficient conditions for a learner to be uniformly mind change
optimal. Finally, we describe a general approach to constructing UMC-optimal effective
learners and illustrate it with one-variable pattern languages.

2 Preliminaries: Language Identification

2.1 Standard Concepts

We employ notation and terminology from [12], [20, Ch.1], and [9]. We write N for
the set of natural numbers: {0, 1, 2, ...}. The symbols ⊆,⊇,⊂,⊃, and ∅ respectively
stand for subset, superset, proper subset, proper superset, and the empty set. We view
a language as a set of strings. We identify strings with natural numbers encoding them.
Thus we define a language to be a subset of N and write L for a generic language [9,
p.449]. A language learning problem is a collection of languages; we write L for a
generic collection of languages. A text T is a mapping of N into N ∪ {#}, where #
is a symbol not in N. (The symbol # models pauses in data presentation.) We write
content(T ) for the intersection of N and the range of T . A text T is for a language L
iff L = content(T ). The initial sequence of text T of length n is denoted by T [n]. The
set of all finite initial sequences over N∪{#} is denoted by SEQ. We let σ and τ range
over SEQ. We write content(σ) for the intersection of N and the range of σ. The initial
sequence of σ of length n is denoted by σ[n].

We say that a language L is consistent with σ iff content(σ) ⊆ L. We write σ ⊂ T
or T ⊃ σ to denote that text T extends initial sequence σ. For a language collection L,
the set of all finite sequences consistent with L is denoted by SEQ(L) (i.e., SEQ(L) ≡
{σ ∈ SEQ : ∃L ∈ L. content(σ) ⊆ L}).

Examples.
(1) Let Li ≡ {n : n ≥ i}, where i ∈ N; we use COINIT to denote the class of
languages {Li : i ∈ N} [1, p.324].
(2) In the n-dimensional linear space Qn over the field of rationals Q, we can effectively
encode every vector v by a natural number. Then a linear subspace of Qn corresponds to
a language. We write LINEARn for the collection of all (encodings of) linear subspaces
of Qn.

A learner is a function that maps a finite sequence to a language or the question
mark ?, meaning “no answer for now”. We normally use the Greek letter Ψ and vari-
ants to denote a learner. Our term “learner” corresponds to the term “scientist” in [20,
Ch.2.1.2]. In typical applications we have available a syntactic representation for each



member of the language collection L under investigation. In such settings we assume
the existence of an index for each member of L, that is, a function index : L 7→ N

(cf. [10, p.18]), and we can take a learning function to be a function that maps a finite
sequence to an index for a language (learning functions are called “scientists” in [10,
Ch.3.3]). A computable learning function is a learning algorithm. We use the gen-
eral notion of a learner for more generality and simplicity until we consider issues of
computability.

Let L be a collection of languages. A learner Ψ for L is a mapping of SEQ into L∪
{?}. Thus the learners we consider are class-preserving; for the results in this paper, this
assumption carries no loss of generality. Usually context fixes the language collection
L for a learner Ψ .

We say that a learner Ψ identifies a language L on a text T for L, if Ψ(T [n]) = L for
all but a finite number of stages n. Next we define identification of a language collection
relative to some evidence.

Definition 1. A learner Ψ identifies L given σ ⇐⇒ for every language L ∈ L, and
for every text T ⊃ σ for L, we have that Ψ identifies L on T .

Thus a learner Ψ identifies a language collection L if Ψ identifies L given the empty
sequence Λ.

Examples.
(1) The following learner ΨCO identifies COINIT: If content(σ) = ∅, then ΨCO(σ)
:=?. Otherwise set m := min(content(σ)), and set ΨCO(σ) := Lm.
(2) Let vectors(σ) be the set of vectors whose code numbers appear in σ. Then define
ΨLIN(σ) = span(vectors(σ)), where span(V ) is the linear span of a set of vectors V .
The learner ΨLIN identifies LINEARn. The problem of identifying a linear subspace of
reactions arises in particle physics, where it corresponds to the problem of finding a set
of conservation principles governing observed particle reactions [17, 27]. Interestingly,
it appears that the theories accepted by the particle physics community match the output
of ΨLIN [28, 26].

A learner Ψ changes its mind at some nonempty finite sequence σ ∈ SEQ if
Ψ(σ) 6= Ψ(σ−) and Ψ(σ−) 6=?, where σ− is the initial segment of σ with σ’s last
element removed [7, 1]. (No mind changes occur at the empty sequence Λ.)

Definition 2 (based on [1]). Let Ψ be a learner and c be a function that assigns an
ordinal to each finite sequence σ ∈ SEQ.

1. c is a mind-change counter for Ψ and L if c(σ) < c(σ−) whenever Ψ changes its
mind at some nonempty sequence σ ∈ SEQ(L). When L is fixed by context, we
simply say that c is a mind change counter for Ψ .

