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Abstract

We conduct image classification by learning a class-to-
image distance function that matches objects. The set of ob-
jects in training images for an image class are treated as a
collage. When presented with a test image, the best match-
ing between this collage of training image objects and those
in the test image is found. We validate the efficacy of the
proposed model on the PASCAL 07 and SUN 09 datasets,
showing that our model is effective for object classification
and scene classification tasks. State-of-the-art image classi-
fication results are obtained, and qualitative results demon-
strate that objects can be accurately matched.

1. Introduction
We present a method for image classification that

matches sets of objects. We aim to classify an input im-
age into classes, such as those containing a specific ob-
ject (PASCAL VOC [10]) or coming from a certain scene
(SUN 09 [6]). Our representation focuses on the set of ob-
jects found in an image class. An image class is represented
using the set of objects contained in its image instances. We
formulate a class-to-image distance for matching to an un-
seen image that looks for a set of similar objects in similar
spatial arrangements to those found in a set of training im-
ages. The distance between this collage of objects and a test
image is used to classify the test image.

Image classification is a well-studied problem in com-
puter vision. An important question is choosing an appro-
priate representation for classification. Standard approaches
in the vision literature span a gamut of potential answers
for this representation question. Purely statistical mea-
sures based on local features are common, e.g. Lazebnik et
al. [17]. Direct exemplar matching methods are also well-
studied, e.g. Berg et al. [1]. Detailed reasoning about ob-
ject segmentation can also assist in image classification [3].
Higher-level semantic reasoning about object context is an-
other important cue for image classification, e.g. [19]. The
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Figure 1. (Best viewed in color.) An example showing the ob-
ject matchings between the airport class and a test image. There
are four major object categories in the training airport images:
“sky”, “airplane”, “road” and “tree”. We match the dashed ob-
jects from the training side to the objects in the test image,
from which the class-to-image distance is calculated. Spatial re-
lations, e.g. “sky-above-airplane”, “sky-above-road”, and “tree-
nextto-airplane”, are also considered in measuring the distance.

focus of our paper is on object-level representations, though
a solution to image recognition likely requires integration of
all these sources of information.

In this paper we develop a method that matches the ob-
jects present in an image. We learn a distance from an image
class to a given image that examines a higher-level seman-
tic representation using objects. Figure 1 shows an example
of the object matching. We are inspired by two recent lines
of work – Object Bank [20], which takes a statistical view
of object presence, and exemplar SVM [22] which consid-
ers matching individual exemplar objects. The Object Bank
work of Li et al. [20] showed that a large bank of object
detectors is an effective feature for image classification –
building a feature vector that captures the statistics of object
detector responses. Malisiewicz and Efros [22] advocate for
an exemplar matching approach – each image is its own is-
land of uniqueness. Our work bridges these two approaches,
leveraging the strength of many objects as a representation



for images, but using a matching framework that considers
collages of objects across an entire training class.

Our main contribution is the development of this image
classification method. We present a novel latent variable
distance function learning framework that considers match-
ings of objects between a test image and a set of training
images from one class. We develop efficient representations
for the relationships between objects in this latent variable
framework. We show empirically that this method is effec-
tive, and that reasoning about objects and their relations in
images can lead to high quality classification performance.

2. Related Work
Object-level representations: Image understanding

with object-level representations is common in computer
vision research. We divide the literature into three cate-
gories. First, object-level representations supply rich infor-
mation to assist detection and recognition. Malisiewicz and
Efros [22] learn per-exemplar distance functions for data as-
sociation based object detection. Li et al. [20] tackle scene
classification by representing an image as Object Bank –
a feature vector that captures the statistics of object detec-
tors. Second, object-level representations can be combined
with other information sources. Wang and Mori [31] model
object-tag correspondences in a latent variable framework.
Wang and Forsyth [29] jointly learn object categories and
visual attributes in a multiple instance learning framework.
Third, groups of objects can provide useful contextual in-
formation. Rabinovich et al. [27] exploit contextual rele-
vance of objects by modeling object co-occurrences. Lee
and Grauman [18] encode the layout of object-level patterns
by object-graph descriptors. Li et al. [19] model groups
of objects as the basic elements for scene understanding.
Lan et al. [16] retrieve images for structured object queries,
and show that contextually-related objects are helpful even
if they are not present in the given queries.

