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Abstract 

What makes many decisions in sports difficult is that they involve a trade-off between risk and 

reward. Actions such as taking a three-point shot, carrying a puck, or dribbling with a ball carry a 

higher risk of failure and require exceptional skill to pull off, but also bring a higher potential reward. 

This paper describes computational tools for risk analytics to model the risk inherent in the choices 

faced by teams and athletes. We leverage distributional reinforcement learning (RL) as a source of 

concepts and techniques for computational risk analytics. Distributional RL techniques allow us to 

model a dynamic distribution of outcomes for 1000+ games in the National Hockey League. We 

find strong evidence that strong teams take many risks (0.90 correlation between team season 

standing and team season standard/Gini deviation). For players, we also find strong evidence that 

stronger players take more risks (e.g., 0.86 correlation between a player’s season goals and their 

value-at-risk metric). 

11.1 Introduction: Taking Chances in Sports 

Many decisions by athletes and coaches involve accepting higher risk for potentially higher rewards. 

A well-known example from basketball is whether to take a long-distance shot, which potentially 

nets three points, versus a shot from a shorter distance for two points. A more complex example 

from ice hockey is pulling the goalie—substituting an attacker for the goalie—when a team is 

trailing. Pulling the goalie earlier increases the chances of equalizing, but also increases the chances 

of the leading team scoring, which in practice decides the game immediately. While the decision-

theoretically optimal choice is to maximize the average success, that is the average number of 

points and wins, several sports analysts have observed that players and coaches are often influenced 

by a secondary goal, which is to minimize the probability of failure, or generally the probability of 

bad outcomes. To illustrate the point in the basketball scenario, consider a player in a situation 

where the chance of scoring a three-pointer is 20% and the chance of scoring a two-pointer is 30%. 

Then the expected number of points is the same for each choice (namely 0.6). However, the 

probability of failure is 80% for the three-pointer and only 70% for the two-pointer; bad outcomes 

are less likely for the two-point shot. Now consider a different situation where the long-distance 

shot has a 25% chance of success. In this case, the expected number of long-distance points is 0.75 

versus 0.6, and the optimal decision is to take the long-distance shot. However, the chance of failure 

is still 75% versus only 70% for the two-pointer, so a risk-averse player may still prefer the safer 

two-point shot. 



 

Several sports analysts have argued that players and teams tend to take risk-averse decisions at the 

expense of their total success averaged over many games and match situations. Pelechrinis (2016) 

provides evidence that American football coaches aim to minimize the variance of expected points, 

rather than the expected points directly, perhaps to avoid public criticism for failure. Beaudoin and 

Swartz (2010) argued that trailing hockey teams should pull their goalies earlier to maximize winning 

chances. Indeed NHL teams have recently started pulling their goalies earlier.1 Another piece of 
evidence for a trend towards more risk-taking is the rise of 3-point attempts in basketball, rising from 

22.2% in the 2010-11 season to 39.2% in 2020-2021.2 The trend towards riskier actions over time is 

evidence that risk-taking affords an advantage over more cautious tactics. 

In this paper, we study risk-taking in the National Hockey League. We examine different ways to 

quantify how risky a decision is, including traditional notions such as the variance/standard 

deviation of outcomes, as well as the Gini deviation, an alternative variability concept well-suited to 

multi-modal distributions (Luo et al., 2023). From a technical viewpoint, modeling risk requires 

modeling higher-order moments of the distribution of possible action outcomes. To model the 

outcome distribution beyond its mean, we leverage recent work in distributional reinforcement 

learning (RL). Reinforcement learning is a branch of machine learning that studies how to act in 

sequential decision-making scenarios, such as we encounter in sports analytics. Reinforcement 

learning has developed an extensive set of methods for estimating expected outcomes from actions, 

known as prediction or policy evaluation methods (Sutton & Barto, 1998). Distributional 

reinforcement learning is a more recent development that provides methods for modelling the 

distribution of action outcomes. A recent paper by Liu et al. (2022) developed a distributional RL 

method for estimating the distribution of action outcomes for play-by-play (event) data. We utilize 

the computational tools from their work to estimate action outcome distributions from large play-

by-play event data (1000+ games, 1M+ events). 

We apply their framework to quantify and study the riskiness of actions by professional players in 

the NHL. The main question is how performance relates to risk-taking, for both teams and players. 

We examine three different variability concepts for quantifying the risk associated with a 

distribution of outcomes: standard deviation, Gini deviation, and value at risk. The risk impact of an 

action is the extent to which it increases/decreases the variability of the game outcomes for the 

acting player’s team. 

Our main findings are as follows: For team performance, the total risk of the actions taken by a 

team in a season displays a very high correlation with the team performance, measured by the 

number of total season points. Using standard deviation or Gini deviation as our risk measure, the 

correlation reaches 0.90. For the value-at-risk metric studied previously by Liu et al. (2022) the 

correlation is only 0.51,  given a confidence level 0.2 that represents risk-seeking (see 

Section 11.6 for further details). 
 

 
 

 

 
1 https://www.nhl.com/news/coaches-room-paul-maclean-nhl-pulling-goalies-trend-301099580 
2 https://www.nba.com/news/3-point-era-nba-75 
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Figure 11.1: System Components in our Risk Analytics Framework. 

 
For player performance, we use the total risk of the actions taken by a player in a season as a 
measure of the player’s risk-taking. All player risk metrics show a high degree of temporal 
consistency, with their round-by-round totals essentially converging less than halfway through the 
season. The Gini deviation and standard deviation player metrics achieve substantial correlations 
of 0.56 and 0.51, respectively, with the player's total goals in a season. The value-at-risk metric 
achieves an even higher goal correlation of 0.86 (with the risk-seeking confidence level of 0.2). These 
results provide evidence that variability risk metrics are very good at predicting team success, but 
less suitable for predicting player success. However, because of the lack of a ground truth ranking for 
players, we do not consider this finding conclusive, and investigating risk-taking by players is a 
valuable direction for future research. While our study focuses on ice hockey data from the National 
Hockey League (NHL), our methods apply to any play-by-play dataset; see Liu et al. (2022) for an 
application to soccer data. 

 
Paper Outline. Our paper is organized as follows. We begin with an overview of the rules of ice 

hockey and our play-by-play dataset. Then we review the background of reinforcement learning 

(RL), especially the distributional RL techniques for learning the distribution of action outcomes 

from play-by-play event data. Our discussion focuses on the main principles and intuitions; details on 

our learning methods may be found in the appendix and in the references. Given a dynamic 

distribution over future action outcomes at each point in a match, we define the risk impact of an 

action as the increase/decrease in the risk associated with the outcome distribution, after the action. 

The total risk impact of all actions is used to quantify risk-taking by teams and by players. Figure 11.1 

summarizes our system components. 