2. Ψ identifies a class of languages L with mind-change bound α given σ ⇐⇒ Ψ
identifies L given σ and there is a mind-change counter c for Ψ and L such that
c(σ) = α.

3. A language collection L is identifiable with mind change bound α given σ ⇐⇒
there is a learner Ψ such that Ψ identifies L with mind change bound α given σ.



Examples.
(1) For COINIT, define a counter c0 as follows: c0(σ) := ω if content(σ) = ∅, where
ω is the first transfinite ordinal, and c0(σ) := min(content(σ)) otherwise. Then c0 is
a mind change counter for ΨCO given Λ. Hence ΨCO identifies COINIT with mind
change bound ω (cf. [1, Sect.1]).
(2) For LINEARn, define the counter c1(σ) by c1(σ) := n− dim(span(vectors(σ))),
where dim(V ) is the dimension of a space V . Then c1 is a mind change counter for
ΨLIN given Λ, so ΨLIN identifies LINEARn with mind change bound n.
(3) Let FIN be the class of languages {D ⊆ N : D is finite}. Then a learner that always
conjectures content(σ) identifies FIN. However, there is no mind change bound for
FIN [1].

2.2 Uniform Mind Change Optimality

In this section we introduce a new identification criterion that is the focus of this paper.
Our point of departure is the idea that learners that are efficient with respect to mind
changes should minimize mind changes not only globally in the entire learning problem
but also locally after receiving specific evidence. For example, in the COINIT problem,
the best global mind change bound for the entire problem is ω [1, Sect.1], but after
observing initial data 〈5〉, a mind change efficient learner should succeed with at most 5
more mind changes, as does ΨCO. However, there are many learners that require more
than 5 mind changes after observing 〈5〉 yet still succeed with the optimal mind change
bound of ω in the entire problem.

To formalize this motivation, consider a language collection L. If a mind change
bound exists for L given σ, we write MCL(σ) for the least ordinal α such that L is
identifiable with α mind changes given σ. It may be natural to require that a learner
should succeed with MCL(σ) mind changes after each data sequence σ ∈ SEQ(L);
indeed the learner ΨCO achieves this performance for COINIT. However, in general
this criterion appears too strong. The reason is the following possibility: A learner Ψ
may output a conjecture Ψ(σ) = L 6=?, then receive evidence σ inconsistent with L,
and “hang on” to a refuted conjecture L until it changes its mind to L′ at a future stage.
This may lead to one extra mind change (from L to L′) compared to the optimal number
of mind changes that a learner may have achieved starting with evidence σ, for example
by outputting ? until σ was observed.

A weaker requirement is that a learner Ψ has to be optimal for a subproblem L
given σ only if Ψ(σ) is consistent with σ. This leads us to the following definition. A
conjecture Ψ(σ) is valid for a sequence σ ∈ SEQ if Ψ(σ) 6=? and Ψ(σ) is consistent
with σ.

Definition 3. A learner Ψ is uniformly mind change optimal for L given σ ∈ SEQ if
there is a mind change counter c for Ψ such that (1) c(σ) = MCL(σ), and (2) for all
data sequences τ ⊇ σ, if Ψ(τ) is valid, then c(τ) = MCL(τ).

We use the abbreviation “UMC-optimal” for “uniformly mind change optimal” (the
terminology and intuition is similar to Kelly’s in [15, 16]). A learner Ψ is simply UMC-
optimal for L if Ψ is UMC-optimal given Λ.



Examples.
(1) In the COINIT problem, MCL(Λ) = ω, and MCL(σ) = min(content(σ)) when
content(σ) 6= ∅. Since c0 is a mind change counter for ΨCO, it follows that ΨCO is
UMC-optimal. Any learner Ψ such that (1) Ψ(σ) = ΨCO(σ) if content(σ) 6= ∅ and (2)
Ψ(σ) = Ψ(σ−) if content(σ) = ∅ is also UMC-optimal. (The initial conjecture Ψ(Λ)
is not constrained.)
(2) The learner ΨLIN is UMC-optimal. We will see that ΨLIN is the only learner that is
both UMC-optimal and always outputs valid conjectures. Thus for the problem of in-
ferring conservation laws, UMC-optimality coincides with the inferences of the physics
community.

3 A Topological Characterization of Mind-Change Bounded
Identifiability

Information-theoretical aspects of inductive inference have been studied by many learn-
ing theorists (e.g., [10] and [20]). As Jain et. al. observe [10, p.34]:

Many results in the theory of inductive inference do not depend upon com-
putability assumptions; rather, they are information theoretic in character. Con-
sideration of noncomputable scientists thereby facilitates the analysis of proofs,
making it clearer which assumptions carry the burden.