Distance function learning: There has been much
work in recent years learning distance functions for image
classification. An early representative work by Frome et
al. [12, 13] builds image-to-image distance on top of lo-
cal patch-based distances, where each patch is localized
by a geometric blur descriptor. Boiman et al. [2] com-
pute nearest-neighbor based image-to-class distance based
on local SIFT descriptors. Wang et al. [33] also measure
image-to-class distance by learning Mahalanobis distance
metrics. A recent work by Wang et al. [32] regularizes
class-to-image distance via L1-norm. Wang et al. [30] de-
fine a class-to-bag distance for multiple instance learning.
Our method also learns class-to-image distance, but the key
difference is that we focus on object-level representations
and explicitly reason about objects and their relations in im-
ages. In contrast, existing methods always operate in the
space of local descriptor features.

3. The Object Matching Based Distance Model
Our goal is to learn a class-to-image distance function

that jointly capture object matchings, the pairwise inter-
actions among objects, as well as the global image ap-
pearance. We start with an example (Figure 1) that illus-
trates calculating the class-to-image distance from the air-
port class to a test image. The airport class is represented
as a collage of object sets (i.e. “sky”, “airplane”, “road” and
“tree”) from training images, arranged in certain spatial lay-
out, such as “sky-above-airplane”. In essence, our distance
model matches to a test image with a set of similar objects
in similar spatial arrangements from training images.

Our model consists of three components: the unary ob-
ject distance, the pairwise object distance, and the global
image appearance distance. The unary object distance
measures the object-level distance from an image class to a
test image. In our example, we match one object from each
of the four object sets (“sky”, “airplane”, “road” and “tree”)
to the test image. We calculate the distance between the
matched pair of objects. The unary object distance is a sum-
mation over the four distances calculated from the four ob-
ject matchings. The pairwise object distance measures the
distance of spatial arrangements of objects from an image
class to a test image. In our example, the matched objects
in the test image meet the three popular spatial relations in
the training airport images. Thus, we further pull the test
image close to the airport scene. Finally, our distance model
takes the global image features into account and calculates
the global image appearance distance accordingly.

3.1. Model Formulation
We first introduce the notations used in this paper before

defining our distance model. We assume the ground-truth
object bounding boxes are available in the training images.
Note that this assumption is easy to satisfy because object
annotation is becoming more and more prevalent with the
help of online annotation tools such as LabelMe [28] and
Amazon Mechanical Turk. Our two experimental datasets,
PASCAL 07 and SUN 09, are both fully annotated.

For an image class C, we gather together all the objects
in the training images belonging to this class to make up the
object sets O = {Oi}i∈V , where V denotes all the object
categories in O, and Oi is the set of objects annotated with
category i ∈ V . We use Oui to represent the u-th object
in Oi. Given an image x, our model is a distance function
Dθ(C,x) (here θ are the parameters of this function) that
measures the class-to-image distance from C to x based on
object matchings. Ideally, Dθ(C,x) will have a small value
if the image x belongs to the class C, and a large value if x
comes from a class other than C.

There are two major challenges in defining Dθ(C,x).
First, even though the ground-truth object bounding boxes
are readily available in the training images, we do not have



annotated objects on the test image set. To resolve this prob-
lem, we assume x is associated with a set of “hypothesized”
objects. We model the location/scale configurations of the
“hypothesized” objects as latent variables and infer them
implicitly in our model. The latent variables are denoted as
H = {Hi}i∈V , whereHi is the set of “hypothesized” object
configurations in category i. We use Hvi to denote the v-th
configuration in Hi and the corresponding “hypothesized”
object interchangeably. Note that H is normally smaller
than O in size because O gathers all the objects in class-
C images andH only includes the objects in the image x.