 

11.2 Hockey Rules and Hockey Data 

NHL Rules. We give a brief overview of rules of play in the NHL (National Hockey League, 2014). 

NHL games consist of three periods, each 20 minutes in duration. A team has to score more goals 

than their opponent within three periods in order to win the game. Teams have five skaters and one 

goalie on the ice during even strength situations. Penalties result in a player sitting in the



 

 
 
penalty box for 2, 4, 5 or 10 minutes and the penalized team will be shorthanded, creating a manpower 

differential between the two teams. The period where one team is penalized is called a powerplay 

for the opposing team with a manpower advantage. A shorthanded goal is a goal scored by the 

penalized team, and a powerplay goal is a goal scored by the team on the powerplay. 

 
Dataset. In this paper, we use a play-by-play proprietary dataset constructed by Sportlogiq3. The 
data are constructed through a combination of computer vision and manual annotation. The 

dataset contains a total of 1196 games played between October 3rd, 2018 and April 6th, 2019. The 

training dataset for constructing our model contains 956 games (from October 3rd, 2018 to February 
24th, 2019). Table 11.1 lists the features used in our analysis (Liu et al., 2022) and Figure 11.2 

illustrates the adjusted coordinates in the Sportlogiq dataset. Figure 11.2 shows a schematic layout 

of the ice hockey rink. The units are feet. Adjusted Y- coordinates run from -42.5 at the bottom 

to 42.5. The goal line is at X = 89. 
 

 

Table 11.1: The complete list of game features for the ice hockey dataset. The table utilizes 

adjusted spatial coordinates where negative numbers denote the defensive zone of the acting 

player and positive numbers denote the offensive zone. 

 

 Type Name Range 

 
 

Spatial 
Features 

X Coordinate of Puck  

Y Coordinate of Puck 

Velocity of Puck  

Angle between 
the puck and the goal 

[-100, 100] 
[-42.5, 42.5]  

(−∞,  +∞) 

[−3.14, 3.14] 

Ice 
Hockey 

Temporal 
Features 

Game Time Left 
Event/Action Duration 

[0, 3,600] 
(0, +∞) 

  
In-Game 

Features 

Score Differential 
Manpower Situation 

 

Home or Away Team 

Action Outcome 

(−∞, +∞) 
{Even Strength, Short-
Handed, Power Play} 

{Home, Away} 
{successful, failure} 

 
 

 
The dataset records event data known as play-by-play data. Play-by-play data specifies the timing 

and location of actions, identifies the player responsible for each action, and includes the 

contextual event features outlined in Table 11.1. Table 11.2 lists the most frequent action types in 

 
3 https://sportlogiq.com 
 



 

our dataset. To help visualize play-by-play data, Table 11.3 provides a partial sample. 

 

 
 

Figure 11.2: Rink layout with adjusted coordinates. Coordinates are adjusted so that for the team 

performing an action, its offensive zone is on the right. 

 

 
Table 11.2: Definition of the most frequent Action Types in the Dataset. 

 
Action Description 
Block A block attempt on the puck’s trajectory 
Carry Controlled carry over a blue line or the red center line 
Check When a player attempts to use his body to remove 

possession from an opponent 
Dump in When a player sends the puck into the offensive zone 
Dump out When a defending player dumps the puck up the boards 

without targeting a teammate for a pass 
lpr Loose puck recovery. The player recovered the puck as it 

was out of possession of any player 
Offside When a player is caught over the offensive blue line 

before their teammate brings the puck in 
Pass The player attempts a pass to a teammate 
Puck 
protection 

When a player uses their body to protect the puck 
along the boards 

Reception When a player receives a pass from a teammate 
Shot A player shoots on goal 
Shot against A shot was taken by the opposing team 



 

Table 11.3: Sample Excerpt of Play-By-Play Data. 
 

gameId playerId period teamId xCoord yCoord Manpower Action Type 

849 402 1 15 -9.5 1.5 even lpr 
849 402 1 15 -24.5 -17 even carry 
849 417 1 16 -75.5 -21.5 even check 
849 402 1 15 -79 -19.5 even puckprot 
849 413 1 16 -92 -32.5 even lpr 
849 413 1 16 -92 -32.5 even pass 
849 389 1 15 -70 42 even block 
849 389 1 15 -70 42 even lpr 
849 389 1 15 -70 42 even pass 
849 425 1 16 -91 34 even block 
849 395 1 15 -97 23.5 even reception 

 

11.3 Markov Game Models for Sports 

Reinforcement learning provides a rich toolkit for estimating the chances of future success for 

strategic agents. Schulte (2022) gives a short accessible introduction to applying RL in sports analytics. 

For single-agent problems, RL is based on the fundamental Markov decision process model. 

Generalizing Markov decision process to multiple decision makers leads to the Markov game model. 

Markov game models have been developed for several sports, such as ice hockey, soccer, and 

American football (Chan et al., 2020; Liu et al., 2020; Liu & Schulte, 2018). We utilize the ice hockey 

model of Liu and Schulte (2018). 

11.3.1 Markov Game Model for NHL Ice Hockey 

Similar to (Liu & Schulte, 2018), we apply the Markov Game Framework to model the play dynamics 

for sports games. A Markov Game (Littman, 1994), sometimes called a stochastic game, is defined 

by a set of states 𝒮, and a collection of action sets 𝒜, one for each agent in the environment. State 

transitions are controlled by the current state and a list of actions, one action from each agent. For 

each agent, there is an associated reward function mapping a state transition to a reward. An 

overview of how a hockey Markov Game model fills in this schema is as follows. 

• There are two agents, Home and Away, representing their respective teams. 

• The action 𝑎𝑡 denotes the movements of players who control the puck. Our model applies 
a discrete action vector using a one-hot representation. 

• An observation is a feature vector 𝑥𝑡 specifying a value of the features listed in Table 
11.1 at a discrete time step 𝑡 . We use the complete sequence 𝑠𝑡 ≡
(𝑥𝑡, 𝑎𝑡, 𝑥𝑡−1, . . . , 𝑥0) to  represent the state (Mnih et al., 2015).



 

 

 
 

Figure11. 3: A hockey match is segmented into goal-scoring episodes. 

 
• Since we have two agents, we have two reward functions, one for the home team and one for 

the away team. Conceptually, the reward at time 𝑡 is 1 for a team that scores a goal at time 𝑡, 
0 if there is no goal; we write goal𝑡,𝐻𝑜𝑚𝑒, goal𝑡,𝐴𝑤𝑎𝑦. For example, goal𝑡,𝐻𝑜𝑚𝑒 = 1 indicates 
that the home team scores at time 𝑡. It is technically useful to introduce a virtual “none” agent 
for the eventuality that neither team scores until the end of a game. If neither team scores at the 
end of the match, we write 𝑔𝑜𝑎𝑙𝑇, 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 = 1 where 𝑇 is the last time step. 

