Learning graphical models for relational
data via lattice search

Oliver Schulte & Hassan Khosravi

Machine Learning
ISSN 0885-6125

Mach Learn
DOI 10.1007/s10994-012-5289-4

Machine

Learning

@ Springer

Your article is protected by copyright and all
rights are held exclusively by The Author(s).
This e-offprint is for personal use only

and shall not be self-archived in electronic
repositories. If you wish to self-archive your
work, please use the accepted author’s
version for posting to your own website or
your institution’s repository. You may further
deposit the accepted author’s version on

a funder’s repository at a funder’s request,
provided it is not made publicly available until
12 months after publication.

@ Springer

Mach Learn
DOI 10.1007/s10994-012-5289-4

Learning graphical models for relational data via lattice
search

Oliver Schulte - Hassan Khosravi

Received: 28 November 2010 / Accepted: 26 March 2012
© The Author(s) 2012

Abstract Many machine learning applications that involve relational databases incorpo-
rate first-order logic and probability. Relational extensions of graphical models include
Parametrized Bayes Net (Poole in IJCAI, pp. 985-991, 2003), Probabilistic Relational Mod-
els (Getoor et al. in Introduction to statistical relational learning, pp. 129-173, 2007), and
Markov Logic Networks (MLNs) (Domingos and Richardson in Introduction to statistical
relational learning, 2007). Many of the current state-of-the-art algorithms for learning MLN's
have focused on relatively small datasets with few descriptive attributes, where predicates
are mostly binary and the main task is usually prediction of links between entities. This paper
addresses what is in a sense a complementary problem: learning the structure of a graphical
model that models the distribution of discrete descriptive attributes given the links between
entities in a relational database. Descriptive attributes are usually nonbinary and can be very
informative, but they increase the search space of possible candidate clauses. We present an
efficient new algorithm for learning a Parametrized Bayes Net that performs a level-wise
search through the table join lattice for relational dependencies. From the Bayes net we ob-
tain an MLN structure via a standard moralization procedure for converting directed models
to undirected models. Learning MLN structure by moralization is 200—1000 times faster and
scores substantially higher in predictive accuracy than benchmark MLN algorithms on five
relational databases.

Keywords Statistical-relational learning - Graphical models - Markov logic networks -
Bayes nets

1 Introduction

Many databases store data in relational format, with different types of entities and infor-
mation about links between the entities. The field of statistical-relational learning (SRL)

Editor: Lise Getoor.

O. Schulte (X)) - H. Khosravi
School of Computing Science, Simon Fraser University, Vancouver-Burnaby, BC, V5A 156, Canada
e-mail: oschulte @cs.sfu.ca

H. Khosravi
e-mail: hkhosrav @cs.sfu.ca

Published online: 30 May 2012 &\ Springer

mailto:oschulte@cs.sfu.ca
mailto:hkhosrav@cs.sfu.ca

Mach Learn

has developed a number of new statistical models for relational databases (Getoor and
Tasker 2007). Markov Logic Networks (MLNs) form one of the most prominent SRL
model classes; they generalize both first-order logic and Markov network models (Domin-
gos and Richardson 2007). MLNs have achieved impressive performance on a variety
of SRL tasks. Because they are based on undirected graphical models, they avoid the
difficulties with cycles that arise in directed SRL models (Neville and Jensen 2007;
Domingos and Richardson 2007; Taskar et al. 2002). An open-source benchmark system for
MLNs is the Alchemy package (Kok et al. 2009). Essentially, an MLN is a set of weighted
first-order formulas that compactly defines a Markov network comprising ground instances
of logical predicates. The formulas are the structure or qualitative component of the Markov
network; they represent associations between ground facts. The weights are the parame-
ters or quantitative component; they assign a likelihood to a given relational database by
using the log-linear formalism of Markov networks. This paper addresses structure learn-
ing for MLNSs in relational schemas that feature a significant number of descriptive at-
tributes, compared to the number of relationships. Previous MLN learning algorithms do
not scale well with such datasets. We introduce a new moralization approach to learn-
ing MLNSs: first we learn a directed Bayes net graphical model for relational data, then
we convert the directed model to an undirected MLN model using the standard moral-
ization procedure (marry spouses, omit edge directions). The main motivation for per-
forming inference with undirected models is that they do not suffer from the problem of
cyclic dependencies in relational data (Domingos and Richardson 2007; Taskar et al. 2002;
Khosravi et al. 2010). Thus our approach combines the scalability and efficiency of directed
model search, with the inference power and theoretical foundations of undirected relational
models.

Approach We present a new algorithm for learning a Bayes net from relational data, the
learn-and-join algorithm. While our algorithm is applicable to learning directed relational
models in general, we base it on the Parametrized Bayes Net formalism of Poole (2003). The
learn-and-join algorithm performs a level-wise model search through the table join lattice
associated with a relational database, where the results of learning on subjoins constrain
learning on larger joins. The join tables in the lattice are (i) the original tables in the database,
and (ii) joins of relationship tables, with information about descriptive entity attributes added
by joining entity tables. A single-table Bayes net learner, which can be chosen by the user, is
applied to each join table to learn a Bayes net for the dependencies represented in the table.
For joins of relationship tables, this Bayes net represents dependencies among attributes
conditional on the existence of the relationships represented by the relationship tables.

Single-table Bayes net learning is a well-studied problem with fast search algorithms.
Moreover, the speed of single-table Bayes net learning is significantly increased by provid-
ing the Bayes net learner with constraints regarding which edges are required and which are
prohibited. Key among these constraints are the join constraints: the Bayes net model for
a larger table join inherits the presence or absence of edges, and their orientation, from the
Bayes nets for subjoins. We present a theoretical analysis that shows that, even though the
number of potential edges increases with the number of join tables, the join constraint re-
duces the Bayes net model search space to keep it roughly constant size throughout the join
lattice. In addition to the join constraints, the relational structure leads to several others that
reduce search complexity; we discuss the motivation for these constraints in detail. One of
the constraints addresses recursive dependencies (relational autocorrelations of an attribute
on itself) by restricting the set of nodes that can have parents (i.e., indegree greater than 0)
in a Parametrized Bayes Net. A normal form theorem shows that under mild conditions, this
restriction involves no loss of expressive power.

@ Springer

Mach Learn

Evaluation We evaluated the structures obtained by moralization using two synthetic
datasets and five public domain datasets. In our experiments on small datasets, the run-time
of the learn-and-join algorithm is 200-1000 times faster than benchmark programs in the
Alchemy framework (Kok and Domingos 2009) for learning MLN structure. On medium-
size datasets, such as the MovieLens database, almost none of the Alchemy systems returns
a result given our system resources, whereas the learn-and-join algorithm produces an MLN
with parameters within 2 hours; most of this time (98 %) is spent optimizing the parameters
for the learned structure. To evaluate the predictive performance of the learned MLN struc-
tures, we used the parameter estimation routines in the Alchemy package. Using standard
prediction metrics for MLLNs, we found in empirical tests that the predictive accuracy of the
moralized BN structures was substantially greater than that of the MLNs found by Alchemy.
Our code and datasets are available for ftp download (Learn and join algorithm code).

Limitations The main limitation of our current algorithm is that it does not find associa-
tions between links, for instance that if a professor advises a student, then they are likely
to be coauthors. In the terminology of Probabilistic Relational Models (Getoor et al. 2007),
our algorithm addresses attribute uncertainty, but not existence uncertainty (concerning the
existence of links). The main ideas of this paper can also be applied to link prediction.

Another limitation is that we do not propose a new weight learning method, so we use
standard Markov Logic Network methods for parameter learning after the structure has been
learned. While these methods find good parameter settings, they are slow and constitute the
main computational bottleneck for our approach.

Paper organization We review related work, then statistical-relational models, especially
Parametrized Bayes nets and Markov Logic Networks. We define the table join lattice, and
present the learn-and-join algorithm for Parametrized Bayes nets. We provide detailed dis-
cussion of the relational constraints used in the learn-and-join algorithm. For evaluation,
we compare the moralization approach to standard MLN structure learning methods imple-
mented in the Alchemy system, both in terms of processing speed and in terms of model
predictive accuracy.

Contributions The main contributions may be summarized as follows.

1. A new structure learning algorithm for Bayes nets that model the distribution of de-
scriptive attributes given the link structure in a relational database. The algorithm is a
level-wise lattice search through the space of join tables.

2. Discussion and justification for relational constraints that speed up structure learning.

3. A Markov logic network structure can be obtained by moralizing the Bayes net. We
provide a comparison of the moralization approach with other MLN methods.

2 Additional related work

A preliminary version of the Learn-and-Join Algorithm was presented by Khosravi et al.
(2010). The previous version did not use the lattice search framework. Our new version
adds constraints on the model search, makes all constraints explicit, and provides rationales
and discussion of each. We have also added more comparison with other Markov Logic Net-
work learning methods (e.g., BUSL, LSM) and a lesion study that assesses the effects of
using only part of the components of our main algorithm. Our approach to autocorrelations
(recursive dependencies) was presented by Schulte et al. (2011). The main idea is to use a

@ Springer

Mach Learn

restricted form of Bayes net that we call the main functor node format. This paper exam-
ines how the main functor node format can be used in the context of the overall relational
structure learning algorithm.

The syntax of other directed SRL models, such as Probabilistic Relational Models
(PRMs) (Getoor et al. 2007), Bayes Logic Programs (BLPs) (Kersting and de Raedt 2007)
and Logical Bayesian Networks (Fierens et al. 2005), is similar to that of Parametrized
Bayes Nets (Poole 2003). Our approach applies to directed SRL models generally.

Nonrelational structure learning methods Schmidt et al. (2008) compare and contrast
structure learning algorithms in directed and undirected graphical methods for nonrelational
data, and evaluate them for learning classifiers. Domke et al. provide a comparison of the
two model classes in computer vision (Domke et al. 2008). Tillman et al. (2008) provide the
ION algorithm for merging graph structures learned on different datasets with overlapping
variables into a single partially oriented graph. It is similar to the learn-and-join algorithm
in that it extends a generic single-table BN learner to produce a BN model for a set of data
tables. One difference is that the ION algorithm is not tailored towards relational structures.
Another is that the learn-and-join algorithm does not analyze different data tables com-
pletely independently and merge the result afterwards. Rather, it recursively constrains the
BN search applied to join tables with the adjacencies found in BN search applied to the
respective joined tables.

Lattice search methods The idea of organizing model/pattern search through a partial order
is widely used in data mining, for instance in the well-known APRIORI algorithm (Agrawal
and Srikant 1994), in statistical-relational learning (Popescul and Ungar 2007) and in In-
ductive Logic Programming (ILP) (Van Laer and de Raedt 2001). Search in ILP is based
on the -subsumption or specialization lattice over clauses. Basically, a clause ¢ specializes
another clause ¢’ if ¢ adds a condition or if ¢ replaces a 1st-order variable by a constant. The
main similarity to the lattice of relationship joins is that extending a chain of relationships
by another relationship is a special case of clause specialization. The main differences are
as follows. (1) Our algorithm uses only a lattice over chains of relationships, not over con-
ditions that combine relationships with attributes. Statistical patterns that involve attributes
are learned using Bayes net techniques, not by a lattice search. (2) ILP methods typically
stop specializing a clause when local extensions do not improve classification/prediction ac-
curacy. Our algorithm considers all points in the relationship lattice. This is feasible because
there are usually only a small number of different relationship chains, due to foreign key
constraints.

Since larger table joins correspond to larger relational neighborhoods, lattice search
is related to iterative deepening methods for statistical-relational learning (Neville and
Jensen 2007, Sect. 8.3.1; Chen et al. 2009). The main differences are as follows. (1) Cur-
rent statistical-relational learning methods do not treat dependencies learned on smaller
relational neighborhoods as constraining those learned on larger ones. Thus dependen-
cies learned for smaller neighborhoods are revisited when considering larger neighbor-
hoods. In principle, it appears that other statistical-relational learning methods could be
adapted to use the relationship join lattice with inheritance constraints as in our ap-
proach. (2) To assess the relevance of information from linked entities, statistical-relational
learning methods use aggregate functions (e.g., the average grade of a student in the
courses they have taken), or combining rules (e.g., noisy-or) (Kersting and de Raedt 2007;
Natarajan et al. 2008). In Probabilistic Relational Models, Bayes Logic Programs, and re-
lated models, the aggregate functions/combining rules add complexity to structure learn-
ing. In contrast, our statistical analysis is based on table joins rather than aggregation. Like

@ Springer

Mach Learn

Markov Logic Networks, our algorithm does not require aggregate functions or combining
rules, although it can incorporate them if required.