A second challenge lies in finding the optimal object
matchings from O to H. If we only consider the unary ob-
ject distance, we can find the optimal object matching sep-
arately within each object category by choosing the closest
pair over the bipartite matchings betweenOi andHi. How-
ever, we believe that the pairwise spatial relations can also
deliver useful information for measuring distance (as shown
in Figure 1). Therefore, we need to jointly consider the
unary object distance as well as the pairwise interactions.
To address the problem, we model the object matchings as
a set of latent variablesM = {(ui, vi)}i∈V , where ui and
vi are both object indices, and the pair (ui, vi) indicates that
object Oui

i is matched to objectHvii for category i.
Given the class C and the image x, we can find the

optimal settings of H and M by minimizing the distance
over all possible object configurations and all possible ob-
ject matchings. Then the minimum distance is treated as the
class-to-image distance Dθ(C,x). Formally, we have

Dθ(C,x) = min
{H,M}

θ>Φ(O,H,M,x), (1)

where θ>Φ(O,H,M,x) is a linear function measuring the
distance from C to x accordingly to putative object config-
urationsH and putative object matchingsM. We define

θ>Φ(O,H,M,x) =

α>ψ(O,H,M) + β>ρ(H,M) + γ>φ(x), (2)

where θ = {α, β, γ} are the model parameters, and Φ =
{ψ, ρ, φ} is the feature vector defined on (O,H,M,x).
Next we describe in detail each component in Eq. 2.

Unary object distance α>ψ(O,H,M): This function
measures the unary object distance betweenO andH based
on the object matchings M. To compute the distance be-
tween a pair of matched objects, we consider five base dis-
tance measures calculated from five local object features in-
cluding color histograms, HoG [7], LBP [24], Texton [21],
and location histograms (more details in Section 6). The
unary object distance is then calculated as a weighted sum-
mation over all base distances. Formally, we parameterize
this function as:

α>ψ(O,H,M) =
∑
i∈V

∑
t

αit · ψt(Oui
i ,H

vi
i ), (3)

where ψt(Oui
i ,H

vi
i ) is a scalar distance between Oui

i and
Hvii measured by the type-t features. Note that αit is a
scalar parameter that weights the t-th distance measure for
all the category-i objects – high weights indicate discrimi-
native object categories. Similar to [12, 13, 22], we restrict
αit to be non-negative.

Pairwise object distance β>ρ(H,M): This function
captures the pairwise spatial relations among certain object
categories. Here we follow [8] to define four spatial rela-
tions including “ontop”, “above”, “below” and “next-to”.
Given two object categories (i, j) and the matched objects
(Hvii ,H

vj
j ) in the image x, we define ρk(Hvii ,H

vj
j ) = −1

if the spatial relation between Hvii and Hvjj is consistent
with a spatial relation k, and ρk(Hvii ,H

vj
j ) = 0 otherwise.

The pairwise object distance is parameterized as:

β>ρ(H,M) =
∑
i∈V

∑
j∈V

∑
k

βijk · ρk(Hvii ,H
vj
j ), (4)

where βijk is a scalar parameter that weights the spatial re-
lation k between object categories i and j – high weights in-
dicate discriminative spatial relations. We also require βijk
to be non-negative. This function implements the idea that
we should pull the image x close to the class C if the spa-
tial relations between the matched objects in the image x
are discriminative for the class C.

Global image appearance distance γ>φ(x): This
function models the distance based on the global image fea-
tures φ(x). It is parameterized as:

γ>φ(x) =
∑
g

γg · φg(x), (5)

where γg is a scalar parameter that weights the g-th global
feature φg(x). In fact, the choice of φ(x) is task-dependent
and any robust features can be flexibly encoded in the
model. In our experiments, we use the bag-of-word fea-
tures [4] for object classification on PASCAL 07, and the
GIST descriptors [25] for scene classification on SUN 09.