The expected goal model 𝑅𝑘(𝑠𝑡 , 𝑎𝑡) = 𝑃(goal𝑡,𝑘 = 1|𝑠𝑡 , 𝑎𝑡) specifies the probability that a team 

scores a goal after an action in a given match state. This model makes the Markov assumption, which 
implies that the state information available at time 𝑡 is informative enough that scoring chances can be 
estimated based on the current state only, independent of the current time 𝑡 and previous states. 
Technically, the Markov game model is stationary and the goal scoring probability is independent of the 
current time index 𝑡. Similarly, transition probabilities 𝑃(𝑠𝑡+1, 𝑎𝑡+1|𝑠𝑡 , 𝑎𝑡) are assumed to be 
stationary and depend on the current match state only. This means that for a given match state 𝑠𝑡 and 
action 𝑎𝑡 at time 𝑡, the dynamics of NHL play define a distribution over future game trajectories that 
depends only on the current state and action. 

11.3.2 The Expected Value Function 

We divide a sports game into goal-scoring episodes, so that each episode: 1) starts at the beginning of 
the game, or immediately after a goal, and 2) terminates with a goal or at the end of the game (𝑠𝐻). 
Episodes extend through period breaks. 
A key quantity in reinforcement learning is the expected reward with respect to future trajectories. Given 

our binary reward (score goal or not), the expected reward for a team 𝑘  is the chance of scoring the next 
goal, denoted as 𝑄𝑘(𝑠𝑡 , 𝑎𝑡). To explain the basic RL approach to learning a Q-function, consider first the 

expected reward for a bounded horizon, that is, a fixed look-ahead length 𝐻 . The chance of scoring 

within the next H steps is then defined by the expression: 

 

𝑄𝑘
𝐻(𝑠𝑡 , 𝑎𝑡) = ∑ 𝛾ℎ𝐻

ℎ=0 𝑃(goal𝑡+ℎ,𝑘 = 1|𝑠𝑡 , 𝑎𝑡)    (1) 

  
Following previous studies (Liu & Schulte, 2018; Liu et al., 2020), we set 𝛾 = 1 . In this case the 𝑄𝑘

𝐻  value 

simply denotes the probability that team 𝑘  scores a goal within 𝐻 steps. 

The Q-value satisfies an important recurrence relation known as the dynamic programming update: 
 

𝑄𝑘
𝐻+1(𝑠𝑡 , 𝑎𝑡) = 𝑅𝑘(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1,𝑎𝑡+1∼𝑃(𝑠′,𝑎′|𝑠0=𝑠𝑡,𝑎0=𝑎𝑡)[𝑄𝑘

𝐻(𝑠𝑡+1, 𝑎𝑡+1)]   (2) 

 
The principle behind dynamic programming is that a team scores a goal in 𝐻 + 1 steps if and only if they (1) 



 

score immediately or (2) take another step and then score within H steps. The value iteration algorithm uses 
dynamic programming to estimate Q-values from a dataset 𝒟 of observed trajectories as follows. 

1. Initialize the Q-values for H = 0 with the expected goal model 𝑅 . 
2. Iteratively apply Equation (2) through 𝐻 = 1,𝐻 = 2,… ,   until convergence where 

𝑄𝑘
𝐻+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑘

𝐻(𝑠𝑡 , 𝑎𝑡) for each team and state-action pair. We denote the convergent Q-
value as 𝑄𝑘(𝑠𝑡 , 𝑎𝑡). 

For continuous state spaces, such as we have in ice hockey, the expectation 𝐸𝑠𝑡+1,𝑎𝑡+1∼𝑃(𝑠′,𝑎′|𝑠0=𝑠𝑡,𝑎0=𝑎𝑡) 

can be estimated by averaging over all transitions (𝑠𝑡 , 𝑎𝑡; 𝑠𝑡+1, 𝑎𝑡+1) observed in the data set. In the NHL 
model of Schulte et al. (2017b), convergence occurred with a lookahead of H = 13. The fact that expected 
values in RL incorporate lookahead means that they can capture the medium-term effects of actions on 
goals scoring. 
With an unbounded lookahead 𝐻 → ∞, under mild conditions value iteration converges to a fixed point that 
satisfies: 

𝑄𝑘(𝑠𝑡 , 𝑎𝑡) = 𝑅𝑘(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1,𝑎𝑡+1∼𝑃(𝑠𝑡+1,𝑎𝑡+1|𝑠𝑡,𝑎𝑡)[𝑄𝑘(𝑠𝑡+1, 𝑎𝑡+1)] (3) 

which is known as the Bellman equation for policy evaluation. In the Appendix 11.10.1 we discuss how 

the Bellman equation can be applied to learn a neural net model of the Q-function. 

 

Remark. For readers familiar with reinforcement learning models, we briefly situate our NHL model with 

respect to other RL models. Ot he r  re ade rs c an sk ip  t h i s parag raph wit hout  loss of 

c ont inu it y. Our learning setting is off-line learning where we learn a value function from a dataset 

without executing actions; that is, our problem is prediction not control. In the off-line perspective, the 

observed actions can be treated as another feature similar to states. Formally, what we have defined is 

a Markov reward process in an expanded state space 𝒮 ×𝒜 where an expanded state is a pair (𝑠, 𝑎) 

(cf. (Sutton& Barto, 1998, Ch.6.4)). The Q-function as we have defined it is the value function of this 

Markov reward process. We have used the Q-notation, rather than V for value function, because its 

meaning is the same as in policy evaluation: the expected cumulative reward for an agent given a current 

action and a current state. An equivalent model would be to first estimate a policy 𝜋𝐻𝑜𝑚𝑒 for the home 

team and another policy 𝜋𝐴𝑤𝑎𝑦 for the away team. For example, if in state 𝑠  the home team passes the 

puck 30% of the time, we might estimate 𝜋𝐻𝑜𝑚𝑒(𝑝𝑎𝑠𝑠|𝑠) = 30%. The Q-function as we have defined it 

represents 𝑄𝜋𝐻𝑜𝑚𝑒 ,𝜋𝐴𝑤𝑎𝑦, which is the Q-function of the NHL Markov game where the home and the away 

team follow the behavioral policies with action frequencies shown in the data. While the Markov reward 

model for off-line data is perhaps less familiar than the policy evaluation formulation, we use it because 

it is conceptually simpler and in fact fits naturally the position of the sports analyst who is passively 

watching the matches: decisions by the players are events for the sports analyst to analyze, not choices 

to control. For more discussion of reducing off-line Markov game analysis to other RL models please see 

(Luo et al., 2020). 

 

11.3.3 Learning Reward Distributions 

Distributional RL learns the distribution of the random variable 𝑍𝑘(𝑠𝑡 , 𝑎𝑡) that returns the sum of 

(discounted) rewards for future episode trajectories starting with state 𝑠𝑡 and 𝑎𝑡 (Bellemare et al., 2017). 