MLN structure learning methods Current methods (Kok and Domingos 2009; Mihalkova
and Mooney 2007; Huynh and Mooney 2008; Biba et al. 2008) successfully learn MLN
models for binary predicates (e.g., link prediction), but do not scale well to larger datasets
with descriptive attributes that are numerous and/or have a large domain of values. Mi-
halkova and Mooney (2007) distinguish between top-down approaches, that follow a
generate-and-test strategy of evaluating clauses against the data, and bottom-up approaches
that use the training data and relational pathfinding to construct candidate conjunctions for
clauses. In principle, the BN learning module may follow a top-down or a bottom-up ap-
proach; in practice, most BN learners use a top-down approach. The BUSL algorithm (Mi-
halkova and Mooney 2007) employs a single-table Markov network learner as a subroutine.
The Markov network learner is applied once after a candidate set of conjunctions and a data
matrix has been constructed. In contrast, we apply the single-table BN learner repeatedly,
where results from earlier applications constrain results of later applications.

We briefly describe the key high-level differences between our algorithm and previous
MLN structure learning methods, focusing on those that lead to highly efficient relational
learning.

Search space Previous Markov Logic Network approaches have so far followed Inductive
Logic Programming techniques that search the space of clauses. Clauses define connections
between atoms (e.g. intelligence = hi, gpa = low). Descriptive attributes introduce a large
number of atoms, one for each combination of attribute and value, and therefore define a
large search space of clauses. We utilize Bayes net learning methods that search the space of
links between predicates/functions (e.g., intelligence, gpa), rather than atoms. Associations
between predicates constitute a smaller model space than clauses that can be searched more
efficiently. The efficiency advantages of searching the predicate space rather than the clause
space are discussed by Kersting and de Raedt (2007, 10.7).

Constraints and the lattice structure We employ a number of constraints that are motivated
by the relational semantics of the data. These further reduce the search space, mainly by
requiring or forbidding edges in the Bayes net model. A key type of constraint are based
on the lattice of relationship chains: These state that edges learned when analyzing shorter
chains are inherited by longer chains. This allows the learn-and-join algorithm to perform a
local statistical analysis for a single point in the relationship chain lattice, while connecting
the results of the local analyses with each other.

Data representation and lifted learning The data format used by Markov Logic Networks
is a list of ground atoms, whereas the learn-and-join algorithm analyzes data tables. This
allows us to apply directly propositional Bayes net learners which take single tables as input.
From a statistical point of view, the learn-and-join algorithm requires only the specification
of the frequency of events in the database (the sufficient statistics in the database) (Schulte
2011). The data tables provide these statistics. In the case of join tables the statistics are
frequencies conditional on the existence of a relationship (e.g., the percentage of pairs of
friends who both smoke). The learn-and-join algorithm can be seen as performing lifted
learning, in analogy to lifted probabilistic inference (Poole 2003). Lifted inference uses
as much as possible frequency information defined at the class level in terms of 1st-order
variables, rather than facts about specific individuals. Likewise, the learn-and-join algorithm
uses frequency information defined in terms of 1st-order variables (namely the number of
satisfying groundings of a 1st-order formula).

@ Springer

Mach Learn

3 Background and notation

Our work combines concepts from relational databases, graphical models, and Markov
Logic networks. As much as possible, we use standard notation in these different areas.
Section 3.5 provides a set of examples illustrating the concepts.

3.1 Logic and functors

Parametrized Bayes nets are a basic statistical-relational learning model; we follow the orig-
inal presentation of Poole (2003). A functor is a function symbol or a predicate symbol. Each
functor has a set of values (constants) called the range of the functor. A functor whose range
is {T, F} is a predicate, usually written with uppercase letters like P, R. A functor random
variable is of the form f(t,..., 7z) where f is a functor and each term t; is a first-order
variable or a constant. We also refer to functor random variables as functor nodes, or for
short fodes.! Unless the functor structure matters, we refer to a functor node simply as a
node. If functor node f(t) contains no variable, it is ground, or a gnode. An assignment of
the form f () = a, where a is a constant in the range of f, is an atom; if f(t) is ground,
the assignment is a ground atom. A population is a set of individuals, corresponding to a
domain or type in logic. Each first-order variable X is associated with a population Py of
size |Px|; in the context of functor nodes, we refer to population variables (Poole 2003).
An instantiation or grounding y for a set of variables X1, ..., X; assigns a constant y (X;)
from the population of X; to each variable X;.

Getoor and Grant discuss the applications of function concepts for statistical-relational
modelling in detail (Getoor and Grant 2006). The functor formalism is rich enough to repre-
sent the constraints of an entity-relationship (ER) schema (Ullman 1982) via the following
translation: Entity sets correspond to populations, descriptive attributes to functions, rela-
tionship tables to predicates, and foreign key constraints to type constraints on the argu-
ments of relationship predicates. A table join of two or more tables contains the rows in the
Cartesian products of the tables whose values match on common fields.

We assume that a database instance (interpretation) assigns a unique constant value to
each gnode f(a). The value of descriptive relationship attributes is well defined only for
tuples that are linked by the relationship. For example, the value of grade(jack, 101) is
not well defined in a university database if Registered(jack, 101) is false. In this case, we
follow the approach of Schulte et al. (2009) and assign the descriptive attribute the special
value L for “undefined”. Thus the atom grade(jack, 101) = L is equivalent to the atom
Registered(jack, 101) = F. Fierens et al. (2005) discuss other approaches to this issue. The
results in this paper extend to functors built with nested functors, aggregate functions (Klug
1982), and quantifiers; for the sake of notational simplicity we do not consider more complex
functors explicitly.

3.2 Bayes nets and Markov nets for relational data and Markov logic networks
We employ notation and terminology from Pearl (1988) for graphical models. Russell and

Norvig provide a textbook introduction to many of the topics we review (Russell and Norvig
2010). A Bayes net structure is a directed acyclic graph (DAG) G, whose nodes comprise a

IThe term “functor” is used as in Prolog (Bratko 2001). In Prolog, the equivalent of a functor random variable
is called a “structure”. Poole (2003) refers to a functor random variable or fnode as a “parametrized random
variable”. We use the term fnode for brevity.

@ Springer

Mach Learn

set of random variables denoted by V. In this paper we consider only discrete finite random
variables. When discussing a Bayes net structure, we refer interchangeably to its nodes
or its variables. A family in a Bayes net graph comprises a child node and the set of its
parents. A Bayes net (BN) is a pair (G,) where 0 is a set of parameter values that
specify the probability distributions of children conditional on assignments of values to their
parents. The conditional probabilities are specified in a conditional probability table. For an
assignment of values to all nodes in the Bayes net, the joint probability of the values is given
by the product of the associated conditional probabilities. A Parametrized Bayes Net is a
Bayes net whose nodes are functor nodes. In the remainder of this paper we follow (Schulte
2011) and use the term Functor Bayes Net or FBN instead of Parametrized Bayes Net, for
the following reasons. (1) To emphasize the use of functor symbols. (2) To avoid confusion
with the statistical meaning of “parametrized”, namely that values have been assigned to the
model parameters. We usually refer to FBNs simply as Bayes nets.

A Markov net structure is an undirected graph whose nodes comprise a set of random
variables. For each clique C in the graph, a clique potential function W¢ specifies a nonneg-
ative real number for each possible assignment of values to the clique. For an assignment
of values to all nodes in the Markov net, the joint probability of the values is given by the
product of the associated clique potentials, divided by a normalization constant. A Functor
Markov Net is a Markov net whose nodes are functor nodes.

Bayes nets can be converted into Markov nets through the standard moralization method:
connect all spouses that share a common child, and make all edges in the resulting graph
undirected. Thus each family in the Bayes net becomes a clique in the moralized structure.
For each state of each family clique, we define the clique potential in the Markov net to be
the conditional probability of the child given its parents. The resulting Markov net defines
the same joint probability over assignments of values to the nodes as the original Bayes net.

3.3 Inference and ground models

In statistical-relational learning, the usual approach to inference for relational data is to use
a ground graphical model for defining a joint distribution over the attributes and links of en-
tities. This approach is known as knowledge-based model construction (Ngo and Haddawy
1997; Koller and Pfeffer 1997; Wellman et al. 1992). For a Functor Markov Net M, this
leads to the notion of a ground Functor Markov net that is derived from M by instantiating
the functor nodes in M in every possible way. Formally, there is an edge fi(a,) — f>(a»)
between two gnodes if and only if there is an edge fi(7;) — f>(t») in M and there is a
grounding y of T, T, such that y(t;) =a;, fori =1, 2.

Each clique among gnodes inherits the clique potential from the clique potential of the
Ist-order model. A given database instance specifies a value for each node in the ground
graph. Thus the likelihood of the Functor Markov net for the database can be defined as
the likelihood assigned by the ground Markov net to the facts in the database following the
usual product of all clique potentials involving ground nodes. Viewed on a log-scale, this is
the sum of the log-potentials.

In the case where the Functor Markov net is obtained by moralizing a Functor Bayes net,
the resulting log-likelihood is as follows: For each possible child-parent state in the Bayes
net, multiply the logarithm of the corresponding conditional probability by the number of
instantiations of the child-parent states in the database. This is similar to the standard single-
table Bayes net log-likelihood, where for each possible child-parent state in the Bayes net,
we multiply the logarithm of the corresponding conditional probability by the number of
table rows that satisfy the given child-parent state.

@ Springer

Mach Learn

The fact that the grounding semantics provides a conceptually straightforward way to
define probabilistic inferences for relational data has been a major competitive advantage of
undirected relational models (Domingos and Richardson 2007; Taskar et al. 2002). Below,
we discuss the difficulties that can arise in applying the grounding semantics with directed
models, making reference to some examples.

3.4 Markov logic networks

A Markov Logic Network (MLN) is a finite set of 1st-order formulas or clauses {¢;}, where
each formula ¢; is assigned a weight. A Markov Logic Network can be viewed as a specifi-
cation of a Markov network using logical syntax (Domingos and Richardson 2007). Given
an MLN and a database D, let n; (D) be the number of groundings that satisfy ¢; in D. An
MLN assigns a log-likelihood to a database according to the equation

In(P(D)) = Zw,-ni(D) —In(2) (1)

where Z is a normalization constant.

Thus the log-likelihood is a weighted sum of the number of groundings for each clause.
Functor Markov Nets have a simple representation as Markov Logic Networks as follows.
For each assignment of values to a clique of functor nodes, add a conjunctive formula to the
MLN that specifies that assignment. The weight of this formula is the logarithm of the clique
potential. For any Functor Markov net, the MLN likelihood function defined by Eq. (1)
for the corresponding MLN is exactly the Markov net likelihood defined by grounding the
Functor Markov net. Therefore we can use MLN inference to carry out inference for Functor
Markov Nets.

3.5 Examples
We illustrate Functor Bayes Nets and Markov Logic Networks with two relational schemas.

Friendship database Figure 1 shows a simple database instance in the ER format, follow-
ing (Domingos and Richardson 2007). Figure 2 illustrates Functor Bayes net concepts. An
example of a family formula with child node Smokes(Y) is

Smokes(Y) =T, Smokes(X) =T, Friend(X,Y)=T.

Figure 3 shows the MLN structure obtained by moralization and the corresponding ground
Markov net for the database of Fig. 1. For converting the Bayes net conditional probabilities
to MLN clause weights, Domingos and Richardson suggest using the log of the conditional
probabilities as the clause weight (Domingos and Richardson 2007, 12.5.3), which is the
standard conversion for propositional Bayes nets. Figure 3 illustrates moralization using log-
probabilities as weights. In this paper we apply moralization only to the model structure, not
to the model parameters. Table 1 shows how the unnormalized log-likelihood of the sample
database is computed for the ground model.

University database Table 2 shows a university relational schema and Fig. 4 a Functor
Bayes net for this schema.