As an example, Angluin showed that her Condition 1 characterizes the indexed
families of nonempty recursive languages inferable from positive data by computable
learners [3, p.121] and that the noneffective version, Condition 2, is a necessary con-
dition for inferability by computable learners.1 Variants of Angluin’s Condition 2 turn
out to be both sufficient and necessary for various models of language identifiability by
noncomputable learners ([20, Ch.2.2.2][10, Thm.3.26]). Information theoretic require-
ments such as Condition 2 constitute necessary conditions for computable learners, and
are typically the easiest way to prove the unsolvability of some learning problems when
they do apply. For example, Apsitis used the Baire topology on total recursive functions
to show that EXα 6= EXα+1 [4, Sect.3]. On the positive side, if a sufficient condition
for noneffective learnability is met, it often yields insights that lead to the design of a
successful learning algorithm.

It has often been observed that point-set topology, one of the most fundamental
and well-studied mathematical subjects, provides useful concepts for describing the in-
formation theoretic structure of learning problems [25, Ch.10], [21, 4, 14]. In particular,
Apsitis investigated the mind change complexity of function learning problems in terms
of the Baire topology [4]. He showed that Cantor’s 1883 notion of accumulation order
in a topological space [6] defines a natural ordinal-valued measure of complexity for
function learning problems, and that accumulation order provides a lower bound on the
mind change complexity of a function learning problem. We generalize Apsitis’ use of
topology to apply it to language collections. The following section briefly reviews the
relevant topological concepts.

1 Condition 2 characterizes BC-learnability for computable learners [5].



3.1 Basic Definitions in Point-set Topology

A topological space over a set X is a pair (X,O), where O is a collection of subsets of
X , called open sets, such that ∅ and X are in O and O is closed under arbitrary union
and finite intersection. One way to define a topology for a set is to find a base for it. A
base B for X is a class of subsets of X such that

1.
⋃
B = X , and

2. for every x ∈ X and any B1, B2 ∈ B that contain x, there exists B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2.

For any base B, the set {
⋃
C : C ⊆ B} is a topology for X [18, p.52]. That is, an

open set is a union of sets in the base. Let L be a class of languages and σ ∈ SEQ.
We use L|σ to denote all languages in L that are consistent with σ (i.e., {L ∈ L :
L is consistent with σ}); similarly L|D denotes the languages in L that include a given
finite subset D. The next proposition shows that BL = {L|σ : σ ∈ SEQ} constitutes a
base for L.

Proposition 1. BL = {L|σ : σ ∈ SEQ} is a base for L; hence TL = {
⋃
S : S ⊆ BL}

is a topology for L.

The topology TL generalizes the positive information topology from recursion
theory [24, p.186] if we consider the graphs of functions as languages (as in [10,
Ch.3.9.2][20, Ch.2.6.2]).

Examples. For the language collection COINIT we have that COINIT |{2, 3} =
{L0, L1, L2} and COINIT |{0} = {L0}.

In a topological space (X, T ), a point x is isolated if there is an open set O ∈
T such that O = {x}. If x is not isolated, then x is an accumulation point of X .
Following Cantor [6], we define the derived sets using the concept of accumulation
points.

Definition 4 (Cantor). Let (X, T ) be topological space.

1. The 0-th derived set of X , denoted by X (0), is just X .
2. For every successor ordinal α, the α-th derived set of X , denoted by X (α), is the

set of all accumulation points of X (α−1).
3. For every limit ordinal α, the set X (α) is the intersection of all β-th derived sets,

where β < α. That is, X(α) =
⋂

β<α X(β).

We give an example from the topology of the real plane that illustrates the geomet-
rical intuitions behind the topological concepts.

Example. Let

A = {(
1

n
,

1

m
) : n, m ∈ N} ∪ {(

1

n
, 0) : n ∈ N} ∪ {(0,

1

m
) : m ∈ N}

be a set of points in the real plane R2 with the standard topology. We use iso(X) to
denote all isolated points in X . Then iso(A) = {( 1

n
, 1

m
) : n, m ∈ N}. Therefore

A(1) = {(
1

n
, 0) : n ∈ N} ∪ {(0,

1

m
) : m ∈ N}.



Similarly, we have A(2) = (0, 0), and A(3) = ∅.
In the topology TL, a language L is an isolated point of L iff there is a finite subset

D ⊆ L such that the observation of D entails L (i.e., L|D = {L}). The derived sets
of L can be defined inductively as shown in Def. 4. Note if α < β then L(α) ⊇ L(β).
It can be shown in set theory that there is an ordinal α such that L(β) = L(α), for all
β > α [13]. In other words, there must be a fix point for the derivation operation. If L
has an empty fix point, then we say L is scattered [18, p.78]. In a non-scattered space,
the nonempty fixed point is called a perfect kernel.