Therefore the Q-value is the expectation of the 𝑍  variable: 𝑄𝑘(𝑠𝑡 , 𝑎𝑡) = 𝐸(𝑍𝑘(𝑠𝑡 , 𝑎𝑡)). Similar to the 



 

   

Q-value, the distribution of the total rewards 𝑍 follows the distributional Bellman equation: 

    𝑍𝑘(𝑠𝑡 , 𝑎𝑡): ≜ 𝑅𝑘(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1,𝑎𝑡+1∼𝑃(𝑠𝑡+1,𝑎𝑡+1|𝑠𝑡,𝑎𝑡)[𝑍𝑘(𝑠𝑡+1, 𝑎𝑡+1)] (4) 

 

where X:=
Δ
Y indicates that random variables 𝑋  and 𝑌 follow the same distribution. Given a 

computationally tractable representation of the 𝑍𝑘 distributions, we can iteratively apply the Bellman 

update Equation (4) to update the distribution for different look-ahead lengths 𝐻 = 1, 𝐻 = 2,…, until we 

arrive at a convergent distribution 𝑍𝑘. 

 

Computational Representation.  To make the distributional Bellman equation operational, the question is how 

to choose a computationally tractable representation that supports learning. One option is to choose a 

parametric family, such as a Gaussian distribution. The issue with such parametric families is that they are 

typically unimodal. Unimodal distributions are not appropriate for the complex dynamics of sports, where 

events typically have a high branching factor, with different branches corresponding to different modes. 

For example, if a player attempts a pass, three different possible outcomes are that the pass is 1) 

intercepted, 2) reaches the intended recipient, or 3) turns into a loose puck. Each of these outcomes has 

alternative subsequent events, etc. Different possible event sequences determine different scoring 

probabilities, leading to a highly multi-modal distribution. 

Bellemare et al. (2017) proposed modelling reward distributions using quantile regression; Liu et al. (2022) 

applied quantile regression to ice hockey and soccer data. 

The quantile-regression (QR)-DQN method represents the conditional distribution of 𝑍 by a uniform mixture 

of 𝑁  supporting quantiles as 𝑍�̂�(𝑠𝑡 , 𝑎𝑡) =
1

𝑁
∑ 𝛿𝜃𝑘,𝑖(𝑠𝑡,𝑎𝑡)
𝑁
𝑖=1 , where 𝜃𝑘,𝑖 estimates the quantile at the quantile 

level (or quantile index) 𝜏𝑖 = 𝑖/𝑁 for 1 ≤ 𝑖 ≤ 𝑁  and 𝛿𝜃𝑘,𝑖 denotes a Dirac distribution at 𝜃𝑘,𝑖. For example, 

suppose we take 𝑁 = 4  and estimate quantiles at 25%, 50%, 75%, 100% as 0.1, 0.4, 0.7, 0.9. Then the 

cumulative density function (cdf) of 𝑍�̂�(𝑠𝑡 , 𝑎𝑡) has 25% of values at 0.1 or less, 50% (the median) of values at 

0.4 or less, 75% of values at 0.7 or less, and 100% of values at 0.9 or less (so none above 0.9). Within each 

pair of quantiles, the cdf is approximated as uniform over the quantiles (e.g., the cdf has value 0.1 between 

0 and 25%).4 

Given a fixed number 𝑁  of target quantiles (𝑁 = 4  in our example), we can train a neural network to take 

as input a state-action pair (𝑠, 𝑎), and output 4 numbers corresponding to the quantiles. By increasing the 

number 𝑁, this procedure provides a non-parametric approximation to the cumulative density function of 

�̂� and therefore to the distribution of  �̂�. For further details please see (Liu et al., 2022). 

Choice of Outcome Variable: Expected Goals vs. Actual Goals. We obtained good empirical results 
with actual goals as rewards. As a further refinement, we follow (Decroos et al. 2017) and decompose 
goal scoring probabilities into the probability of managing a shot and the probability that a goal leads 
to a shot:  

𝑃(𝑔𝑜𝑎𝑙𝑡,𝑘|𝑠𝑡0) = 𝑃(𝑔𝑜𝑎𝑙𝑡,𝑘|𝑠𝑡 , 𝑠ℎ𝑜𝑡) × 𝑃(st, shot|st0) 
which can be read as saying that probability of scoring a goal from an initial state 𝑠𝑡0  is the probability of 

managing a shot times the probability of the shot leading to a goal. This equation is true in hockey 
because the only way to score a goal is to first take a shot. In our application of distributional RL, we 

take the goal scoring probabilities 𝑃(𝑔𝑜𝑎𝑙𝑡,𝑘|𝑠𝑡 , 𝑠ℎ𝑜𝑡) as the outcomes (virtual rewards) whose 

 
4 We have slightly simplified notation compared to Bellemare et al. (2017) where a quantile is associated with the 
midpoint of a bins, rather than the higher endpoint if the bin. 



 

 

distribution is to be modelled.  
 
The motivation for using the shot-goal decomposition is as follows:  

1. A team can largely control whether they achieve a shot, whereas the success of the shot 
depends on factors such as the skill of the opposing goalie that are less under the control. So a 
model of team/player strength should reward teams for managing shots. 

2. Shots are sparse but not as sparse as goal. 
3. With actual goals as rewards, our outcome variable 𝑍𝑘 is binary and the outcome distribution is 

basically a Bernoulli distribution. With expected goals as rewards, the outcome variable 𝑍𝑘 
ranges over the interval [0,1], and the outcome distribution is an informative distribution over 
goal scoring probabilities.  

 

So far, we have described how to build a machine learning model that estimates the distribution of 

possession outcomes for a given team, given a specific time and context in a match. We now show how to 

apply the model to gain analytical insights for a sport. Specifically, we discuss how to evaluate risk-taking 

by teams, the riskiness of actions, and ranking players by how risky their actions are. 
 

11.4 Risk Measures for an Outcome Distribution 

Luo et al. (2023) consider in depth the properties of different measures of risk for a distribution of 

outcomes. In this study we employ three of these measures: standard deviation, Gini deviation, and 

Value-at-Risk (VaR). Variance, the square of standard deviation, and VaR are commonly used risk 

measures in portfolio analysis. Gini deviation is recommended by Luo et al. (2023) for multi-modal 

distributions. The formal definitions are as follows. 

Definition 1 (Risk Measures). For a random variable 𝑍 , let 𝑍1 and 𝑍2 be two i.i.d. copies of 𝑍 , that 
is, 𝑍1 and 𝑍2 are independent and follow the same distribution as Z. 

• The variance is defined as 𝕍[𝑍] =
1

2
𝔼[(𝑍1 − 𝑍2)

2] 

• The standard deviation is the square root of the variance STD[𝑍] = √𝕍[𝑍] 

• The Gini deviation is defined as 𝔻[𝑍] =
1

2
𝔼[|𝑍1 − 𝑍2|]. 