@ Springer

Mach Learn

Fig. 1 A simple relational People Friend

database instance
Name Smokes | Cancer Namel | Name2
Anna T T Anna Bob
Bob T F Bob Anna

P(S{¥) = T |S(X) =T,F(X,Y)=T) = 70%
P(S(Y) = T |S(X) =F.F(XY)=F) = 75% | | Friend(X,Y)

; 8

Smokes(Y) Cancer(Y)

P(C(Y) =T [S(Y) =T) = 70%

v

Smokes(X)

| Friend(b,a) ‘ | Friend(a,b) |
! |
| Cancer(a) H Smokes(a) |<—>| Smokes(b) I-—>| Cancer(b)
| t

| Friend(a,a) | ‘ Friend(b,b) |

Fig. 2 A Functor Bayes Net and its grounding for the database of Fig. 1. The double arrow <> is equivalent
to two directed edges. Conditional probability parameters are chosen arbitrarily for illustration

MLN
S(Y) =T, S(X) =T, F(X,Y)=T: In(70%)
S(Y) =T, S(X) =F, F(X,Y)=F: In(75%)
C(Y) =T, S(Y) =T: In(70%)

Friend(X,Y)

Smokes(X)

Smokes(Y) l—‘ Cancer(Y) ‘
Friend(b,a)

Smokes(a)

Friend(a,a) Friend(b,b)

Fig. 3 Top: The moralized Functor Bayes net of Fig. 2. On the right, it shows the clauses and the
weights for the corresponding Markov Logic Network. The clauses specify the family states in the Func-
tor Bayes net. Each clause weight is the logarithm of the conditional probability that corresponds to
the clause. In graphical terms, these are the log-clique potentials for the clique comprising the nodes
Smokes(X), Friend(X,Y), Smokes(Y). Bottom: The ground Markov network for the database of Fig. 1

Friend(a,b)

Cancer(a) Smokes(b)

@ Springer

Mach Learn

Table 1 The computation of the Markov Net log-likelihood for the database of Fig. 1. For simplicity, we
used uniform probabilities as probability parameters for the nodes Friend(X, Y) and Smokes(X)

Clique formula log-potential #groundings log-potential x
groundings

Smokes(X) =T In(50 %) 2 —-1.39
Friend(X,Y)=T In(50 %) 2 —1.39
Friend(X,Y)=F In(50 %) 2 —1.39
Friend(X,Y) =T, Smokes(X) =T, Smokes(Y) =T In(70 %) 2 —-0.71
Friend(X,Y) = F, Smokes(X) =T, Smokes(Y)=T In(100 %) 2 0

Cancer(Y) =T, Smokes(Y) =T In(70 %) 1 —0.36
Cancer(Y) = F, Smokes(Y) =T In(30 %) 1 —1.20

Total unnormalized log-likelihood —6.43

Table 2 A relational schema for
a university domain. Key fields Student(student_id, intelligence, ranking)

are underlined. The RA and TA Course(course_id, difficulty, rating)
relations are not used in all

Professor(professor_id, teaching_ability, popularity)
examples —

Registered(student_id, course_id, grade, satisfaction)

Teaches(professor_id, course_id)

RA(student_id, prof _id, salary, capability)
TA(course_id, student_id, capability)

Teaches(P,C}

Registered(S,C)
| intelligence(S) }——)| grade(S,C) ‘

| ranking(S) | | satisfaction(S,C)’T

Fig. 4 A Functor Bayes net graph for the relational schema of Table 2 (without TA and RA relations)

3.6 Directed models and the cyclicity problem

Knowledge-based model construction with directed models is defined by instantiating the
variables in the graph with all possible constants, as with undirected models (Poole 2003;
Russell and Norvig 2010, Chap. 14.6). Two key issues arise.

(1) The combining problem. The directed model with population variables represents
generic statistical relationships found in the database. For instance, a Bayes net may
encode the probability that a student is highly intelligent given the properties of a single
course they have taken. But the database may contain information about many courses
that the student has taken, which needs to be combined. In terms of the ground graph,
the problem is how to define the conditional probability of a child gnode given its set

@ Springer

Mach Learn

Turnto BN MLN Parameter

Learn-and-join Formula Learning
First Order Logic Markov Logic
Dataset Bayes Net Formula Network

Fig. 5 System architecture for learning a Markov Logic Network from an input relational database

of multiple parents. For example, in the Bayes Net of Fig. 2, the gnode Smokes(a)
will have a separate parent Smokes(y) for each person y instantiating the population
variable Y. (Since our toy database contains only two people, there is only one parent
gnode Smokes(b).) Addressing the combining problem requires an aggregate function,
as in PRMs, or a combining rule as in BLPs, or the log-linear formula of MLNSs.

(2) The cyclicity problem. A directed model may face cyclic dependencies between the
properties of individual entities. For example, if there is generally a correlation between
the smoking habits of friends, then we may have a situation where the smoking of Jane
predicts the smoking of Jack, which predicts the smoking of Cecile, which predicts
the smoking of Jane, where Jack, Jane, and Cecile are all friends with each other. In
the presence of such cycles, neither aggregate functions nor combining rules lead to
well-defined probabilistic predictions. Figure 2 shows a cycle of length 2 between the
two gnodes Smokes(a) and Smokes(b). This model also illustrates how cycles arise in
the presence of relationships that relate entities of the same type, as Friend relates two
people. Such relationships are called rings in Entity-Relationship models (Ullman 1982)
and are called self-relationships by Heckerman et al. (2007). Self-relationships typically
give rise to autocorrelations where the value of an attribute for an entity depends on the
value of the same attribute among related entities (Neville and Jensen 2007; Schulte
et al. 2011). For instance, in the ground Bayes net of Fig. 2, the value of Smokes(a)
depends on the value of Smokes for other people.

Because cycles are not allowed in a valid Bayes net graph, grounding Functor Bayes nets
that include self-relationships does not lead to a valid distribution for carrying out proba-
bilistic inference. This cyclicity problem has been difficult to solve, which has led Neville
and Jensen to conclude that “the acyclicity constraints of directed models severely limit their
applicability to relational data” (Neville and Jensen 2007, p. 241).

The approach of this paper is essentially a hybrid method that uses directed models for
learning and undirected models for inference. The idea is to use scalable Bayes net algo-
rithms to learn a Functor Bayes net, then convert the Bayes net to a Markov Logic network
for inference using moralization. Converting the Bayes net to an undirected model avoids
the cyclicity problem. Thus the approach of this paper combines advantages of both directed
and undirected SRL models: Learning efficiency and interpretability from directed models
on the one side, and on the other, the solutions to the combining and cyclicity problems
together with the inference power of undirected models. The graph of Fig. 5 summarizes the
system architecture.

4 Lattice search for attribute dependencies
We describe the learn-and-join method for learning a Functor Bayes net that models correla-
tions among descriptive attributes given the link structure. We begin with the data structures

that the algorithm uses to represent relational objects. Then we give pseudocode for the
algorithm and illustrate it with an example.

@ Springer

Mach Learn

4.1 Overview

The components of the algorithm address the following main issues. (1) The representation
of relationship sets. (2) Bounding the complexity of relational contexts. (3) Avoiding dupli-
cate edges. (4) Propagating constraints from smaller relationship sets in the multinet lattice
to larger ones.

Compared to the previous presentation of the learn-and-join algorithm by Khosravi et al.
(2010), we make two main changes. (i) We define and discuss the constraints on the graph
structure that are used in the algorithm, separately from the description of the model search
procedure. (ii) We describe the model search procedure as a lattice search, where the lattice
points are chains of relationships. Conceptually, the lattice view makes the description sim-
pler and more general without losing rigor. Computationally, the lattice diagram facilitates
the implementation of the model search.

4.2 The multinet lattice

With each point in the relationship lattice, we associate a Bayes net model and a join data
table. Thus the lattice structure defines a multinet rather than a single Bayes net. Multinets
are a classic Bayes net formalism for modelling context-sensitive dependencies among vari-
ables. They have been applied for modelling diverse domains, such as sleep disorders, eye
diseases, and turbines that generate electricity. Geiger and Heckerman contributed a standard
reference article for the multinet formalism (Geiger and Heckerman 1996). In their illustra-
tive example, a building guard watches for three different types of people, visitors, spies,
and workers. The existence of a dependency between the gender of a person and whether
they wear an identification badge depends on the type of person. This scenario is modelled
with three multinets, one for each type of person. The type of person is the context for the
corresponding multinet.

Going back to the classic work of Ngo and Haddaway on context-sensitive dependencies
in relational data (Ngo and Haddawy 1997), directed relational models usually include re-
sources for representing the influence of context on dependencies (Ngo and Haddawy 1997,
Fierens et al. 2005; Getoor and Grant 2006; Natarajan et al. 2008; Heckerman et al. 2007;
Russell and Norvig 2010). A common approach is to use a logical language for stating con-
text conditions as well as dependencies between random variables. In this paper we employ
multinets rather than context-sensitive rules for two reasons: (1) To stay close to standard
graphical approaches for nonrelational Bayes nets. (2) To ensure that the dependencies found
for a given context define a valid acyclic Bayes net structure.

In the learn-and-join algorithm, a context is defined by a chain of relationship functor
nodes. Distinguishing these different contexts allows us to represent that the existence of
certain dependencies among attributes of entities depend on which kind of links exist be-
tween the entities. The final output of the learn-and-join algorithm is a single Bayes net
derived from the multinet. As we discuss in Sect. 4.3, the output of the algorithm can also
be converted to other formalisms, including those based on rules for context-sensitive de-
pendencies.

4.2.1 Functor nodes

Throughout the discussion we assume that a set of functor random variables F is fixed. The
random variables F are partitioned into (i) functor nodes representing descriptive attributes

@ Springer

Mach Learn

of entities, (ii) functor nodes representing descriptive attributes of links, (iii) Boolean rela-
tionship functor nodes that indicate whether a relationship holds. Descriptive attribute func-
tor nodes (i) take as arguments a single population variable, whereas the relational functor
nodes (ii) and (iii) take as arguments two or more population variables. We make the fol-
lowing assumptions about the functor nodes F that appear in a Functor Bayes net.

1. A functor node contains variables only.
2. No functor node contains the same variable X twice.

These assumptions are met in typical SRL models. They do not actually involve a loss
of modelling power because a functor node with a constant or a repeated variable can be
rewritten using a new functor symbol (provided the functor node contains at least one vari-
able). For instance, a functor node Friend(X, jack) can be replaced by introducing a new
unary functor symbol Friend,(X). Similarly, Friend(X, X) can be replaced by the unary
functor symbol Friend,.;s(X). The functor node set ' may be explicitly specified by the user
or automatically generated from a relational database schema (Khosravi et al. 2010).

Examples The nodes of the Bayes net of Fig. 4 are the functor nodes generated from the
schema of Table 2 with one population variable per entity type (e.g., S for Student). Self-
relationships require two population variables of the same kind. This is illustrated in the
Bayes net of Fig. 2, which contains two population variables for the Person entity type X and
Y for the self-relationship Friend. This allows the Bayes net to represent an autocorrelation
involving the Smokes attribute: Given that person X is friends with person Y, the smoking
habits of X predict those of Y.

4.2.2 Relationship chains

A relationship set is a chain if it can be ordered as a list [R{(T1), ..., Ri(Tr)] such that
each functor R, (t;;) shares at least one population variable with the preceding terms
Ri(ty1),..., Ri(t;). All sets in the lattice are constrained to form a chain. For instance, in
the University schema of Table 2, a chain is formed by the two relationship nodes

RA(P,S), Registered(S, C).
If relationship node TA(C, S) is added, we may have a three-element chain
RA(P,S), Registered(S, C), TA(C, S).

The subset relation defines a lattice on relationship sets/chains. Figure 6 illustrates the lattice
for the relationship nodes in the University schema of Fig. 2. For reasons that we explain
below, entity tables are also included in the lattice and linked to relationships that involve
the entity in question.

The concept of a relationship chain is related to but different from the notion of a slot
chain as used in Probabilistic Relational Models (Getoor et al. 2007). The main difference
is that a slot chain can connect entity tables as well as relationship tables. Thus a path from
the Student table to the Registered table to the Course table constitutes a slot chain of length
3, but contains only a single relationship (relationship chain of length 1).

@ Springer

Mach Learn

< Registered(s,C), TA(S,C), Teaches(P,C)

Registered(S,C),

‘T\A(s,c)

@g-istered-(;,q

Fig. 6 A lattice of relationship sets for the University schema of Table 2 (without the RA relation). Links
from entity tables to relationship tables correspond to foreign key pointers

Teaches(P,C)

Teaches(P C)

4.2.3 The join data table

With each relationship set R is associated a join data table xg. The table represents the fre-
quencies (sufficient statistics) with which combinations of attribute values occur, conditional
on all relationships in R being true. Let R; denote the data table associated with relation-
ship functor R;(t;). For relationship functors R = {R|(7}), ..., Ri(ti)} let X, ..., X; be
the population variables that occur in the k relationship functors, and write £ for the entity
data table associated with the population variable X ;. Then the join table for the relationship
set, or relationship join, is given by

— ik !
MR=N,_ R ™) Ej.

If two or more variables are associated with the same population, then the same descrip-
tive attribute will appear at least twice in the relationship join. In this case we disambiguate
the names of the descriptive attributes by adding the variable as their argument. Similarly,
we add variables to disambiguate repeated occurrences of descriptive link attributes. Thus
each column label in the relationship join corresponds to exactly one functor node. For each
relationship set R={R;(7}), ..., Rk(T¢)}, the nodes in the associated Bayes net By are the
column labels in Xg, plus Boolean relationship indicator nodes R, (7)), ..., Ry ().

Examples For the relationship chain RA(P, S), Registered(S, C), the join data table is
given by
RA ™ Registered % Professor % Student x Course.

The join data table associated with the relationship functor Friend(X,Y)—shown in
Fig. 7—is given by

Friend x People X People.