The accumulation order of a language L in L, denoted by accL(L) is the max-
imum ordinal α such that L ∈ L(α); when L is fixed by context, we simply write
acc(L) = α. The accumulation order of a class of languages L, denoted by acc(L),
is the supremum of the accumulation order of all languages in it. Therefore a language
collection has an accumulation order if and only if it is scattered.2

Examples.
(1) The only isolated point in COINIT is L0 = N, for COINIT |{0} = {L0}. There-
fore COINIT(1) = {Li : i ≥ 1}. Similarly L1 is the only isolated point in COINIT(1);
hence COINIT(2) = {Li : i ≥ 2}. It is easy to verify that COINIT(n) = {Li : i ≥ n}.
Therefore the accumulation order of language Li in COINIT is i and the accumulation
order of COINIT is ω = sup N.
(2) In LINEARn = {linear subspaces of Qn}, the only isolated point is Qn itself:
Let S be a set of n linearly independent points in Qn; then LINEARn |S = {Qn}.
Similarly every (n − i)-dimensional linear subspace of Qn is an isolated point in
LINEAR(i)

n . Therefore the accumulation order of LINEARn is n.
(3) In FIN, there is no isolated point. This is because for every finite subset S of N,
there are infinitely many languages in FIN that are consistent with S. Therefore FIN is
a perfect kernel of itself and FIN has no accumulation order.

3.2 Accumulation Order Characterizes Mind Change Complexity

In this section we show that the accumulation order of a language collection L is an
exact measure of its mind change complexity for (not necessarily effective) learners: if
acc(L) is unbounded, then L is not identifiable with any ordinal mind change bound;
and if acc(L) = α, then L is identifiable with a mind change bound.3

In a language topology, accumulation order has two fundamental properties that
we apply often. Let accL(σ) ≡ sup{accL(L) : L ∈ L|σ}; as usual, we omit the
subscript in context. A language L in L has the highest accumulation order given σ
if accL(L) = accL(σ) and for every L′ ∈ L|σ, L′ 6= L implies accL(L′) < accL(L).

Lemma 1. Let L be a scattered class of languages with bounded accumulation order.

1. For every language L ∈ L, for every text T for L, there exists a time n such that L
has the highest accumulation order given T [n].

2 Accumulation order is also called scattering height, derived length, Cantor-Bendixson rank, or
Cantor-Bendixson length [13].

3 Necessary and sufficient conditions for finite mind change identifiability by learning algo-
rithms appear in [19, 23].



2. For any two languages L1, L2 ∈ L such that L1 ⊂ L2 it holds that accL(L1) >
accL(L2).

Proof. Part 2 is immediate. Part 1: For contradiction, assume there is a text T for L such
that for all n, L|(T [n]) contains some language L′ such that acc(L′) ≥ acc(L) = α.
Then L is an accumulation point of L(α), the subclass of L that contains all languages
with accumulation order less than or equal to α. Therefore acc(L) ≥ α + 1, which is a
contradiction. ut

We now establish the correspondence between mind change complexity and accu-
mulation order: MCL(σ) = accL(σ).

Theorem 1. Let L be a language collection and let σ be a finite data sequence. Then
there is a learner Ψ that identifies L given σ with mind change bound α ⇐⇒
accL(σ) ≤ α.

Proof. (⇐) We first prove by transfinite induction the auxiliary claim (*): if there is
Lτ ∈ L that has the highest accumulation order given data sequence τ , then there is
a learner Ψτ and a counter cτ such that (1) Ψτ (τ) = Lτ , (2) Ψτ identifies L given τ ,
(3) cτ is a mind change counter for Ψτ given τ , and (4) cτ (τ) = acc(L|τ). Assume
(*) for all β < α and consider α = acc(L|τ). Note that (a) if τ ∗ ⊃ τ and there
is another language Lτ∗ 6= Lτ that has the highest accumulation order for τ ∗, then
acc(L|τ∗) < acc(L|τ). Hence by inductive hypothesis, we may choose a learner Ψτ∗

and cτ∗ with the properties (1)–(4). Now define Ψτ and cτ as follows for τ ′ ⊇ τ .

1. Ψτ (τ) := Lτ , and cτ (τ) := α.
2. if there is a τ∗ such that: τ ⊂ τ∗ ⊆ τ ′ and there is Lτ∗ 6= Lτ with the highest

accumulation order for τ∗, then let τ∗ be the least such sequence and set Ψτ (τ ′) :=
Ψτ∗(τ ′), and cτ (τ ′) := cτ∗(τ ′). (Intuitively, Ψτ follows Ψτ∗ after τ∗).

3. otherwise Ψτ (τ ′) := Lτ and cτ (τ ′) := α.

(1) and (4) are immediate. We verify (2) and (3): Let T ⊃ σ be a text for a target
language L ∈ L. If L = Lτ , then Clause 2 never applies and Ψτ converges to Lτ on T
without any mind changes after σ. Otherwise by Lemma. 1, there is a first stage n such
that Clause 2 applies at T [n]. Then Ψτ converges to L by choice of ΨT [n]. Also, no mind
change occurs at T [n′] for |σ| < n′ < n. By (a) and definition of cτ , cT [n], we have that
cτ (T [n − 1]) > cT [n](T [n]). And cτ follows cT [n] after stage n. This establishes (*).