 

 
 



 

Figure 11.4: The predicted distribution of future goals in an ice hockey game between Blues and Coyotes, 2018-19 

NHL season. The shots are made in the positions (a) and (b). Next-goal scoring distributions (a) and (b) have the 

same expectation (around 0.6), but the first shot has a much lower variance and Gini deviation of outcomes. Shot 

(a) also displays a larger risk-averse estimate (at the confidence 0.8, we find a larger next-goal chance with 0.58 > 
0.37) and a smaller risk-seeking estimate (at the confidence 0.2, we find a smaller next-goal chance of 0.68 < 0.77). 

 

Thus the Gini deviation replaces the L2 norm of variance by the L1 norm. The definition value-at-risk 

(VaR) depends on the choice of a confidence level 𝑐 ∈ (0,1]. The VaR for level 𝑐 is defined as the (1 − 𝑐)𝑡ℎ  
quantile in the distribution. Thus in the hypothetical example from above, the value at risk for c = 25% 
is 0.7, and for c = 50% it is 0.4. Intuitively, VaR provides a kind of worst-case analysis with respect to a 
user-controlled risk-level. For example, choosing c = 0.8 corresponds to risk-aversion since it focuses on bad 

outcomes. In contrast, choosing c = 0.2 corresponds to risk-seeking with better sensitivity to positive 
outcomes. Figure 11.4 illustrates how different risk concepts apply to different outcome distributions. 

 
Computing Risk Measures from Quantile Regression VaR is defined in terms of quantiles and thus can be 

naturally computed from a quantile regression model. Given a quantile representation, we can estimate the 

variance and Gini deviation as follows (Luo et al., 2023). 

𝕍[�̂�𝑘] ≈
1

2𝑁2
∑ ∑ (𝜃𝑘,𝑖 − 𝜃𝑘,𝑗)

2𝑁
𝑗=1

𝑁
𝑖=1                                      (5) 

𝔻[�̂�𝑘] ≈
1

2𝑁2
∑ ∑ |𝜃𝑘,𝑖 − 𝜃𝑘,𝑗|

𝑁
𝑗=1

𝑁
𝑖=1                                        (6) 

Figure 11.5 illustrates the Q-values and standard deviations that the trained model assigns during a 

game between the Flyers and Maple Leafs. 

 

 
 
Figure 11.5: Illustrating the dynamic distribution of next-goal scoring chances by showing the corresponding mean ± 
standard deviation of the action values at each time step in a match between the Flyers (Home team) and the Maple 
Leafs (Away team) on March 15, 2019. 



 

 

11.5 Measuring the Riskiness of an Action 

Using the techniques described in the previous section, we can compute from an estimated outcome 
distribution �̂�𝑘(𝑠𝑡 , 𝑎𝑡) a risk measure 𝜌𝑘(𝑠𝑡 , 𝑎𝑡), where 𝜌 is one of the risk measures described above 
(standard/Gini deviation, VaR(c)). A simple approach would be to measure the riskiness of an action in a 
match state simply by the risk measure 𝜌𝑘(𝑠𝑡 , 𝑎𝑡). The problem with this approach is that it measures 
the general match context of the action, rather than the specific impact of the action. For example if a 
player makes a pass when his team has an empty net, the risk measure will be high regardless of how 
risky his pass is. Intuitively, the pass is taking place in a risky place at a risky time, but may itself not 
contribute to a team’s risk. 
The same issue arises with respect to expected action values (i.e., Q-values): A team playing against an 

empty net has a high chance of scoring the next goal, but a particular action by a player may not be 

increasing his team’s scoring chances beyond playing an empty net. Routley and Schulte (2015) proposed 

to address this issue by computing the action impact, which is measured by how much an action changes 
the scoring chances of the team in possession. The action goal impact is defined as follows for an action 

𝑎𝑡+1 and state s𝑡+1 comprising the 𝑡 + 1 -th event: 

𝑖𝑚𝑝𝑎𝑐𝑡𝑘(𝑠𝑡+1, 𝑎𝑡+1) = [𝑄𝑘(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑘(𝑠𝑡 , 𝑎𝑡)]𝕝𝑝(𝑠𝑡+1,𝑎𝑡+1)≥𝜖 (7) 

 

Figure 11.6: Box Plot for the risk impact of an action on the standard deviation of next-goal scoring chances. The red 

line indicates the median value and the blue line indicates the mean value. Each point represents the impact of the 

given action in a state (outliers removed). 

 
Here 𝑝  is a density estimator for state-action pairs, and 𝕝𝑝(·)≥𝜖  is an indicator value that returns 0 if the 
probability of the event falls below a threshold 𝜖. The idea is to filter out rare events because the Q-value 
estimates for rare events are often biased due to small sample sizes. Using a discrete Markov game model, 
Routley and Schulte (2015) removed all state-action pairs from consideration that occur less than 10 times 
in the data. For our continuous state space, we follow Liu et al. (2022) and eliminate anomalous events 
with 𝑝 < 20% . Anomaly filtering is not an essential component of our risk analysis framework. 
We can adapt the goal impact approach by measuring how much an action changes the risk of an action, 



 

which we call the risk impact: 

𝑅𝑖𝑚𝑝𝑎𝑐𝑡𝑘(𝑠𝑡+1, 𝑎𝑡+1) = [𝜌𝑘(𝑠𝑡+1, 𝑎𝑡+1) − 𝜌𝑘(𝑠𝑡 , 𝑎𝑡)]𝕝𝑝(𝑠𝑡+1,𝑎𝑡+1)≥𝜖 (8) 

where 𝜌 is one of our risk measures (standard/Gini deviation, value at risk). 

Figures 11.6 and 11.7 show the box plots for the standard/Gini deviation impacts for different actions. 

Game-changing events such as shots tend to have a high impact on the variability of team outcomes. 

Defensive faceoffs tend to decrease a team’s risk, likely because they follow a successful defense. It is 

interesting to note that exerting pressure tends to increase a team’s risk. Box plots for value-at-risk are in 

the appendix. 

 

11.6 Team Performance and Team Risk-tasking 

We apply our outcome distribution model to teams, by evaluating how much risk a team takes on 

aggregate. We start with teams because we can use the 

 

 

Figure 11.7: Box Plot for the risk impact of an action on the Gini deviation of next-goal scoring chances. The red line 

indicates the median value and the blue line indicates the mean value. Each point represents the impact of the given 

action in a state (outliers removed). 

 
total team performance over a season as a ground-truth metric of team success. The main question in this 

section is whether risk-taking by a team correlates with team success. To quantify risk-taking by teams, 

we add up the risk impact of the team’s total actions. 