@ Springer

Mach Learn

Fig. 7 The join data table

associated with the Friend Namel Name2 | S(X) | C(X) S(Y) | C(Y)
relationship for the database (=X) (=Y)
instance of Fig. 1
Anna Bob T T T F
Bob Anna T F T T

4.3 Model conversion

The output of the lattice search is the Bayes net associated with the largest relationship chain
that forms the apex of the relationship lattice. The Bayes net of Fig. 4 is associated with the
relationship set Registered(S, C), Teaches(P, C), which is the maximal conjunction of both
relationship functors in this functor set. In Fig. 6 the maximally large relationship set has
three members. To obtain a Markov Logic Network, we convert the maximal Bayes net
to an MLN using moralization. The Bayes net can similarly be converted to other clausal
formalisms like BLPs and LBNS, since a Functor Bayes net defines a set of directed clauses
of the form child < parents (Kersting and de Raedt 2007). The existence of a link of a
certain type can be taken as a context condition in rule languages where associations between
random variables depend on a context.

5 The learn-and-join algorithm

This section presents the Learn-and-Join Algorithm (LAJ) that takes as input a relational
database and constructs a Bayes multinet for each relationship set in the multinet lattice.
The algorithm enumerates relationship lists. This can be done using any standard technique,
such as those developed for enumerating itemsets in association rule mining (Agrawal and
Srikant 1994). It proceeds level-wise by considering relationship sets of length s =1, 2,
After Bayes nets have been learned for sets of length s, the learned edges are propagated to
sets of length s 4 1. In the initial case of single relationship tables where s = 1, the edges
are propagated from Bayes nets learned for entity tables. In addition to the edge constraints,
the algorithm enforces a number of constraints that are motivated by the relational structure
of the functor nodes.

We next provide a compact description of the constraints used, including their definition,
an intuitive interpretation and examples. Then we show by examples how the constraints op-
erate. Finally, we summarize the algorithm with pseudocode as Algorithm 1. Later sections
discuss the constraints in detail, including motivation, mathematical analysis and references
to related concepts that have appeared in the literature.

5.1 Constraints used in the learn-and-join algorithm

The constraints fall into two types: relational constraints that capture the semantics of the
relational schema, and lattice constraints on the presence/absence of edges that connect the
results of learning from different points in the relationship set lattice.

The algorithm requires the specification of a main population variable for each entity
type (e.g., Y for People). The intuitive interpretation is that the distribution of attributes for
that entity type is modelled by functor nodes that involve the main variable, whereas other
functor nodes play an auxiliary role (e.g., the distribution of the Smokes attribute is modelled
by the functor node Smokes(Y') rather than the functor node Smokes(X)).

@ Springer

Mach Learn

Algorithm 1: Pseudocode for structure learning with lattice search

Input: Database D with entity tables E1q, ..., E,; functors F; #variable bound maxVar.
Output: MLN formulas for D; a Bayes multi-net BR for relationship subsets R of F.
Calls BNL: Any propositional Bayes net learner that accepts edge constraints and a single
table of cases as input.
Notation: BNL(T, Econstraints) is the output DAG of the Bayes net learner given data
table T and constraints Econstraints.

: Econstraints := Forbidden + Required Edges from Constraint 3 and Constraint 4.
: fori < 1toedo
B, := BNL(E;, Econstraints).
end for
: Econstraints + = Lattice Constraints from entity tables (Constraint 1).
: for list size s < 1,2... do
Enumerate relationship sets Ry, ..., Ry, of size s, such that for each i:
(1) R; is a chain.
(2) the number of population variables in R; is no greater than maxVar.
8: if there is no such list of size s then

AN A e

9: terminate computation
10: else
11: for i <— 1 to s do
12: BR, := BNL(XR,, Econstraints) + edges originating in the R; functors
(Constraint 5).
13: end for
14: endif

15: Econstraints + = Lattice Constraints from relationship joins of size s (Constraint 2).
16: end for

17: Let Bjuqx be the Bayes net associated with the maximal relationship set.

18: Add all family formulas of By, to MLN.

5.1.1 Edge inheritance in the relationship lattice

These constraints state that the presence or absence of edges in graphs associated with join
tables lower in the lattice is inherited by graphs associated with join tables higher in the
lattice. The intuition is that dependencies should be assessed in the most specific context
possible. First edges from an entity table are inherited by relationship tables that involve the
entity in question.

Constraint 1 Let X be the main population variable for an entity type associated with
entity table E. Let R be any relationship set that contains the variable X. Then the Bayes
net associated with R contains an edge f(X) — g(X) connecting two descriptive attributes
of X if and only if the Bayes net associated with E contains the edge f(X) — g(X).

Example 1f the People Bayes net contains an edge Smokes(Y) — Cancer(Y), then the
Bayes net associated with the relationship Friend must also contain this edge (see Fig. 2). If
the edge is absent in the People Bayes net, it must also be absent in the Bayes net associated
with the relationship Friend.

The next constraint states that edges learned on smaller relationship sets are inherited
by larger relationship sets. If the smaller sets are ambiguous with regard to the direction of

@ Springer

Mach Learn

an adjacency, the larger relationship set must contain the adjacency; the direction is then
resolved by applying Bayes net learning to the larger relationship set.

Constraint 2 Suppose that nodes f(t), g(t') appear in the join table xgr. Then

1. If f(z) and g(z') are not adjacent in any graph Bg+ associated with a relationship
subset R* C R, then f(t) and g(t') are not adjacent in the graph associated with the
relationship set R.

2. Else if all subset graphs agree on the orientation of the adjacency f(t) — g(t'), the
graph associated with the relationship set R inherits this orientation.

3. Else the graph associated with the relationship set R must contain the edge f(t) —
g(t') orthe edge f(t) < g(1').

Examples Consider the lattice shown in Fig. 6. Suppose that the graph associated with the
relationship Registered(S, C) contains an edge

difficulty(C) — intelligence(S),

and that the graph associated with the relationship TA(S, C) does not contain the edge
difficulty(C) — intelligence(S). Then the edge difficulty(C) — intelligence(S) must be
present in the Bayes net associated with the larger relationship set Registered(S, C),
TA(S, C). If the edge is contained in neither of the graphs associated with Registered(S, C),
and TA(S, C), it must not be present in the graph associated with the Registered(S, C),
TA(S, C).

5.1.2 The main functor node format

Following Schulte et al. (2011), the algorithm requires the specification of a main functor
node for each functor (e.g., Smokes(Y') is the main functor node for the functor Smokes).
Only main functor nodes are allowed to have edges pointing into them (i.e., indegree greater
than 0). The intuition behind this constraint is that it suffices to model the conditional distri-
bution of just one “copy” of the functor. For example, to model the conditional distribution
of the Smokes attribute, it suffices to have parents only for the functor node Smokes(Y),
rather than allow parents for both the functor node Smokes(Y) and Smokes(X).

Constraint 3 For any Bayes net associated with a relationship set, if its graph contains an
edge — f(t) pointing into a node f(t), then f(t) is the main functor node for f.

Example Suppose that Smokes(Y) is the main functor node for Smokes. Then the main
functor constraint permits the edges Smokes(X) — Smokes(Y) and Friend(X,Y) —
Smokes(Y), but rules out the edges Smokes(Y) — Smokes(X) and Friend(X,Y) —
Smokes(X).

5.1.3 Population variable bound

We allow the user to specify a bound on the number of population variables that occur in a
family (child + parent nodes). Intuitively, this bounds the number of distinct (generic) ob-
jects that can be considered in a single child-parent configuration. For instance, if the bound
is 1, the family expresses patterns only about a single entity. With 2 population variables,
patterns involving pairs can be expressed, with 3 triples can be modelled, etc.

@ Springer

Mach Learn

Examples For the node Cancer(Y) of Fig. 2, its family contains a single population
variable Y, so only patterns involving a generic person can be represented. For the node
Smokes(Y), its family contains two population variables X and Y, so patterns involving
pairs of people can be represented.

We emphasize that a variable number bound does rot imply a bound on the size of fam-
ilies, or the length of clauses: even with a single population variable like S for students, we
can have an arbitrary number of attributes of students in a single clause. Kok and Domingos
(2010) highlight the importance of learning long clauses for relational models.

5.1.4 Link attributes

There is a deterministic dependency between a Boolean relationship indicator node and a de-
scriptive attribute associated with the relationship: If the relationship does not exist between
two entities, then the value of the descriptive attribute is undefined. In our representation,
this means that the descriptive attribute takes on the value L for undefined (cf. Sect. 3.1).
This deterministic connection can be enforced given the following graphical constraint.

Constraint 4 Suppose that fr denotes a descriptive attribute of relationship R and that
fr(T) is the main functor node for fr and R(t) is the main functor node for R. Then there
is an edge R(t) — fr(t) in any Bayes net that contains fg(t).

Examples In the Bayes net of Fig. 4, the functors satisfaction and grade denote de-
scriptive attributes of the Registered relationship. So the Bayes net must contain edges
Registered(S, C) — satisfaction(S, C) and Registered(S, C) — grade(S, C), which are the
main nodes for their respective functors.

5.1.5 Relationship parents

An edge f(t) — g(7’) in a Bayes net Bg represents an influence that depends on the exis-
tence of the links in the relationship chain R. To make this dependence explicit in the Bayes
net graph, we add the members of R as parents to the child node g(z’).

Constraint 5 Suppose that an edge f(t) — g(t') appears in a graph Br but not in
any graph associated with a subset of R, or in any graph associated with an entity ta-
ble/population that occurs in R. Then the graph Bgr contains an edge R(t*) — g(t') for
each relationship indicator node R(t*) € R.

Example Consider the lattice shown in Fig. 6. Suppose that the graph associated with the
relationship Registered(S, C) contains an edge

difficulty(C) — intelligence(S).

Since this edge is not contained in either of the graphs associated with the entity tables
Student or Course, the constraint requires an edge

Registered(S, C) — intelligence(S).

Constraint 5 is not essential to the learning performance. Rather, adding the edges
originating in relationship nodes has the effect of changing the representation of context-
sensitivity from the multi-net format to a single-net format, which is the target output of the

@ Springer

Mach Learn

learn-and-join algorithm. If the target is another output model format, this constraint may be
replaced by another formalism for representing context-sensitive associations (cf. Sects. 4.2
and 4.3).

To complete the description of the constraints, we present examples of how the con-
straints operate in the learn-and-join algorithm. Later sections provide further discussion
and analysis.

5.2 Examples

We illustrate the learn-and-join algorithm on the example database of Fig. 1; see Fig. 8. The
TA and RA relations are omitted for simplicity.

1. Applying the single-table Bayes net learner to the People table may produce a single-
edge graph Smokes(Y) — Cancer(Y).
2. Then form the join data table

J = Friend » People X People

shown in Fig. 7. The Bayes net learner is applied to J, with the following constraints.

(a) From the People Bayes net, there must be an edge Smokes(Y) — Cancer(Y), where
Y is the main population variable associated with People (Constraint 1).

(b) No edges may point into Smokes(X) or Cancer(X), since these are not the main
functor nodes for the functors Smokes and Cancer (Constraint 3).

The Bayes net learner applied to the join table J then may find an edge Smokes(X) —
Smokes(Y). Since the dependency represented by this edge is valid only for pairs of peo-
ple that are friends (i.e., conditional on Friend(X,Y) = T), the algorithm adds an edge
Friend(X,Y) — Smokes(Y) (Constraint 5), whose associated Bayes net is shown in Fig. 8.

Figure 9 shows the multinet for the University schema up to level 1. Continuing the con-
struction up to the highest level 2 produces a single Bayes net for the maximal relationship
set Registered(S, C), Teaches(P, C) that is shown in Fig. 4.

Friend JOIN People JOIN People

_ se) | e | s | o)
Friend(X.Y) ot |1 |E | e 1
T F T T Smokes(X) | ‘ Smokes(Y) | .":| Cancer(Y) |
People /

/

Smokes(Y) | Cancer(Y) /
People(Y) T T Smokes(Y))—l Cancer(Y) ‘
T F

Fig.8 The 2-net lattice associated with the DB instance of Fig. 1. The figure shows the data tables associated
with the only entity table People and the only relationship table Friend. The block arrow indicates that the
output of a single-table Bayes net learner on the data table is the Bayes net shown. The dashed line that
connects the two edges Smokes(Y) — Cancer(Y) indicates that this edge is propagated from the lower-level
Bayes net to the higher-level Bayes net

@ Springer

Mach Learn

o e,
.\Te ches(P,C]r-)

-

:;"'Registe red(S,(.:)‘/‘;

Registered(S,C}
intelligence(S) | grade(S,C) l

| ranking(S) | | satisfaction(S,C)'Y | rating(C) |

I Teaches(P,C)

| diff(c) | /[teach-ability(p)

rating(C) popularity(P)

;"/Student(éi_‘ 5;/'Cou rse(Ci":; 'Professor(lﬁ")‘)

intelligence(S) diff(C) teach-ability(P)
popularity(P)

Fig. 9 The multinet lattice for the University Schema, restricted to entity and relationship functors. Join data
tables are not shown. We omit the 7A and RA relationships for simplicity

5.3 Pseudocode

Algorithm 1 combines all the algorithm’s components in pseudocode. We next discuss the
constraints in more detail. The discussion can be skipped without loss of continuity.