Now we construct a learner Ψ as follows for all τ ⊇ σ.

1. if there is a τ∗ such that: σ ⊆ τ∗ ⊆ τ and there is Lτ∗ with the highest accumulation
order for τ∗, then let τ∗ be the least such sequence and set Ψ(τ) := Ψτ∗(τ), and
c(τ) := cτ∗(τ). (Intuitively, Ψ follows Ψτ∗ after τ∗).

2. Otherwise Ψ(τ) :=? and c(τ) := acc(L|σ).

We show that Ψ identifies L given σ. Let L ∈ L and let T ⊃ σ be any text for L.
Then by Lemma 1, there is a least time n such that some language L′ has the highest
accumulation order for T [n]. So the learner Ψ converges to L by choice of ΨT [n]. No



mind change occurs at or before T [n], and acc(L|σ) ≥ acc(L|T [n]); this shows that c
is a mind change counter for Ψ given σ.

(⇒) Let Ψ be a learner that identifies L given σ and c is a mind change counter
such that c(σ) = α. We prove by transfinite induction that if acc(σ) > α, then c is
not a mind change counter for L. Assume the claim holds for all β < α and consider
α. Suppose acc(σ) > α; then there is L ∈ L|σ such that acc(L) = α + 1. Case 1:
Ψ(σ) = L. Then since L is a limit point of L(α), there is L′ in L(α) such that L′ 6= L
and acc(L′) = α. Let T ′ ⊃ σ be a text for L′. Since Ψ identifies L′, there is a time
n > |σ| such that Ψ(T ′[n]) = L′. Since Ψ(T ′[n]) 6= Ψ(σ) and Ψ(σ) 6=?, this is a mind
change of Ψ , hence c(T ′[n]) < c(σ). That is, c(T ′[n]) = β < α. On the other hand,
since acc(L′) = α, we have acc(T ′[n]) > β. By inductive hypothesis, c is not a mind
change counter for Ψ . Case 2: Ψ(σ) 6= L. Let T ⊃ σ be a text for L. Since Ψ identifies
L, there is a time n > |σ| such that Ψ(T [n]) = L. Since c(T [n]) ≤ c(σ) = α and
acc(T [n]) > α, as in Case 1, c is not a mind change counter for Ψ . ut

Corollary 1. Let L be a class of languages. Then there exists a mind-change bound for
L if and only if L is scattered in the topology TL.

4 Necessary and Sufficient Conditions for Uniformly Mind
Change Optimal learners

The goal of this section is to characterize the behaviour of uniformly mind-change
optimal learners. These results allow us to design mind change optimal learners and
to prove their optimality. The next definition specifies the key property of uniformly
MC-optimal learners.

Definition 5. A learner Ψ is order-driven given σ if for all finite data sequences τ, τ ′ ∈
SEQ(L) such that σ ⊆ τ ⊂ τ ′: if (1) τ = σ or Ψ(τ) is valid for τ , and (2) accL(τ) =
accL(τ ′), then Ψ does not change its mind at τ ′.

Informally, a learner Ψ is order-driven if once Ψ makes a valid conjecture Ψ(τ) at τ ,
then Ψ “hangs on” to Ψ(τ) at least until the accumulation order drops at some sequence
τ ′ ⊃ τ , that is, acc(τ ′) < acc(τ). Both the learners ΨCO and ΨLIN are order-driven
given Λ.

A data sequence σ is topped if there is a language L ∈ L consistent with σ such
that accL(L) = accL(σ). Note that if accL(σ) is a successor ordinal (e.g., finite), then
σ is topped. All data sequences in SEQ(LINEARn) are topped. In COINIT, the initial
sequence Λ is not topped. As the next proposition shows, if σ is topped, the conjecture
Ψ(σ) of a UMC-optimal learner Ψ is highly constrained: either Ψ(σ) is not valid, or
else Ψ(σ) must uniquely have the highest accumulation order in L|σ.

Proposition 2. Let L be a language collection such that accL(σ) = α for some ordinal
α and data sequence σ. Suppose that learner Ψ is uniformly mind change optimal and
identifies L given σ. Then

1. Ψ is order-driven given σ.



2. for all data sequences τ ⊇ σ, if τ is topped and Ψ(τ) is valid for τ , then Ψ(τ) is
the unique language with the highest accumulation order for τ .

Proof Outline. Clause 1. Suppose that τ = σ or that Ψ(τ) is valid for τ ⊃ σ; then
c(τ) = acc(τ). If Ψ changes its mind at τ ′ when acc(τ ′) = acc(τ), then c(τ ′) <
c(τ) = acc(τ ′). Hence by Theorem 1, c is not a mind change counter for Ψ .