For a dataset 𝒟, let 𝑔, 𝑡  be a generic instance for event number 𝑡  in game number 𝑔 . Also let 𝑡𝑒𝑎𝑚𝑔𝑡  be 

the team in possession at event 𝑡  in game g, and similarly for the state 𝑠𝑔𝑡 and the action 𝑎𝑔𝑡. Then the 

total team risk impact for team 𝑇  in the dataset is given by 

 

𝑅𝐼𝑀𝑘 = ∑ 𝑅𝑖𝑚𝑝𝑎𝑐𝑡𝑘𝑡(𝑠𝑔𝑡 , 𝑎𝑔𝑡)
 
𝑔,𝑡:𝑡𝑒𝑎𝑚𝑔𝑡=𝑇

                               (9) 

 

where 𝑘𝑡 denotes the appropriate agent at time 𝑡 (Home or Away). Equation (9) shows how to define a 

team risk impact metric for each risk measure, which we abbreviate as follows: StdRIM = risk impact for 



 

standard deviation, GdRIM = risk impact for Gini deviation, RIM(0.2) = risk impact for VaR with risk-seeking 

confidence level 0.2, RIM(0.8) = risk impact for VaR with risk-averse confidence level 0.8. RIM(c) is denoted 
as RiGIM(c) by Liu et al. (2022) using the same notation. 

A team’s season league standing is determined by the number of points the team earns in each match. 

We therefore measure the correlation between a team’s season risk impact and season total points as a 

measure of team performance. As Figures 11.8 and 11.9 show, both the standard and Gini deviations provide 
measures of risk-taking that are excellent predictors of team performance. This shows that stronger teams 

take more risks. Table 11.4 provides the Pearson correlations between team total points and team risk 

metrics. Value-at-risk metrics are substantially less informative about team performance, especially at the 

high confidence level of 0.8. Table 11.5 shows the top 10 teams in the league and their risk metrics. 
 

 

Figure 11.8: Team Points Vs. Team StdRIM. 

Table 11.4: Correlations between a team’s risk-impact metric and their season totals. The standard/Gini deviations 

show a very high predictive ability for team season performance, which shows that stronger teams take more risks. 

 
StdRIM GdRIM RIM(0.2) RIM(0.8) 

0.90 0.90 0.51 -0.24 
 

11.7 Ranking Hockey Players by Risk-taking 

As with teams, we use the total risk impact of a player’s actions to evaluate their risk-taking. Let 
𝑝𝑙𝑔𝑡 be the player in possession at event 𝑡  in game 𝑔 . Then the total player risk impact for player 
𝑙 in the dataset is given by 

𝑅𝐼𝑀𝑙 = ∑ 𝑅𝑖𝑚𝑝𝑎𝑐𝑡𝑘𝑡(𝑠𝑔𝑡 , 𝑎𝑔𝑡)𝑔,𝑡:𝑝𝑙𝑔𝑡=𝑙                             (10) 

where we use the same notation as in Section 6. Tables 11.6 and 11.7 show the top 20 players according 

to their risk ranking. Applying the “eye test”, risk-seeking VaR(0.2) identifies many stars, such as Connor 

McDavid, Leon Draisaitl, Sidney Crosby. The standard deviation metric also identifies several stars, such as 

Alex Ovechkin and Johnny Gaudreau. But it also highlights several less-heralded players, such as Jason 

Zucker and Jaden Schwartz. Another difference is that the standard deviation metric shows a bias towards 

forwards, whereas the Var(0.2) risk impact metric includes some centres. The top 20 tables for the other 

risk metrics are in the appendix. 



 

 

Figure 11.9: Team Points Vs. Team GdRIM. 

 
Table 11.5: Top 10 teams with StdRIM and GdRIM based on the entire season. The real rank is based on Total Points. 

The predicted rank is based on the risk impact metrics (both agree on the ranking), which measures a team's total 

risk taking over the season.  

Team Name Predicted Rank Real Rank Total Points StdRIM GdRIM 
Lightning 1 1 128 64.43 36.42 

Blues 2 12 99 57.01 31.98 

Sharks 3 6 101 54.56 31.25 

Flames 4 2 107 53.43 29.53 

Bruins 5 3 107 51.76 29.41 

Golden Knights 6 16 93 48.66 27.39 

Maple Leafs 7 7 100 44.67 25.52 

Hurricanes 8 11 99 44.17 24.98 

Canadiens 9 14 96 44.09 24.45 

Jets 10 10 99 40.47 23.62 

 

Table 11.6: Top 20 players according to the risk metric value-at-risk with a risk-seeking confidence level 0.2 (i.e., 
RIM(0.2)) based on the entire season. 

 

Player Name Position Team P A G RIM(0.2) 
Nikita Kucherov RW TBL 128 87 41 61.12 
Mitchell Marner RW TOR 94 68 26 60.81 

Johnny Gaudreau LW CGY 99 63 36 59.71 
Patrick Kane RW CHI 110 66 44 56.55 

Brad Marchand LW BOS 100 64 36 53.34 
Mark Stone RW VGK 73 40 33 51.29 

Connor McDavid C EDM 116 75 41 51.00 
Leon Draisaitl C EDM 105 55 50 50.16 
Timo Meier RW SJS 66 36 30 49.67 

Blake Wheeler RW WPG 91 71 20 48.96 
Sidney Crosby C PIT 100 65 35 48.56 

Jonathan 
Huberdeau 

LW FLA 92 62 30 48.19 



 

Kyle Connor LW WPG 66 32 34 47.85 
Artemi Panarin LW CBJ 87 59 28 47.34 

Evgenii Dadonov RW FLA 70 42 28 45.83 
Cam Atkinson RW CBJ 69 28 41 45.70 

Matthew Tkachuk LW CGY 77 43 34 45.32 
Brendan Gallagher RW MTL 52 19 33 44.95 

Jake Guentzel LW PIT 76 36 40 44.58 
Brandon Saad LW CHI 47 24 23 43.69 

 

 
Table 11.7: Top 20 players with StdRIM based on the entire season. 