6 Discussion: lattice constraints

A key feature of the learn-and-join algorithm are the lattice inheritance Constraints 1 and 2
that a Bayes net for a table join must respect the links found for the joined tables. We
describe a computational and a statistical motivation for them.

Computational efficiency The edge-inheritance constraint reduces the search complexity
considerably. To illustrate, consider the impact of Constraint 1 for two entity tables that
contain k descriptive attributes each. In an unconstrained join with a relationship table, the

search space of possible adjacencies has size (221‘), whereas with the constraint, the search

space size is k%/2, which is smaller than (22") because the quadratic k> factor has a smaller
coefficient. For example, with k = 6, we have (221‘) = 66 and k2 /2 = 18. For the learn-and-
join algorithm, the main computational challenge in scaling to larger table joins is therefore
not the increasing number of columns (attributes) in the join, but only the increasing number
of rows (tuples).

Statistical motivation In addition to efficiency, a statistical motivation for the edge-
inheritance Constraint 1 is that the marginal distribution of descriptive attributes may be
different in an entity table than in a relationship table. For instance, if a highly intelligent
student s has taken 10 courses, there will be at least ten satisfying groundings of the conjunc-
tion Registered(S, C), intelligence(S) = hi. If highly intelligent students tend to take more
courses than less intelligent ones, then in the Registered table, the frequency of tuples with
intelligent students is higher than in the general student population. In general, the distribu-
tion of database frequencies conditional on a relationship being true may be different from

@ Springer

Mach Learn

its unconditional distribution. The edge inheritance constraint ensures that the subgraph of
the final Bayes net whose nodes correspond to the attributes of the E table is exactly the
same as the graph that the single-table Bayes net learner constructs for the E table.

The motivation for Constraint 2 is similar: a dependency ought to be evaluated on a
minimal context. For instance, the presence of an edge intelligence(S) — difficulty(C) given
that Registered(S, C) = T ought to depend only on the Registered relationship and not on
a relationship that involves another object, such as a TA for the course (i.e., the edge is
inherited in the larger context Registered(S, C) =T, TA(C, G)).

A further statistical foundation is provided by a plausible pseudo-likelihood function
that measures the fit of a Bayes Nets to a given input database (Schulte 2011). The relational
pseudo log-likelihood is defined just like the regular single-table log-likelihood for a Bayes
net, with the database frequency of a parent-child state replacing the number of rows that
feature the parent-child state. Schulte shows that the learn-and-join algorithm optimizes the
pseudo-likelihood function (Schulte 2011).

7 Discussion: the main functor node format

The functor concept allows different nodes in a Functor Bayes net to be associated with
the same attribute or relationship, where the difference between the nodes is in their vari-
able arguments only. This expressive power is essential to represent recursive dependen-
cies where instances of an attribute/relationship depend on other instances of the same at-
tribute/relationship. However, it causes additional complexity in learning if each functor is
treated as separate random variables. Consider for example the Bayes net shown in Fig. 10.

If we treat Smokes(X) and Smokes(Y) as entirely separate variables, learning needs to
consider additional edges similar to those already in the Bayes net, like Smokes(X) —
Cancer(X) and age(Y) — Smokes(Y). However, such edges are redundant because the pop-
ulation variables X and Y are interchangeable as they refer to the same entity set. In terms of
ground instances, the redundant edges connect exactly the same ground instances. Redun-
dant edges can be avoided if we restrict the model class to the main functor format, where
for each function symbol f (including relationships), there is a main functor node f(t)
such that all other functor nodes f(z’) associated with the same functor are sources in the
graph, that is, they have no parents. The term “main functor node” expresses that the main
node is the main instance of functor f from the point of view of modelling the conditional
distribution of f.

Example The Bayes net of Fig. 2, reproduced in Fig. 11, is in main functor form. The
Bayes net of Fig. 10 is not in main functor node form because we have two functor nodes
for Smokes with nonzero indegree.

l age(a)] l Friend(b,a) | | Friend(a,b) | | age(b) |
I age()(} ‘ \ Friend{X,Y) ‘ | Cancer(a) |¢—| Smokes(a))'Q—D| Smokes(b) H Cancer(b) |
' 3
[Smokes()() H Smokes(Y) |—)| Cancer(Y) ‘ | i) | | i) |

Fig. 10 A Bayes net with different predictors for Smokes(X) and Smokes(Y), and its grounding for two
individuals a and b. The Bayes net is not in main functor node form

@ Springer

Mach Learn

|age(a) | l Friend(b,a) | l Friend(a,b) | { age(b) I
\J
Friend(X’Y) [Cancer{a) l'—l Smokes(a) |<—0 Smokes(b) Cancer(b) |
4 A
Smokes(X) Smokes(Y) Cancer(Y) | p—— | I Friendtb "]
riend(a,a X

Fig. 11 An Bayes net in main functor node form where Smokes(Y) is the main functor for Smokes(X). The
ground Bayes net is the same as the ground Bayes net for the graph of Fig. 10

Schulte et al. (2011) provide a theoretical justification for the main functor node format:
under a mild assumption, every Bayes net B can be transformed into an equivalent Bayes
net B’ that is in main functor node form. Equivalence here means that both Bayes nets
have the same ground graph for any database. A Functor Bayes Net is stratified if there
is an ordering of the functors such that for every edge f(r) — g(t’) in the Bayes net,
either the functor symbol f precedes the functor symbol g in the ordering, or f and g
are the same. Both Bayes nets in Figs. 10 and 11 are stratified given the functor ordering
age > Friend > Smokes > Cancer.

Proposition 1 Let B be a stratified Bayes net. Then there is a Bayes net B’ in main functor
node form such that for every database D, the ground graph of B is the same as the ground
graph of B'.

For the proof see Schulte et al. (2011). Figures 10 and 11 illustrate the proposition. Strati-
fication is a widely imposed condition on logic programs, because it increases the tractability
of reasoning with a relatively small loss of expressive power (Lifschitz 1996, Sect. 3.5; Apt
and Bezem 1991). Related ordering constraints have also appeared in previous statistical-
relational models (Fierens 2009; Friedman et al. 1999).

While the transformed Bayes nets have the same groundings, they are not equivalent at
the variable or class level. For instance, in the model of Fig. 10 the maximum indegree is
2, whereas in the model of Fig. 11 the maximum indegree is 3. In effect, the main functor
node format moves one or more parents from the auxiliary functor nodes to the main functor
node, which produces larger families. In terms of Markov Logic Network clauses that result
from moralization, the main functor format therefore leads to longer rules. Our experiments
below provide empirical confirmation of this theoretical expectation.

8 Discussion: population variable bound

As both the statistical and the computational complexity of Functor Bayes nets can be high,
it is desirable to allow a user to specify a complexity bound to control the trade-off between
expressive power and computational difficulty. A key issue is the length of the relation-
ship chains that the algorithm needs to consider. The number of relationship chains grows
exponentially with this parameter. We expect that more distantly related entities carry less
information, so many SRL algorithms assume a small bound on the length of possible slot
chains, on the order of 3 or so. A less restrictive way to bound the complexity of relationship
chains is to allow the user to specify a bound on the number of 1st-order or population vari-
ables that occur in a family (child 4 parent nodes), following a proposal of Vardi (1995).
Intuitively, this bounds the number of distinct (generic) objects that can be considered in

@ Springer

Mach Learn

a single child-parent configuration. The computational complexity of computing sufficient
statistics for a relationship set depends on the number of population variables as well: with
no bound, the problem is #P-complete (Domingos and Richardson 2007, Prop. 12.4). With
a constant bound, sufficient statistics can be computed in polynomial time (Vardi 1995;
Khosravi et al. 2009).

The next section presents empirical evidence about the performance of the learn-and-join
algorithm on benchmark datasets.

9 Evaluation: experimental design

All experiments were done on a QUAD CPU Q6700 with a 2.66 GHz CPU and 8 GB of
RAM. Our code and datasets are available on the world-wide web (Learn and join algorithm
code). We made use of the following existing implementations.

Single Table Bayes Net Search GES search (Chickering 2003) with the BDeu score as im-
plemented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform, ESS =
10; CMU The Tetrad Group 2008).

MLN Parameter Learning The default weight training procedure (Lowd and Domingos
2007) of the Alchemy package (Kok et al. 2009), Version 30.

MLN Inference The MC-SAT inference algorithm (Poon and Domingos 2006) to compute a
probability estimate for each possible value of a descriptive attribute for a given object
or tuple of objects.

Join Data Tables The join data tables for a given relationship chain are computed using a
straightforward SQL inner join over the required relationship and entity tables. Our
database management system is MySQL Version 1.2.15.

The computation of the join data tables could be optimized in a number of ways. For
instance, like most Bayes net scores, the BDeu score requires only the sufficient statistics, or
database frequencies of events. Rather than materializing the entire join data table, we could
use indices or the SQL Count aggregate function to compute these summary statistics only.
We did not include optimizations of the database computations because data management is
not the focus of our paper, and we already achieve very fast learning without them. Thus the
database is used only to find the set of tuples that satisfy a given join condition (e.g., find
the set of (x, y) pairs such that Friend(X,Y) =T, Smokes(X) =T, Smokes(Y) = F).

9.1 Datasets
We used two synthetic and five benchmark real-world datasets for our evaluation.

University database 'We manually created a small dataset, based on the schema given in
Table 2. The entity tables contain 38 students, 10 courses, and 6 Professors. The Registered
table has 92 rows and the RA table has 25 rows.

University+ database To test learning algorithms with autocorrelations, we extended this
database with a self-relationship Friend between Students and several descriptive attributes
of students, such that the ranking and coffee drinking habits of a student are strongly corre-
lated with the ranking and coffee drinking habits of her friends, respectively.

@ Springer

Mach Learn

MovieLens database The MovieLens dataset is from the UC Irvine machine learning
repository. It contains two entity tables: User with 941 tuples and Item with 1,682 tuples,
and one relationship table Rated with 80,000 ratings. The User table has 3 descriptive at-
tributes age, gender, occupation. We discretized the attribute age into three bins with equal
frequency. The table Item represents information about the movies. It has 17 Boolean at-
tributes that indicate the genres of a given movie. We performed a preliminary data analysis
and omitted genres that have only weak correlations with the rating or user attributes, leaving
a total of three genres.

Mutagenesis database This dataset is widely used in ILP research (Srinivasan et al. 1996).
Mutagenesis has two entity tables, Afom with 3 descriptive attributes, and Mole, with 5
descriptive attributes, including two attributes that are discretized into ten values each (logp
and lumo). It features two relationships MoleAtom indicating which atoms are parts of which
molecules, and Bond which relates two atoms and has 1 descriptive attribute.

Hepatitis database This dataset is a modified version of the PKDD’02 Discovery Chal-
lenge database. We adopted the modifications of Frank et al. (2007), which includes re-
moving tests with null values. It contains data on the laboratory examinations of hepatitis
B and C infected patients. The examinations were realized between 1982 and 2001 on 771
patients. The data are organized in 7 tables (4 entity tables, 3 relationship tables and 16
descriptive attributes). They contain basic information about the patients, results of biopsy,
information on interferon therapy, results of out-hospital examinations, results of in-hospital
examinations.

Mondial database This dataset contains data from multiple geographical web data sources
(May 1999). We follow the modification of She et al. (2005), and use a subset of the tables
and features. Our dataset includes a self-relationship table Borders that relates two countries.

UW-CSE database This dataset lists facts about the Department of Computer Science and
Engineering at the University of Washington (UW-CSE), such as entities (e.g., Student,
Professor) and their relationships (i.e. AdvisedBy, Publication) (Domingos and Richard-
son 2007). The dataset was obtained by crawling pages in the department’s Web site
(www.cs.washington.edu). Publications and Author of relations were extracted from the
BibServ database (www.bibserv.org).

Table 3 lists the databases and their sizes in terms of total number of tuples and number of
ground atoms, which is the input format for Alchemy. To convert attribute information from
the relational database to ground atoms, we used a key-value representation that introduces
a binary predicate for each attribute of entities. The first argument is the id of the entity and
the second is the value of the predicate for the entity. For example if the value of attribute
gender for person Bob is male, the input to the Markov Logic Network contains the ground
atom gender(Bob, male). Similarly, we introduce a ternary predicate for each attribute of a
link.?

Because several of the Alchemy systems returned no result on some of the real-world
datasets, we formed two subdatabases using standard subgraph subsampling (Frank 1977).

2 Another data format was explored by Kok and Domingos (2007), which introduces a single unary predicate
for each possible value of the attribute. To illustrate, for instance the attribute gender with values (male,
female), is represented with two unary predicates gender;y o (Person), Salaryfyyqje (Person). The effect is
that the arguments to all predicates are primary keys. Khosravi et al. (2010) compared MLN learning with
the two different data formats and found comparable performance.