Clause 2. Suppose for reductio that Ψ(τ) is valid for τ but Ψ(τ) does not have
the highest accumulation order for τ . Then there is a language L ∈ L|τ such that (1)
acc(L) = acc(τ), and (2) acc(L) ≥ acc(Ψ(τ)), and (3) L 6= Ψ(τ). Choose any text
T ⊃ τ for L. Since Ψ identifies L, there is an n > |τ | such that Ψ(T [n]) 6= Ψ(τ) and
acc(T [n]) = acc(τ). Hence Ψ is not order-driven. ut

To illustrate, in COINIT, since the initial sequence Λ is not topped, Prop. 2 does
not restrict the conjectures of UMC-optimal learners at Λ.

A learner Ψ is regular given σ if for all data sequences τ ⊃ σ, if Ψ changes its
mind at τ , then Ψ(τ) is valid. Intuitively, there is no reason for a learner Ψ to change
its conjecture to an invalid one. The learners ΨCOINIT and ΨLIN are regular. Accord-
ing to Prop. 2, being order-driven is necessary for a UMC-optimal learner. The next
proposition shows that for regular learners, this property is sufficient as well.

Proposition 3. Let L be a language collection such that acc(σ) = α for some ordinal
α and data sequence σ. If a learner Ψ identifies L and is regular and order-driven given
σ, then Ψ is uniformly mind change optimal given σ.

Proof. Let Ψ be regular and order-driven given σ. Define a counter c as follows for σ
and τ ⊃ σ.

(1) c(σ) = acc(σ).
(2) c(τ) = acc(τ) if Ψ(τ) is valid for τ .
(3) c(τ) = c(τ−) if Ψ(τ) is not valid for τ .
Clearly c(τ) = acc(τ) if Ψ(τ) is valid for τ . So it suffices to show that c is a mind

change counter for Ψ . Let Ψ change its mind at τ ⊃ σ. Then since Ψ is regular given σ,
we have that Ψ(τ) is valid for τ and hence (a) c(τ) = acc(τ).

Case 1: There is a time n such that (1) |σ| ≤ n ≤ lh(τ−), where lh(τ−) is the length
of τ−, and (2) Ψ(τ−[n]) is valid for τ−[n]. WLOG, let n be the greatest such time.
Then by the definition of c, we have that (b) c(τ−[n]) = c(τ−). Since τ−[n] ⊂ τ , and
Ψ changes its mind at τ , and Ψ is order-driven, it follows that (c) acc(τ−[n]) > acc(τ).
Also, by (2), we have that (d) c(τ−[n]) = acc(τ−[n]). Combining (a), (b), (c) and (d),
it follows that c(τ−) > c(τ).

Case 2: There is no time n such that |σ| ≤ n ≤ lh(τ−)and (2) Ψ(τ−[n]) is valid
for τ−[n]. Then by definition of c, we have that (e) c(τ−) = acc(σ). And since Ψ is
order-driven given σ, (f) acc(σ) > acc(τ). Combining (a), (e), and (f), we have that
c(τ−) > c(τ).

So in either case, if Ψ changes its mind at τ ⊃ σ, then c(τ−) > c(τ), which
establishes that c is a mind change counter for Ψ given σ. Hence Ψ is UMC-optimal
given σ. ut

In short, Propositions 2 and 3 show that being order-driven is the key property of a
uniformly mind change optimal learner.



Examples.
(1) In COINIT, for any data sequence σ ∈ SEQ such that content(σ) 6= ∅, we have that
L|σ is topped and there is a unique language L(σ) with the highest accumulation order.
Since ΨCO(σ) = L(σ) whenever content(σ) 6= ∅, the learner ΨCO(σ) is order-driven
and regular, and hence a UMC-optimal learner for COINIT by Prop. 3. But ΨCO is not
the unique UMC-optimal learner: Define a modified learner Ψ k

0 by setting Ψk
0 (σ) := Lk

if content(σ) = ∅, and Ψk
0 (σ) := ΨCO(σ) otherwise. Any such learner Ψk

0 is a valid
uniformly MC-optimal learner.
(2) Since LINEARn is finite, it is a topped language collection. In fact, for all data se-
quences σ, the language with the highest accumulation order is given by span(vectors
(σ)). Thus the learner ΨLIN is the unique uniformly MC-optimal learner for LINEARn

such that ΨLIN(σ) is valid for all data sequences σ ∈ SEQ(LINEARn).

5 Effective Uniformly Mind Change Optimal Learning

It is straightforward to computationally implement the learners ΨCO and ΨLIN. These
learners have the feature that whenever they produce a conjecture L on data σ, the
language L is the ⊆-minimum among all languages consistent with σ. It follows im-
mediately from Clause 2 of Lemma. 1 that ΨCO and ΨLIN always output an order-
maximizing hypothesis (the language uniquely having the highest accumulation order).
For many problems, e.g., COINIT and LINEARn, a language has the highest accu-
mulation order iff it is the ⊆-minimum. For such a language collection L, if we can
compute the ⊆-minimum, a UMC-optimal learning algorithm for L can be constructed
on the model of ΨCO and ΨLIN. However, these conditions are much stronger than nec-
essary in general. In general, it suffices that we can eventually compute a ⊆-minimum
along any text. We illustrate this point by specifying a UMC-optimal learning algorithm
for P1, the languages defined by Angluin’s well-known one-variable patterns [2, p.48].