 

Player Name Position Team P A G StdRIM 
Johnny Gaudreau LW CGY 99 63 36 13.07 

Patrick Kane RW CHI 110 66 44 12.04 
Nikita Kucherov RW TBL 128 87 41 11.68 
Alex Ovechkin LW WSH 89 38 51 11.30 

Mitchell Marner RW TOR 94 68 26 11.14 
Cam Atkinson RW CBJ 69 28 41 11.05 

Timo Meier RW SJS 66 36 30 10.77 
Vladimir Tarasenko RW STL 68 35 33 9.31 
Matthew Tkachuk LW CGY 77 43 34 9.30 

Brad Marchand LW BOS 100 64 36 9.12 
Jaden Schwartz LW STL 36 25 11 9.10 

Brendan Gallagher RW MTL 52 19 33 9.04 
David Pastrnak RW BOS 81 43 38 9.01 

Kyle Connor LW WPG 66 32 34 8.95 
Filip Forsberg LW NSH 50 22 28 8.72 

Josh Anderson RW CBJ 47 20 27 8.30 
Mikko Rantanen RW COL 87 56 31 8.28 
Evgenii Dadonov RW FLA 70 42 28 7.91 

Jason Zucker LW MIN 42 21 21 7.85 
Jonathan 

Huberdeau 
LW FLA 92 62 30 7.73 

 
A difficulty in evaluating player rankings is that unlike with teams, there are few suitable ground-truth 

metrics for performance (Franks et al., 2016). We follow previous work (Liu & Schulte, 2018; Decroos et al., 

2019) and consider the correlations between our risk metrics and other meaningful player statistics such as 

goals, assists, and points (= goals + assists). Figure 11.10 plots round-by-round correlations between these 

metrics and the deviation risk impact metrics. For each round in the season, for each player, we compute 

their total risk impact so far (e.g., standard deviation impact over all games up to round 30), and correlate 

it with their statistics (e.g., total goals scored up to round 30). We observe a substantive correlation for goal-

based statistics, reaching 0.51 for StdRIM and 0.56 for GdRIM at season’s end. Note that the correlation 

is already relatively high after about 30 rounds, less than half-way through the season. This means that 

the risk-impact metrics have high predictive power for future player performance. The auto-correlation 

plot in the bottom right directly confirms the temporal consistency of the risk metrics. This plot correlates 

the value of the risk metric after n rounds with the final season value. We see that already after 25 rounds, 

a player’s risk impact observed so far predicts their final risk impact with correlation above 0.8. The strong 

temporal auto-correlation is evidence that risk-taking measures capture a stable player’s characteristics 

(Pettigrew, 2015).  

 
 



 

 

Figure 11.10: Round by round correlations between different player metrics and risk metrics. The figure 

plots correlations for the standard deviation and Gini deviation risk metrics (StdRIM and GdRIM). 

Figure 11.11 shows the correlations between value-at-risk metrics and goal-related statistics. 

The correlations are even higher than with the deviation metrics (0.86 vs. 0.56 with goals). As 

the auto-correlation figure shows, a player’s risk-taking as measured by value-at-risk is stable 

throughout a season. Our observations for team and player rankings therefore point in 

different directions: for teams, we have strong evidence that standard/Gini deviation measures 

risk-taking that indicates team strength, whereas for players, value-at-risk with a low 

confidence level seems to correlate better. Correlations with goal-based statistics are only a 

superficial signal of player strength, as goals occur rarely and cover only a small part of relevant 

actions. Further research into risk-taking by players seems warranted. 



 

 

Figure 11.11: Round by round correlations between different player metrics and risk metrics. The figure plots 

correlations for value-at-risk metrics (RIM(c)), and goal impact metric (based on expected value). We plot risk- 

seeking confidence values (0.2), risk-averse confidence (0.8), and a neutral value with the confidence level corresponding 

set at the mean of the outcome distribution (its Q-value). 

 

A possible explanation for why the deviation-based metrics correlate less with goals, and do worse by the 

eye test, is to distinguish two ways in which a player’s actions can increase outcome variability: (1) 

Deliberate Risks, and (2) Unforced Errors. Strong players take controlled risks, based on confidence in their 

skills. For example, in ice hockey, a strong player will often carry the puck into their offensive zone, 

drawing defenders to themselves, which increases the risk of losing the puck but also increases the chance 

of a successful attack. In contrast, dumping the puck behind the defending team’s goal is a safer move, 

but tends to lead to fewer goals (Schulte et al., 2017a). An analogue in soccer would be dribbling the ball 

towards the defenders’ goal rather than passing it to a teammate. An example of an unforced error would 

be losing the ball during a promising attack, which causes the range of likely outcomes to spread from a 

concentration on a successful attack to both teams being likely to score. For a simple statistical model of 

this distinction, consider a Bernoulli model for a binary event with probability 𝑝 . For example, an expected 

goals model might assign a probability 𝑝 to a shot succeeding at time 𝑡 .The variance of success is given by 

𝑝(1 − 𝑝) and is maximal at 𝑝  = 50%. A deliberate risk may increase the scoring chance from p < 50% 

towards 𝑝′ > 𝑝 where 𝑝′ < 50%; for example, a deliberate risk may increase the scoring chance from 30% 

to 40%. Such a move increases both scoring chance and variance. On the other hand, an error may move 

the scoring chance from p towards 𝑝′ < 𝑝 with 𝑝′ < 50%, for example from 70% to 60%. Such a move 

decreases the scoring chance and increases variance. It is possible that strong players’ risks tend to be 

mainly of the beneficial deliberate type, whereas weaker players’ risks are of the harmful error type, so 

both may display a high risk measure. This analysis suggests that a fruitful direction for future research is 

a player metric that combines risk and reward, e.g., the standard deviation and the mean of the outcome 



 

distribution associated with a player’s action. 

 

11.8 Conclusion 

Decision-makers in sports often face a trade-off between risk and reward. Should a basketball player take 

a long-distance 3-point shot or a safer 2-point shot? Should a hockey player carry the puck, pass it to a 

teammate, or dump it behind the net? Studying the behavior of athletes and coaches when faced with 

risk-reward trade-offs requires tools for risk analytics. This paper described computational tools for risk 

analytics in sports by leveraging concepts and techniques from distributional reinforcement learning. 

Distributional RL aims to model the distribution of possible future outcomes, whereas traditional RL 

estimates the expected value. For representing the complex multi-modal outcome distributions that stem 

from sports dynamics, we adapted a state-of-the-art approach to distributional RL, which utilizes quantile 

regression as an expressive non-parametric framework for modelling distributions. We applied distribution 

RL techniques based on the Bellman equation to estimate a dynamic outcome distribution in the National 

Hockey League, for 1000+ games and 1M+ events. The literature on risk analysis has proposed different 

ways to quantify the risk inherent in an outcome distribution. We evaluated several of the most 

prominent ones for applications in hockey analytics, to answer the questions: Do stronger teams take 

more risks? Do stronger players take more risks? We found that the traditional standard deviation risk metric 

is an excellent predictor of team success: B o t h  t he standard deviation and Gini deviation of a team’s 

outcome distribution, aggregated over a season, show a 0.90 correlation with the team’s league standing 

at the end of a season (determined by their total points). Value-at-risk with confidence level 0.2 shows 

a lesser but still strong correlation of 0.51. 

For player ranking, we found that value-at-risk with risk-seeking confidence level 0.2, aggregated over all 

actions by a player in a season, shows a very high correlation of 0.86 with the player’s total season goals. 