@ Springer

http://www.cs.washington.edu
http://www.bibserv.org

Mach Learn

Table 3 Size of datasets in total

number of table tuples and Dataset #tuples #Ground atoms

ground atoms. Each descriptive

attribute is represented as a University 171 513

separate function, so the number Movielens 82623 170143

f is 1 h

of ground atoms is larger than Mutagenesis 15218 35973

that of tuples
Hepatitis 12447 71597
Mondial 814 3366
UW-CSE 2099 3380

Table 4 Size of subdatasets in

total number of table tuples and Dataset #uples #Ground atoms

ground atoms. Each descriptive

attribute is represented as a MovieLens!1 (subsample) 1468 3485

sc;parate Cflunction., 5;’ the nltllmber MovieLens?2 (subsample) 12714 27134

of ground atoms 1s larger than .

that of tuples Mutagenesis1 (subsample) 3375 5868
Mutagenesis2 (subsample) 5675 9058
Hepatitis1 6162 41335

First, draw a random sample of entities from each entity table. Then restrict the relationship
tuples in each subdatabase to those that involve only the selected entities. Table 4 lists the
resulting subdatabases and their sizes in terms of total number of tuples and number of
ground atoms.

9.2 Graph structures learned by the learn-and-join algorithm

Figure 12 shows the learned Bayes nets for the University, Hepatitis, MovieLens, and Mon-
dial datasets. The graphs illustrate how the learn-and-join algorithm learns models with
complex dependency patterns.

10 Moralization vs. other structure learning methods: basic comparisons

We begin with a set of comparisons on standard benchmarks that follows the design and
performance metrics of previous MLN structure learning studies (Khosravi et al. 2010;
Mihalkova and Mooney 2007; Kok and Domingos 2009). Then we focus on experiments
that assess specific components of the learn-and-join algorithm.

10.1 Comparison systems and performance metrics
We compared the learn-and-join algorithm with 4 previous Markov Logic Network structure

learning methods implemented in different versions of Alchemy.

MBN uses the learn-and-join algorithm to learn a Functor Bayes net. To perform inference,
the Functor Bayes net is converted to a Markov Logic Network using moralization,
which we refer to as the Moralized Bayes Net (see Sect. 3). Weights for the moralized
Bayes net are learned using Alchemy’s weight learning routine.

@ Springer

Author's personal copy

Mach Learn

University

MovielLens Mondial

Fig. 12 The Bayes net structures learned by the learn-and-join algorithm for 4 datasets

MSL uses beam search which begins by adding unit clauses to an Markov Logic Network.
MSL then considers all clauses of length two and always maintains the n highest-
scoring ones in the set. MSL terminates when it cannot find a clause that improves
upon the current Markov Logic Network’s score (Kok and Domingos 2005).

@ Springer

Mach Learn

LHL Lifted Hypergraph Learning (Kok and Domingos 2009) uses relational path finding to
induce a more compact representation of data, in the form of a hypergraph over clusters
of constants. Clauses represent associations among the clusters.

BUSL Bottom-Up Structural Learning applies relational path finding to ground atoms and
variabilizes each ground atom in a path. It then constructs a Markov network for the
nodes in the path, computes a single data table for the path, and learns edges between
the nodes using a single-table Markov network learner (Mihalkova and Mooney 2007).

LSM Learning Structural Motifs (Kok and Domingos 2010) uses random walks to identify
densely connected objects in data, and groups them and their associated relations into
a motif.

We use 3 performance metrics: Runtime, Accuracy, and Conditional log likelihood.
These measures have been used in previous studies of Markov Logic Network learning
(Mihalkova and Mooney 2007; Kok and Domingos 2009; Khosravi et al. 2010).

Runtime The time taken to learn the model from the training dataset.

Accuracy (ACC) To define accuracy, we apply MLN inference to predict the probability
of an attribute value, and score the prediction as correct if the most probable value
is the true one. For example, to predict the gender of person Bob, we apply MLN
inference to the atoms gender(Bob, male) and gender(Bob, female) (cf. Sect. 9.1). The
result is correct if the predicted probability of gender(Bob, male) is greater than that of
gender(Bob, female).

Conditional Log-Likelihood (CLL) The conditional log-likelihood of a ground atom in a
database D given an Markov Logic Network is its log-probability given the Markov
Logic Network and D. The CLL directly measures how precise the estimated probabil-
ities are.

For ACC and CLL the values we report are averages over all attribute predicates. Khos-
ravi et al. also report the AUC (area-under-curve) for predicates that correspond to descrip-
tive attributes with binary values (e.g. gender), for the databases MovieLens and Mutage-
nesis (Khosravi et al. 2010). As there are only few binary descriptive attributes, we omit
AUC from this study. For the existing binary predicates, the AUC improvement of the MBN
approach over previous Markov Logic Network methods is similar to that for ACC and
CLL. Mainly to study autocorrelations, we report additional measures for the databases
University+, Mondial, and UW-CSE, so our first set of simulations reports results for the
remaining databases.

10.2 Runtime comparison

Table 5 shows the time taken in minutes for learning in each dataset. The Alchemy times
include both structure and parameter learning. For the MBN approach, we report both the
Bayes net structure learning time and the time required for the subsequent parameter learn-
ing carried out by Alchemy.

Structure learning is very fast for both the MBN and the LSM method, orders of mag-
nitude faster than for the other methods. The total runtime for MBN is dominated by the
time required by Alchemy to find a parametrization for the moralized Bayes net. On the
smaller databases, this takes between 5—12 minutes. On MovieLens, parametrization takes
two hours, and on Mutagenesis, over 1.5 hours. While finding optimal parameters for the
MBN structures remains challenging, the combined structure 4+ weight learning system is
much faster than the overall structure 4+ weight learning time of most of the Alchemy meth-
ods: They do not scale to the complete datasets, and for the subdatabases, the MBN approach
is faster by a factor ranging from 200 to 1000.

@ Springer

Mach Learn

Table 5 Runtime to produce a parametrized Markov Logic Network, in minutes. The MBN column shows
structure learning time + weight learning time. NT indicates non-termination

Dataset Alchemy methods LAJ

MSL LHL BUSL LSM MBN
University 5.02 3.54 0.5 0.01 0.03 4 0.032
MovieLens NT NT NT 0.45 1.24+120
MovieLens] 44 34.52 50 0.03 0.05+0.33
MovieLens2 2760 3349 NT 0.06 0.1245.10
Mutagenesis NT NT NT 0.53 0.5+ 106
Mutagenesis1 3360 3960 150 0.12 0.1+5
Mutagenesis2 NT NT NT 0.17 0.2+12
Hepatitis NT NT NT 0.15 0.4495.6
Hepatitis1 NT NT NT 0.1 0.2+4.8

These results are strong evidence that the MBN approach leverages the scalability of
Bayes net learning to achieve scalable Markov Logic Network learning on databases of re-
alistic size. The LSM method is very fast for all datasets. Inspection of the learned clauses
by LSM shows that the rules are mostly just the unit clauses that model marginal probabil-
ities. This indicates underfitting the data, as the following measurements of accuracy and
conditional log-likelihood confirm.

10.3 Predictive accuracy and data fit

Previous work on Markov Logic Network evaluation has used a “leave-one-out” approach
that learns Markov Logic Networks for a number of subdatabases with a small subset omit-
ted (Mihalkova and Mooney 2007). This is not feasible in our setting because even on a
training set of size about 15 % of the original, finding a Markov Logic Network structure us-
ing the slower Alchemy methods is barely possible. Given these computational constraints,
we investigated the predictive performance by learning a Markov Logic Network on one ran-
domly selected 2/3 of the subdatabases as a training set, testing predictions on the remaining
1/3. While this does not provide strong evidence about the generalization performance in
absolute terms, it gives information about the relative performance of the methods. In the
next section we give further cross validation results using the fastest Alchemy methods LSM
and LHL. Tables 6 and 7 report the average accuracy and conditional log-likelihood of each
real-world dataset. (The synthetic dataset University was too small for learning on a subset.)
Higher numbers indicate better performance and NT indicates that the system was not able
to return an Markov Logic Network for the dataset, either crashing or timing out after 4 days
of running. MBN achieved substantially better predictions on all test sets, in the range of
10-20 % for accuracy.

The CLL performance of LSM is acceptable overall. The parameter estimates are bi-
ased towards uniform values, which leads to predictions whose magnitudes are not extreme.
Because the average accuracy is low, this means that when mistaken predictions are made,
they are not made with great confidence. The LSM pattern of low accuracy and acceptable
log-likelihood is found in our other datasets as well.

Where the learning methods return a result on a database, we also measured the predic-
tions of the different Markov Logic Network models for the facts in the training database.
This indicates how well the Markov Logic Network summarizes the statistical patterns in

@ Springer

Mach Learn

Table 6 The table compares
accuracy performance of the
moralization approach (MBN)

vs. previous Markov Logic
Network learning methods. The
data are obtained by training on
2/3 of the database and testing
on the other 1/3. ACC is reported
as an average over all attribute
predicates of the datasets

Accuracy Alchemy methods LAJ
Dataset MSL LHL BUSL LSM MBN
Movielens!1 0.40 0.42 0.34 0.37 0.63
Movielens12 0.41 0.44 NT 0.49 0.62
Movielens NT NT NT 0.30 0.69
Mutagenesis1 0.34 0.31 0.37 0.30 0.69
Mutagenesis2 NT 0.35 NT 0.28 0.65
Hepatitis NT NT NT 0.32 0.54
Hepatitis1 NT NT NT 0.29 0.53

Table 7 The table compares conditional log likelihood performance of the moralization approach (MBN) vs.
previous Markov Logic Network learning methods. The data are obtained by training on 2/3 of the database

and testing on the other 1/3. CLL is reported as an average over all attribute predicates of the datasets

Conditional Log-likelihood Alchemy methods LAJ
Dataset MSL LHL BUSL LSM MBN
Movielens11 —4.22 —4.60 —2.80 —1.21 -1.15
Movielens12 —3.55 —3.38 NT —1.06 —1.33
Movielens NT NT NT —1.1 -0.98
Mutagenesis| —4.45 —4.33 —2.54 -1.12 —1.85
Mutagenesis2 NT NT NT -1.18 —1.48
Hepatitis NT NT NT —1.26 -1.18
Hepatitis] NT NT NT —1.34 -1.09
Table 8 The table compares
accuracy performance of the Accuracy Alchemy Methods LAJ
moralization approach (MBN) vs. Dataset MSL LHL BUSL LSM MBN
previous Markov Logic Network
learning methods. The data report Upiversity 0.37 0.37 0.38 0.40 0.84
i‘:;‘;g;‘[‘r‘li(fgi’;rvffl’:rt‘:’d‘fr‘lf;rgence Movielensl1 043 042 036 039 0.69
dataset. ACC is reported as an Movielens12 0.42 0.48 NT 0.53 0.68
average over all attribute Movielens NT NT NT 0.34 0.74
predicates of the datasets Mutagenesisl 036 033 037 033 080
Mutagenesis2 NT NT NT 0.31 0.65
Hepatitis NT NT NT 0.33 0.57
Hepatitis1 NT NT NT 0.30 0.57

the data. These measurements test the log-linear equation (1) as a solution to the combining
problem for inference (see Sect. 3). While a small improvement in predictive accuracy may
be due to overfitting, the very large improvements we observe are evidence that the Markov
Logic Network models produced by the Alchemy methods underfit and fail to represent sta-
tistically significant dependencies in the data. Tables 8 and 9 show the results for Accuracy
and Conditional Log-likelihood. MBN achieved substantially better predictions on all test
sets, at least 20 % for accuracy.

@ Springer

Mach Learn

Table 9 The table compares conditional log-likelihood performance of the moralization approach (MBN)
vs. previous Markov Logic Network learning methods. The data report the training error where inference is
performed over the training dataset. CLL is reported as an average over all attribute predicates of the datasets

Conditional Log-likelihood Alchemy methods LAJ
Dataset MSL LHL BUSL LSM MBN
University —5.79 —5.91 —-2.92 —0.82 —-0.47
Movielens11 —4.09 —4.09 —2.44 —1.18 —1.06
Movielens12 —3.55 —3.38 NT —1.10 -1.09
Movielens NT NT NT —1.02 -0.6
Mutagenesis1 —4.33 —4.33 —2.54 —1.17 —0.62
Mutagenesis2 NT —4.65 NT —1.15 -0.7
Hepatitis NT NT NT —1.22 -1
Hepeatitis|1 NT NT NT —1.28 -1.03

Table 10 Cross-validation averages for the UW-CSE dataset

UW-CSE MSL LHL LSM BUSL MBN
Time (min) 2160 2413 2 276 0.6
Accuracy 0.29 0.25 0.26 0.27 0.41
Conditional log-likelihood -3.85 —3.98 -1.37 —1.42 —1.43
Fig. 13 Predictive Accuracy by Accuracy in UW-CSE
attribute, measured by 5-fold
cross-validation. The methods are
InP
ordered as shown, with MBN at yearsinFrogram =—
the bottom g inPhase
2 r— = BUSL
§ hasPosition mLSM
E courselLevel B 'LHL
= MSL
Average Accuracy
, B MBN

0 0.1 0.2 0.3 04 05 0.6
Accuracy

10.4 UW-CSE dataset

The UW-CSE dataset is naturally divided into 5 folds according to the subarea of computer
science, so learning studies have used a cross-validation approach (Kok and Domingos 2009;
Mihalkova and Mooney 2007), which we follow. This dataset has been used extensively in
previous Markov Logic Network experiments, and it differs from the others in that it features
arelatively small set of 4 attributes relative to the set of 5 relationships. We therefore provide
a more detailed set of measurements that compare predictive performance for each attribute
separately. As with the other datasets, the speed and predictive accuracy of the learn-and-
join algorithm is a substantive improvement; see Table 10. The breakdown by attribute in
Figs. 13 and 14 shows that while the extent of the improvement varies with the predicates,
the moralized Bayes net approach performs uniformly well on all predicates.