Let X be a set of variable symbols and let Σ be a finite alphabet of at least two
constant symbols (e.g., 0, 1, . . . , n). A pattern, denoted by p, q etc., is a finite non-
null sequence over X ∪ Σ. If a pattern contains exactly one distinct variable, then it
is a one-variable pattern (e.g., x01 or 0x00x1). Following [2], we denote the set of
all one-variable patterns by P1. A substitution θ replaces x in a pattern p by another
pattern. For example, θ = [x/0] maps the pattern xx to the pattern 00 and θ′ = [x/xx]
maps the pattern xx to the pattern xxxx. Substitutions give rise to a partial order � over
all patterns. Let p and q be two patterns. We define p � q if there is a substitution θ
such that p = qθ. The language generated by a pattern p, denoted by L(p), is the set
{q ∈ Σ∗ : q � p}.

Angluin described an algorithm that, given a finite set S of strings as input, finds
the set of one-variable patterns descriptive of S, and then (arbitrarily) selects one with
the maximum length [2, Th.6.5]. A one-variable pattern p is descriptive of a sample
S if S ⊆ L(p) and for every one-variable pattern q such that S ⊆ L(q), the language
L(q) is not a proper subset of L(p) [2, p.48]. To illustrate, the pattern 1x is descriptive
of the samples {10} and {10, 11}, the pattern x0 is descriptive of the samples {10}
and {10, 00}, and the pattern x is descriptive of the sample {10, 00, 11}. We give an
example (summarised in Fig. 1) to show that Angluin’s algorithm is not a mind-change



optimal learner. Let x be the target pattern and consider the text T = 〈10, 00, 11, 0, . . . 〉
for L(x). Let us write P1|S for the set of one-variable patterns consistent with a sample
S. Then P1|{10} = {1x, x0, x}, P1|{10, 00} = {x0, x}, P1|{10, 11} = {1x, x} and
P1|{10, 00, 11} = {x}. The accumulation orders of these languages are determined as
follows:

1. accP1
(L(x)) = 0 since L(x) is isolated; so accP1

(〈10, 00, 11〉) = 0 .
2. accP1

(L(1x)) = 1 since P1|{10, 11} = {1x, x}; so accP1
(〈10, 11〉) = 1.

3. accP1
(L(x0)) = 1 since P1|{10, 00} = {x0, x}; so accP1

(〈10, 00〉) = 1.

Also, we have accP1
(〈10〉) = 1. Since for T [1] = 〈10〉, the one-variable patterns 1x

and x0 are both descriptive of {10}, Angluin’s learner MA conjectures either 1x or x0;
suppose MA(〈10〉) = 1x. Now let cA be any mind change counter for MA. Since 1x is
consistent with 〈10〉, UMC-optimality requires that cA(〈10〉) = accP1

(〈10〉)= 1. The
next string 00 in T refutes 1x, so MA changes its mind to x0 (i.e., MA(T [2]) = x0),
and cA(〈10, 00〉) = 0. However, MA changes its mind again to pattern x on T [3] =
〈10, 00, 11〉, so cA is not a mind change counter for MA, and MA is not UMC-optimal.
In short, after the string 10 is observed, it is possible to identify the target one-variable
pattern with one more mind change, but MA requires two.

The issue with MA is that MA changes its mind on sequence 〈10, 00〉 even though
accP1

(〈10〉) = accP1
(〈10, 00〉) = 1, so MA is not order-driven and hence Proposi-

tion 2 implies that MA is not UMC-optimal. Intuitively, an order-driven learner has to
wait until the data decide between the two patterns 1x and x0. As Proposition 3 indi-
cates, we can design a UMC-optimal learner M for P1 by “procrastinating” until there
is a pattern with the highest accumulation order. For example on text T our UMC-
optimal learner M makes the following conjectures: M(〈10〉) =?, M(〈10, 00〉) = x0,
M(〈10, 00, 11〉) = x.

Text T : 10 00 11 0 . . .

Stage n : 1 2 3 4 . . .

Patterns consistent
with T [n]

: 1x, x0, x x0, x x x . . .

Patterns descriptive of T [n] : 1x, x0 x0 x x . . .

Accumulation order of T [n] : 1 1 0 0 . . .

Output of Angluin’s
learner MA

: 1x x0 x x . . .

Output of a UMC-optimal
learner M

: ? x0 x x . . .

Fig. 1. An illustration of why Angluin’s learning algorithm for one-variable patterns is not uni-
formly mind change optimal.