Standard deviation and Gini deviation, in contrast, show slightly lower but still strong correlations of 0.51 

and 0.56, respectively. We suggest that modelling the risk-taking behavior of players may require a more 

fine-grained metric that distinguishes between deliberate risks, which are incurred by actions requiring 

high skill, and risks stemming from errors (e.g., losing possession of the puck). A promising source of such 

fine-grained metrics are measures from portfolio theory that combine risk and reward (expected 

outcome). For example, we might investigate in sport analytics a version of the famous Sharpe ratio that 

divides expected value by standard deviation. 

In sum, risk analytics is a promising new approach to sports analytics that focuses on the difficult trade-offs 

between taking risks and maximizing the chance of success that decision-makers in sports face. 

Distributional reinforcement learning provides the computational tools for estimating both risks and 

expected rewards in large sports data sets. Our NHL study shows that strong teams take big risks, and 

confirms to a lesser degree, that strong players are risk-takers as well. 
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11.10 Appendix 

11.10.1 Learning Value Functions and Value Distributions 

Figure 11.12 illustrates our recurrent neural network architecture for learning Q-values and distributional 

quantiles. Given a demonstration dataset of observed trajectories (i.e., 𝒟 = {τ}), a Q-function satisfying 
the Bellman equation can be learned by minimizing the 2-Norm of the Temporal difference (TD) error, 

which is defined by: 

ℒ(𝜃) = 𝔼𝜏∼𝒟 (�̂�𝑘(𝑠𝑡+1, 𝑎𝑡+1) + 𝑟𝑘,𝑡 − �̂�𝑘(𝑠𝑡 , 𝑎𝑡))
2
                 (11) 

where the expectation represents the average over all transitions (𝑠𝑡 , 𝑎𝑡; 𝑠𝑡+1, 𝑎𝑡+1) observed in the 

dataset. The term 𝑄�̂�(𝑠𝑡 , 𝑎𝑡) represents the current value estimate, and 𝑄�̂�(𝑠𝑡+1, 𝑎𝑡+1) + 𝑟𝑘,𝑡 a look-ahead 

step. Minimizing their squared difference drives the neural network to satisfy the Bellman equation 
(Equation (3)). For more details on implementing the temporal Bellman equation with quantile regression, 

please see Liu et al. (2022). 

 

11.10.2 Action Impact on Value-at-Risk 

Figure 11.13 shows the action impacts for Var(0.2) with confidence level 0.2 Game- changing events have a 

high impact on risk, as we observed in Section 5. In general the changes in risk are less than with 

standard/Gini deviations as this metric focuses on low probability outcomes. 

Figure 11.14 shows the impact of actions on risk as measured by Var(0.8) with confidence level 0.8. At this 

confidence level, risk impact is similar to goal impact, that is, tends to measure increase in goal scoring 

chances rather than the increase in the variability of goal-scoring chances. 

 

 

11.10.3 Top 20 Player Tables for other Risk Metrics 

Table 11.8 shows the top 20 players for the Gini impact risk metric, which is very similar to the top 20 for 

the standard deviation risk metric. 

As shown in Table 11.9, for the risk-averse confidence level 0.8, value-at-risk identifies many stars, such as 

Scheifele and Crosby. This metric shows a bias towards centres.  
 

 



 

 

 
Figure 11.12: Our recurrent neural network architecture for learning Q-values and a distribution of action outcomes. 

At each time step, the RNN receives as input a pair 𝑠𝑡 , 𝑎𝑡 where the state 𝑠𝑡 is a vector of features shown in Table 1. 

It outputs an estimate of the Q-value (chance of scoring the next goal) or a set of quantiles representing the 

distribution of action outcomes (goals scored). We utilize an LSTM architecture. For more details please see Liu et 

al. (2022). 
 
 
 
 
 
 
 
 
 

 

Figure 11.13: Box Plot with confidence 0.2 (risk-seeking) The red line indicates the median value and the blue line 

indicates the mean value. Each point represents the risk impact of the given action in a state. 
 
 
 
 



 

 

Figure 11.14: Box Plot with for RIM with confidence 0.8 (risk-averse) The red line indicates the median value and the 

blue line indicates the mean value. Each point represents the risk impact of the given action in a state. 

 
 

Table 11.8: Top 20 players with GdRIM based on the entire season. 
 

Player Name Position Team P A G GdRIM 
Johnny Gaudreau LW CGY 99 63 36 7.15 

Patrick Kane RW CHI 110 66 44 6.61 
Nikita Kucherov RW TBL 128 87 41 6.53 
Cam Atkinson RW CBJ 69 28 41 6.06 
Alex Ovechkin LW WSH 89 38 51 6.00 

Mitchell Marner RW TOR 94 68 26 5.98 
Timo Meier RW SJS 66 36 30 5.97 

Matthew Tkachuk LW CGY 77 43 34 5.18 
Brad Marchand LW BOS 100 64 36 5.06 

Kyle Connor LW WPG 66 32 34 5.03 
Vladimir Tarasenko RW STL 68 35 33 4.96 
Brendan Gallagher RW MTL 52 19 33 4.91 

David Pastrnak RW BOS 81 43 38 4.87 
Jaden Schwartz LW STL 36 25 11 4.87 
Filip Forsberg LW NSH 50 22 28 4.64 

Mikko Rantanen RW COL 87 56 31 4.62 
Josh Anderson RW CBJ 47 20 27 4.52 

Evgenii Dadonov RW FLA 70 42 28 4.44 
Jason Zucker LW MIN 42 21 21 4.27 

Jonathan Huberdeau LW FLA 92 62 30 4.22 

 

 
Table 11.9: Top 20 players with RIM at risk-averse confidence 0.8 based on the entire season. 

 

Player Name Position Team P A G RIM(0.8) 
Aleksander Barkov C FLA 96 61 35 50.50 

Leon Draisaitl C EDM 105 55 50 49.67 
Mark Scheifele C WPG 84 46 38 48.73 
Sidney Crosby C PIT 100 65 35 47.24 

Jonathan Toews C CHI 81 46 35 45.22 
Mitchell Marner RW TOR 94 68 26 42.71 



 

Dylan Larkin C DET 73 41 32 41.82 
Nikita Kucherov RW TBL 128 87 41 41.00 

Max Domi LW MTL 72 44 28 40.47 
Connor McDavid C EDM 116 75 41 40.45 

Bo Horvat C VAN 61 34 27 39.92 
Mika Zibanejad C NYR 74 44 30 39.29 
Artemi Panarin LW CBJ 87 59 28 38.93 
Sebastian Aho C CAR 83 53 30 38.55 

Mark Stone RW VGK 73 40 33 38.38 
Claude Giroux C PHI 85 63 22 37.98 

Johnny Gaudreau LW CGY 99 63 36 37.86 
Mathew Barzal C NYI 62 44 18 37.83 

Nicklas Backstrom C WSH 74 52 22 37.78 
Brad Marchand LW BOS 100 64 36 37.55 
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