@ Springer

Mach Learn

Fig. 14 Conditional Conditional log-likelihood in UW-CSE
Log-likelihood by attribute, |
measured by 5-fold Ve AraInDrOgr A
cross-validation. The methods are o
ordered as shown, with MBN at E = BUSL
the bottom o
_E HLSM
3 | LHL
* - MSL
HMBN
7 -6 5

Table 11 A comparison of the Moralized Bayes net method with standard Inductive Logic Programming
systems trained to predict mutagenicity. Although Bayes net learning produces a generative model, its per-
formance is competitive with discriminative learners

Method Evaluation Accuracy Reference

MBN 10-fold 0.87

P-progol 10-fold 0.88 (Srinivasan et al. 1996)
FOIL 10-fold 0.867 (Quinlan 1996)

STILL 90 % train—10 % test 0.936 (Sebag and Rouveirol 1997)
MBN 90 % train—10 % test 0.944

Our results so far indicate that the two most recent Markov Logic Network structure
learning methods—Lifted Hypergraph Learning and Learning Structural Motifs—show the
best performance. This is confirmed in independent empirical studies by other researchers
(Kok and Domingos 2010). The remaining sections of the paper therefore focus on compar-
ing LHL and LSM with the moralization approach.

10.5 Comparison with inductive logic programming on mutagenesis

We compare the performance of the learn-and-join algorithm for a classification task, pre-
dicting the mutagenicity of chemical compounds. This problem has been extensively stud-
ied in Inductive Logic Programming (ILP). The purpose of this comparison is to benchmark
the predictive performance of the moralization approach against discriminative learning by
methods that are different from Markov Logic Network learners.

The class attribute is the mutagenicity (log p). Compounds recorded as having positive
mutagenicity are labeled active (positive examples) and compounds recoreded as having 0 or
negative mutagenicity are labeled inactive (negative examples). The database contains a total
of 188 compounds. Whereas Inductive Logic Programming methods are discriminative, the
moralization method performs generative learning over all attributes, a significantly more
difficult task. We compare the predictive accuracy of the Moralized Bayes net with well-
known ILP methods. Table 11 presents the results of Lodhi and Muggleton (2005). For
the STILL system, we followed the creators’ evaluation methodology of using a randomly
chosen training and test set. The other systems are evaluated using 10-fold cross-validation.
The table shows that the classification performance of the generative Moralized Bayes net
model matches that of the discriminative Inductive Logic Programming models.

@ Springer

Mach Learn

11 Learning autocorrelations

In this section we focus on databases that feature self-relationships between entities of the
same type. Such schemas potentially give rise to autocorrelations where the value of an at-
tribute for an entity can be predicted by the value of the same attribute for related entities.
While recursive dependencies are a key statistical phenomenon in relational data, discov-
ering valid autocorrelations has been a challenge for statistical-relational methods (Jensen
and Neville 2002; Neville and Jensen 2007). We investigate how well our approach us-
ing the main functor form discovers autocorrelations compared to general Markov Logic
structure learning methods. Our benchmark databases are the synthetic University+ dataset
and the real-world Mondial database. Table 12 shows the recursive dependencies discov-
ered by the learn-and-join algorithm on each database. We use clausal notation of the form
child <— {parents}. Neither of the Markov Logic methods LHL nor LSM discovered any re-
cursive dependencies.

Tables 13 and 14 show the runtime and average predictive performance. The time re-
ported for MBN includes both structure and parameter learning. To achieve a high resolu-
tion, results on Mondial are based on 5-fold cross validation. The University dataset is small,
so we test and train on the same dataset. As in the previous experiments, both MBN and LSM
are fast. The predictive accuracy using Markov Logic Network inference was much better
in the moralized Bayes net model (average accuracy improved by 25 % or more). This in-
dicates that the discovered recursive dependencies are important for improving predictions.
For further discussion, please see Schulte et al. (2011).

Table 12 Autocorrelations discovered by the learn-and-join algorithm using the main functor constraints

Database Recursive dependency discovered

University gpa(X) < ranking(X), grade(X,Y), registered(X,Y), friend(X, Z), gpa(Z)
University coffee(X) < coffee(Y), friend(X,Y)

Mondial religion(X) < continent(X), border(X,Y), religion(Y')

Mondial continent(X) <— border(X,Y), continent(Y), gdp(X), religion(Y')

Table 13 Results on the

University+ database MBN LSM LHL
Time (seconds) 12 1 2941
Accuracy 0.85 0.44 0.47
CLL -0.8 —-2.21 —4.68

Table 14 Results on the

Mondial database MBN LSM LHL
Time (seconds) 50 2 15323
Accuracy 0.50 0.26 26
CLL -1.05 —1.43 —3.69

@ Springer

Mach Learn

12 Lesion studies

In this section we study the effects of relaxing different constraints used in the learn-and-
join algorithm. We focus on the main functor constraint for learning autocorrelations, and
on the lattice constraints. The other constraints simply reflect the semantics of the relational
schema rather than learning principles. All results are based on 5-fold cross validation. We
report a number of quantities for comparing the learned structures.

SLtime(s) Structure learning time in seconds.

Numrules Number of clauses in the Markov Logic Network excluding rules with weight 0.
AvgLength The average number of atoms per clause.

AvgAbWt The average absolute weight value.

Because constraints curtail the search space, we expect constrained methods to have the
following effects compared with unconstrained methods.

1. Faster run-time.

2. A simpler model with fewer rules.

3. If the constraints are chosen well, they should allow the system to identify important
rules and not impair predictive performance.

12.1 Main functor constraints

We remove the constraints of specifying a main functor node to study its importance. This
means that we introduce a copy of an entity table that is potentially involved in an au-
tocorrelation (e.g., in the University+ database, there are two tables Student;, Student,).
This duplication approach is used in other relational learning systems (e.g., Yin et al. 2004;
Yin and Han 2008). The unconstrained method applies the learn-and-join algorithm in the
same way to all entity tables, including the copies. We investigated the following main hy-
potheses about the effect of the main functor constraint.

1. There should be a tendency towards longer clauses associated with the main functor node
(see Sect. 7).

2. Since Proposition 1 implies that the ground models with and without the constraint are
the same, predictive accuracy should be similar.

3. The duplicate edges should lead to duplicate clauses without improvement in predictive
performance since the ground models are the same.

Table 15 shows the results for University and Table 16 shows the results for Mondial
dataset. Constraint is the learn-and-join algorithm with the main functor constraint, whereas
Duplicate is the learn-and-join algorithm applied naively to the duplicate tables without the
constraint. As expected, the constraint speeds up structure learning, appreciably in the case
of the larger Mondial dataset. The number of clauses is significantly less (50-60), while on
average clauses are longer. The size of the weights indicates that the main functor constraint
focuses the algorithm on the important rules.

We also report the number of clauses of a given chain length in Fig. 15. Since a clause
contains conditions on both attributes and links, we use the maximal slot chain length: The
chain length of a rule is computed as the maximal length of a sequence of predicates ap-
pearing in the rule such that the database tables corresponding to the predicates are related
by foreign key pointers (Getoor et al. 2007). The measurements show that the algorithm can
find long chains, although informative long chains are rare.

@ Springer

Mach Learn

Table 15 Comparison to study

the effects of removing Main University+ Constraint Duplicate
Functor Constraints on
University+ dataset SLtime(s) 3.1 3.2
Rules 289 350
AvgAbWt 2.08 1.86
Avglength 4.26 4.11
ACC 0.86 0.86
CLL —0.89 -0.89
Table 16 Comparison to study - B -
the effects of removing Main Mondial Constraint Duplicate
Functor Constraints on Mondial
dataset SLtime(s) 8.9 13.1
Rules 739 798
AvgAbWt 0.22 0.23
AvgLength 3.98 3.8
ACC 0.43 0.43
CLL -1.39 -1.39
Mondial University
. . B Constraint Duplicate
B Constraint ™ Duplicate 0.89 0.94
0.36
0.250.25 0.33 0.340.31
. I I 0.030.03 0.040.04 0.08 0.04 0.03 0.02
1 2 3 4 5 1 2 3

Fig. 15 The percentage of rules of a given chain length for Mondial and University+ dataset in the autocor-
relation lesion study

12.2 Lattice constraints

A key feature of the learn-and-join algorithm is the use of lattice constraints. In terms of
the join lattice, Bayes nets for join tables higher in the lattice inherit the edges from Bayes
nets for join tables lower in the lattice. We remove this constraint to assess its effect on
learning. If the Bayes nets learned for different join tables are no longer constrained to
be consistent with each other, the question arises how to merge them into a single Bayes
net. One possibility is to learn a Bayes net for the maximum join table (e.g., for the rela-
tionship set Registered(S, C), Teaches(P, C) in Fig. 4). However, in experiments we found
that for our benchmark datasets, the maximum join table is too small to yield meaning-
ful results, because too few tuples meet the join conditions (e.g., not many students are
RAs and TAs). We therefore investigated an intermediate approach where different Bayes
nets are learned for single relationship tables joined with the associated entity tables (e.g.,
Registered(S, C) ™ Student X Course). In our benchmark datasets, there were very few con-
flicts between the edges in different Bayes nets, which we broke randomly. So we could
obtain a single acyclic graph for the database by merging the graphs of the intermediate
joins; we refer to this approach as the intermediate method.

Tables 17, 18, and 19 shows the results for the University+, Hepatitis, and Mondial
datasets. The numbers are averages from 5-fold cross validation. Folds are formed by ran-

@ Springer

Mach Learn

Table 17 Comparison to study

the effects of removing Lattice University+ Constraint Intermediate
Constraints on the University+
dataset SLtime(s) 3.1 33
Rules 289 443
AvgAbWt 2.08 1.86
Avglength 4.26 4.94
ACC 0.86 0.84
CLL -0.89 -0.9
Table 18 Comparison to study . - ;
the effects of removing Lattice Hepatitis Constraint Intermediate
Constraints on the Hepatitis
dataset SLtime(s) 5.2 6.1
Rules 818 848
AvgAbWt 1.68 1.53
AvglLength 4.15 4.11
ACC 0.47 0.41
CLL -1.31 —1.34
Table 19 Comparison to study - - -
the effects of removing Lattice Mondial Constraint Intermediate
Constraints on Mondial dataset
SLtime(s) 8.9 13.2
Rules 739 1053
AvgAbWt 0.22 0.24
AvglLength 3.98 4.66
ACC 0.43 0.37
CLL -1.39 -1.39
Hepatitis dataset Mondial Dataset University Dataset
u Constraint = Big Join = Constraint = Big Join = Constraint = Big Join
L)'-M[f 0-4 oil 0.110.04 0'2.5 Oj Oi(fS Oioj 0@07'14 0.04 0.08 0.03 0-89 m 0.03 0.03
1 2 3 1 2 3 4 5 1 2 3

Fig. 16 The percentage of rules of a given chain length for Hepatitis, Mondial, and University dataset in the
Lattice constraint lesion study

domly selecting entities as described in Sect. 9.1. The lattice constraints speed up the learn-
ing time spent on join tables, which is the dominant factor. The constrained model features
fewer rules with comparatively higher weights. The average predictive accuracy was some-
what higher than with the unconstrained model, whereas the conditional log-likelihood per-
formance was very similar. This is evidence that the constraints helped identify predictively
relevant clauses. Figure 16 shows, as in Fig. 15, that the algorithm can find long chains,
but they are rare. There seems to be no important difference between the constrained and
unconstrained methods with respect to chain length.