The general specification of the UMC-optimal learning algorithm M is as follows.
For a terminal a ∈ Σ let pa ≡ p[x/a]. The proof of [2, Lemma 3.9] shows that if q



is a one-variable pattern such that L(q) ⊇ {pa, pb} for two distinct terminals a, b, then
L(q) ⊇ L(p). Thus a UMC-optimal learning algorithm M can proceed as follows.

1. Set M(Λ) :=?.
2. Given a sequence σ with S := content(σ), check (*) if there is a one-variable

pattern p consistent with σ such that S ⊇ {pa, pb} for two distinct terminals a, b. If
yes, output M(σ) := p. If not, set M(σ) := M(σ−).

Since there are at most finitely many patterns consistent with σ, the check (*) is effec-
tive. In fact, (*) and hence M can be implemented so that computing M(σ) takes time
linear in |σ|. Outline: Let m = min{|s| : s ∈ S}. Let Sm be the set of strings in S of
length m. Define pS(i) := a if s(i) = a for all s ∈ Sm, and pS(i) := x otherwise for
1 ≤ i ≤ m. For example, p{10,11,111} = 1x and p{10,01} = x. Then check for all s ∈ S
if s ∈ L(pS). For a one-variable pattern, this can be done in linear time because |θ(x)|,
the length of θ(x), must be |s|−term(pS)

|pS |−term(pS) where term(pS) is the number of terminals
in pS. For example, if s = 111 and pS = 1x, then |θ(x)| must be 2. If pS is consistent
with S, then there are distinct a, b ∈ Σ such that {pa, pb} ⊆ S. Otherwise no pattern p
of length m is consistent with S and hence (*) fails.

6 Summary and Future Work

The topic of this paper was learning with bounded mind changes. We applied the classic
topological concept of accumulation order to characterize the mind change complexity
of a learning problem: A language collection L is identifiable by a learner (not neces-
sarily computable) with α mind changes iff the accumulation order of L is at most α.
We studied the properties of uniformly mind change optimal learners: roughly, a learner
Ψ is uniformly mind change optimal if Ψ realizes the best possible mind change bound
not only in the entire learning problem, but also in subproblems that arise after observ-
ing some data. The characteristic property of UMC-optimal learners is that they output
languages with maximal accumulation order. Thus analyzing the accumulation order of
a learning problem is a powerful guide to constructing mind change efficient learners.
We illustrated these results in several learning problems such as identifying a linear
subspace and a one-variable pattern. For learning linear subspaces, the natural method
of conjecturing the least subspace containing the data is the only mind change optimal
learner that does not “procrastinate” (i.e., never outputs ? or an inconsistent conjec-
ture). Angluin’s algorithm for learning a one-variable pattern is not UMC-optimal; we
described a different UMC-optimal algorithm for this problem.

We outline several avenues for future work. The next challenge for pattern lan-
guages is to find a UMC-optimal algorithm for learning a general pattern with arbitrarily
many variables. An important step towards that goal would be to determine the accu-
mulation order of a pattern language L(p) in the space of pattern languages. Another
application is the design of UMC-optimal learners for logic programs. For example,
Jain and Sharma have examined classes of logic programs that can be learned with
bounded mind changes using explorer trees [12]. Do explorer trees lead to mind change
optimal learning algorithms?



There are a number of open issues for the general theory of UMC-optimal learning.
The proof of Theorem 1 shows that if there is any general learner that solves a learn-
ing problem L with α mind changes, then there is a UMC-optimal general learner for
L. However, this may well not be the case for effective learning algorithms: Is there a
language collection L such that there is a computable learner M that identifies L with
α mind changes, but there is no computable UMC-optimal learner for L? Such a sepa-
ration result would show that for computable learners, UMC-optimality defines a new
class of learning problems.

As the example of one-variable patterns shows, there can be a trade-off between
time efficiency and producing consistent conjectures, on the one hand, and the procras-
tination that minimizing mind changes may require on the other (see Sect. 5). We would
like to characterize the learning problems for which this tension arises, and how great
the trade-off can be.

Another project is to relate the topological concept of accumulation order to other
well-known structural properties of a language collection L. For example, it can be
shown that if L has unbounded accumulation order (i.e., if L contains a nonempty
perfect subset), then L has infinite elasticity, as defined in [29, 22]. Also, we can show
that accumulation order corresponds to intrinsic complexity as defined in [7, 11], in
the following sense: If L1 is weakly reducible to L2, then the accumulation order of
L2 is at least as great as the accumulation order of L1. It follows immediately that
COINIT 6≤weak SINGLE, where SINGLE is the class of all singleton languages and
has accumulation order 0, and FIN 6≤weak COINIT, two results due to Jain and Sharma
[11].

In sum, uniform mind change optimality guides the construction of learning algo-
rithms by imposing strong and natural constraints; and the analytical tools we estab-
lished for solving these constraints reveal significant aspects of the fine structure of
learning problems.
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