@ Springer

Mach Learn

13 Conclusion and future work

This paper considered the task of building a statistical-relational model for databases with
many descriptive attributes. We combined Bayes net learning, one of the most success-
ful machine learning techniques, with Markov Logic networks, one of the most successful
statistical-relational formalisms. The main algorithmic contribution is an efficient new struc-
ture learning algorithm for a relational Bayes net that models the joint frequency distribu-
tion over attributes in the database, given the links between entities. Moralizing the Bayes
net leads to a Markov Logic Network structure. Our evaluation on benchmark databases
with descriptive attributes shows that compared to current Markov Logic Network struc-
ture learning methods, the approach using moralization improves the scalability and run-
time performance by orders of magnitude. With standard parameter estimation algorithms
and prediction metrics, the moralized Markov Logic Network structures make substantially
more accurate predictions. We discuss future work for addressing the limitations of our cur-
rent system.

Parameter estimation In this work we used generic Markov Logic Network algorithms for
parameter estimation implemented in the Alchemy package. While the parameter estimation
routines of Alchemy run much faster than the structure learning routines, on some datasets
we found that parameter estimation can still take a long time. As Markov Logic Networks
obtained by moralization have a special structure, it may be possible to design fast parameter
estimation routines for them.

Link prediction The learn-and-join algorithm learns a model of the distribution over de-
scriptive attributes conditional on the relationship information in the database. An important
project is to extend the learn-and-join algorithm so that it can learn not only dependencies
among attributes, but also among relationships (e.g. Daughter(X, Y) implies Parent(X, Y)).
Since previous Markov Logic Network algorithms have performed well in link modelling,
an interesting approach would be a hybrid system that uses the output of the learn-and-join
algorithm as a starting point for an Alchemy-based structure learning system. In principle,
the key ideas of the learn-and-join algorithm such as the lattice and main functor node con-
straints are also applicable to link prediction problems.

Acknowledgements This research was supported by a Discovery Grant from the Natural Sciences and
Engineering Council of Canada (NSERC). Preliminary results were presented at the 2010 AAAI conference,
the 2011 ILP conference, to the Al group at the University of British Columbia, and the IJICAI-STRUCK
and IJCAI-GKR workshops (2009). We are grateful to the audiences for helpful questions and comments,
especially Lise Getoor.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proc.
international conference on very large databases, Santiage, Chile (pp. 478-499). Los Altos: Morgan
Kaufmann.

Apt, K. R., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9(3/4), 335-364.

Biba, M., Ferilli, S., & Esposito, F. (2008). Structure learning of Markov logic networks through iterated local
search. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, & N. M. Avouris (Eds.), ECAI (pp. 361-365).

Bratko, I. (2001). Prolog: programming for artificial intelligence (3rd ed.). Boston: Addison-
Wesley/Longman.

Chen, H., Liu, H., Han, J., & Yin, X. (2009). Exploring optimization of semantic relationship graph for
multi-relational Bayesian classification. Decision Support Systems, 48(1), 112—121.

@ Springer

Mach Learn

Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3, 507-554.

CMU The Tetrad Group, Department of Philosophy (2008). The Tetrad project: causal models and statistical
data. http://www.phil.cmu.edu/projects/tetrad/.

Domingos, P., & Richardson, M. (2007). Markov logic: A unifying framework for statistical relational learn-
ing. In Introduction to statistical relational learning. Cambridge: MIT Press.

Domke, J., Karapurkar, A., & Aloimonos, Y. (2008). Who killed the directed model. In CVPR (pp. 1-8).

Fierens, D. (2009). On the relationship between logical Bayesian networks and probabilistic logic program-
ming based on the distribution semantics. In L. De Raedt (Ed.), Lecture notes in computer science:
Vol. 5989. ILP (pp. 17-24). Berlin: Springer.

Fierens, D., Blockeel, H., Bruynooghe, M., & Ramon, J. (2005). Logical Bayesian networks and their relation
to other probabilistic logical models. In S. Kramer & B. Pfahringer (Eds.), Lecture notes in computer
science: Vol. 3625. ILP (pp. 121-135). Berlin: Springer.

Frank, O. (1977). Estimation of graph totals. Scandinavian Journal of Statistics, 4(2), 81-89.

Frank, R., Moser, F., & Ester, M. (2007). A method for multi-relational classification using single and multi-
feature aggregation functions. In PKDD (pp. 430-437).

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In IJCAI
(pp- 1300-1309). Berlin: Springer.

Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and
Bayesian multinets. Artificial Intelligence, 82(1-2), 45-74.

Getoor, L., & Grant, J. (2006). Prl: A probabilistic relational language. Machine Learning, 62(1-2), 7-31.

Getoor, L., & Tasker, B. (2007). Introduction to statistical relational learning. Cambridge: MIT Press.

Getoor, L., Friedman, N., Koller, D., Pfeffer, A., & Taskar, B. (2007). Probabilistic relational models. In
Introduction to statistical relational learning (pp. 129-173). Cambridge: MIT Press, Chap. 5.

Heckerman, D., Meek, C., & Koller, D. (2007). Probabilistic entity-relationship models, PRMs, and plate
models. In Introduction to statistical relational learning. Cambridge: MIT Press.

Huynh, T. N., & Mooney, R. J. (2008). Discriminative structure and parameter learning for Markov logic
networks. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), ICML (pp. 416-423). New York:
ACM.

Jensen, D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learn-
ing. In ICML.

Kersting, K., & de Raedt, L. (2007). Bayesian logic programming: theory and tool. In Introduction to statis-
tical relational learning (pp. 291-318). Cambridge: MIT Press, Chap. 10.

Khosravi, H., Schulte, O., & Bina, B. (2009). Virtual joins with nonexistent links. In /9th conference on
inductive logic programming (ILP). http://www.cs kuleuven.be/~dtai/ilp-mlg-srl/papers/ILP09-39.pdf.

Khosravi, H., Schulte, O., Man, T., Xu, X., & Bina, B. (2010). Structure learning for Markov logic networks
with many descriptive attributes. In Proceedings of the twenty-fourth conference on artificial intelligence
(AAAI) (pp. 487-493).

Klug, A. C. (1982). Equivalence of relational algebra and relational calculus query languages having aggre-
gate functions. Journal of the ACM, 29(3), 699-717.

Kok, S., & Domingos, P. (2005). Learning the structure of Markov logic networks. In L. De Raedt & S. Wro-
bel (Eds.), ICML (pp. 441-448). New York: ACM.

Kok, S., & Domingos, P. (2007). Statistical predicate invention. In /ICML (pp. 433-440). New York: ACM.

Kok, S., & Domingos, P. (2009). Learning Markov logic network structure via hypergraph lifting. In A. Po-
horeckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), ICML (pp. 64-71). New York: ACM.

Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In ICML’10
(pp. 551-558).

Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., & Domingos, P. (2009). The
alchemy system for statistical relational Al (Technical Report). University of Washington.

Koller, D., & Pfeffer, A. (1997). Learning probabilities for noisy first-order rules. In IJCAI (pp. 1316-1323).

Learn and join algorithm code. http://www.cs.sfu.ca/~oschulte/jbn/.

Lifschitz, V. (1996). Foundations of logic programming. In Principles of knowledge representation. Stanford:
CSLIL

Lodhi, H., & Muggleton, S. (2005). Is mutagenesis still challenging? In Inductive logic programming (pp. 35,
40).

Lowd, D., & Domingos, P. (2007). Efficient weight learning for Markov logic networks. In PKDD (pp. 200—
211).

May, W. (1999). Information extraction and integration: the mondial case study (Technical Report). Univer-
sitat Freiburg, Institut fiir Informatik.

Mihalkova, L., & Mooney, R. J. (2007). Bottom-up learning of Markov logic network structure. In /CML
(pp. 625-632). New York: ACM.

@ Springer

http://www.phil.cmu.edu/projects/tetrad/
http://www.cs.kuleuven.be/~dtai/ilp-mlg-srl/papers/ILP09-39.pdf
http://www.cs.sfu.ca/~oschulte/jbn/

Mach Learn

Natarajan, S., Tadepalli, P., Dietterich, T.G., & Fern, A. (2008). Learning first-order probabilistic models with
combining rules. Annals of Mathematics and Artificial Intelligence, 54(1-3), 223-256.

Neville, J., & Jensen, D. (2007). Relational dependency networks. In Introduction to statistical relational
learning. Cambridge: MIT Press, Chap. 8.

Neville, J., & Jensen, D. (2007). Relational dependency networks. Journal of Machine Learning Research, 8,
653-692.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases.
Theoretical Computer Science, 171(1-2), 147-1717.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann.

Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), IJCAI (pp. 985-991).
San Mateo: Morgan Kaufmann.

Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic depen-
dencies. In AAAL Menlo Park: AAAI Press.

Popescul, A., & Ungar, L. (2007). Feature generation and selection in multi-relational learning. In An intro-
duction to statistical relational learning. Cambridge: MIT Press, Chap. 8.

Quinlan, J. (1996). Boosting first-order learning. In Algorithmic learning theory (pp. 143-155). Berlin:
Springer.

Russell, S., & Norvig, P. (2010). Artificial intelligence: a modern approach. New York: Prentice Hall.

Schmidt, M., Murphy, K., Fung, G., & Rosales, R. (2008). Structure learning in random fields for heart
motion abnormality detection. In CVPR.

Schulte, O. (2011). A tractable pseudo-likelihood function for Bayes Nets applied to relational datasets. In
SIAM SDM (pp. 462-473).

Schulte, O., Khosravi, H., & Bina, B. (2009). Bayes nets for combining logical and probabilistic structure. In
Proceedings STRUCK workshop on learning structural knowledge from observations. 1JCAI-09.

Schulte, O., Khosravi, H., Man, T., & Gao, T. (2011). Learning directed relational models with recursive
dependencies. In Inductive logic programming.

Sebag, M., & Rouveirol, C. (1997). Tractable induction and classification in first order logic via stochastic
matching.

She, R., Wang, K., & Xu, Y. (2005). Pushing feature selection ahead of join.

Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., & King, R. D. (1996). Theories for mutagenicity:
a study in first-order and feature-based induction. Artificial Intelligence, 85(1-2), 277-299.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In A. Dar-
wiche & N. Friedman (Eds.), UAI (pp. 485-492). San Mateo: Morgan Kaufmann.

Tillman, R. E., Danks, D., & Glymour, C. (2008). Integrating locally learned causal structures with overlap-
ping variables. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), NIPS (pp. 1665-1672).
Cambridge: MIT Press.

Ullman, J. D. (1982). Principles of database systems. New York: Comput. Sci. Press.

Van Laer, W., & de Raedt, L. (2001). How to upgrade propositional learners to first-order logic: a case study.
In Relational data mining. Berlin: Springer.

Vardi, M. Y. (1995). On the complexity of bounded-variable queries. In PODS (pp. 266-276). New York:
ACM.

Wellman, M. P, Breese, J. S., & Goldman, R. P. (1992). From knowledge bases to decision models. Knowl-
edge Engineering Review, 7, 35-53.

Yin, X., & Han, J. (2008). Exploring the power of heuristics and links in multi-relational data mining. In IS-
MIS’08: Proceedings of the 17th international conference on foundations of intelligent systems (pp. 17—
27). Berlin: Springer.

Yin, X., Han, J., Yang, J., & Yu, P. S. (2004). Crossmine: efficient classification across multiple database
relations. In Constraint-based mining and inductive databases (pp. 172-195).

@ Springer

	Learning graphical models for relational data via lattice search
	Abstract
	Introduction
	Approach
	Evaluation
	Limitations
	Paper organization
	Contributions

	Additional related work
	Nonrelational structure learning methods
	Lattice search methods
	MLN structure learning methods
	Search space
	Constraints and the lattice structure
	Data representation and lifted learning

	Background and notation
	Logic and functors
	Bayes nets and Markov nets for relational data and Markov logic networks
	Inference and ground models
	Markov logic networks
	Examples
	Friendship database
	University database

	Directed models and the cyclicity problem

	Lattice search for attribute dependencies
	Overview
	The multinet lattice
	Functor nodes
	Examples

	Relationship chains
	The join data table
	Examples

	Model conversion

	The learn-and-join algorithm
	Constraints used in the learn-and-join algorithm
	Edge inheritance in the relationship lattice
	Example
	Examples

	The main functor node format
	Example

	Population variable bound
	Examples

	Link attributes
	Examples

	Relationship parents
	Example

	Examples
	Pseudocode

	Discussion: lattice constraints
	Computational efficiency
	Statistical motivation

	Discussion: the main functor node format
	Example

	Discussion: population variable bound
	Evaluation: experimental design
	Datasets
	University database
	University+ database
	MovieLens database
	Mutagenesis database
	Hepatitis database
	Mondial database
	UW-CSE database

	Graph structures learned by the learn-and-join algorithm

	Moralization vs. other structure learning methods: basic comparisons
	Comparison systems and performance metrics
	Runtime comparison
	Predictive accuracy and data fit
	UW-CSE dataset
	Comparison with inductive logic programming on mutagenesis

	Learning autocorrelations
	Lesion studies
	Main functor constraints
	Lattice constraints

	Conclusion and future work
	Parameter estimation
	Link prediction

	Acknowledgements
	References