4. Inference
During testing, we are given the model parameters θ =

{α, β, γ} as well as a collection of unannotated test images.
For each test image x, we need to compute the class-to-
image distance Dθ(C,x). The final decision is made by
classifying images with small distances as positive, and im-
ages with large distances as negative. Here the key compu-
tational issue is to solve the inference problem in Eq. 1.

The inference problem is hard because we need to exam-
ine all the possible configurations (i.e. locations and scales)
for each object category, search over all the possible object
matchings, and find the complete configurations and object
matchings that jointly minimize the objective function. If
we only consider the unary object distance, this results in



inferring the optimal object configuration and object match-
ing within each object category independently. We can try
each object’s configuration in a sliding window manner, and
then examine all the possible object matchings. With our
full model defined in Eq. 2, the inference problem in Eq. 1
is computationally infeasible.

To resolve this problem, we employ several approxima-
tion strategies. First, we reduce the search space of loca-
tion/scale configurations for the objects in an object cate-
gory. This is achieved by running an object detector [11]
on all locations/scales in x in a standard sliding window
manner, followed by non-maximum suppression to obtain
the candidate configurations. In our experiments, we use
respectively 5 and 10 candidate configurations for each ob-
ject category per PASCAL 07 and SUN 09 image. We keep
using the notationHi to denote the candidate configurations
of object category i. When solving the inference problem
in Eq. 1, we restrict the selected object for object category i
to one of its corresponding candidate configurations inHi.

The second approximation strategy is for object match-
ings. Given the candidate configurations Hi, there are
|Oi| × |Hi| possible object matchings for the object cate-
gory i. It is costly to consider all of them, especially since
we need to jointly regard all the object categories in find-
ing the optimal set of object matchings. Here we reduce the
search space for category i by only considering |Hi| candi-
date object matchings. In detail, for each candidate object
configuration Hvi ∈ Hi, we compute the distance from all
the objects in Oi to it. We then assign a candidate object
matching by pairingHvi to its closest objectOu∗

i inOi. For-
mally, we identify the candidate ojbect matching by solving
the following optimization problem:

u∗ = argmin
u

∑
t

αit · ψt(Oui ,Hvi ). (6)

Note that the candidate object matchings are still latent (i.e.
not observed in the original data) because they change with
the model parameters α during learning. When solving the
inference problem in Eq. 1, we require each object category
to select one object matching from the candidate set.

Provided the above approximations, it is easy to show
that the inference problem in Eq. 1 is now equivalent to
the energy minimization problem [15] in a Markov Random
Field (MRF) with |V| nodes. Each node in the MRF corre-
sponds to an object category. The node i has |Hi| possible
states, where the unary energy for each state is the distance
calculated by Eq. 6 for the corresponding candidate object
matching. An edge (i, j) in the MRF corresponds to the
relation between object categories i and j.

The optimization problem in Eq. 1 is still hard if we have
to consider the relation between all pairs of object cate-
gories, i.e. when the relation between object categories is
represented by a complete graph. For further speed-up, we

prune the graph into a tree structure by considering only
frequent spatial relations in the class-C images. In detail,
we first assume that only one spatial relation matters for
a given pair of object categories, and we choose it as the
most frequent spatial relation. The selected spatial relations
are then used to construct an undirected weighted (by fre-
quency) graph. We take the maximum spanning tree of this
graph as our pruned tree structure for class C. Putting ev-
erything together, we can now solve the inference problem
in Eq. 1 efficiently with Belief Propagation.

5. Learning
We now describe how to learn the distance function for

the classC. Given a set of positive training images {xp}Pp=1

and a set of negative images {xn}Nn=1 of class C, we would
like to train the model parameters θ = {α, β, γ} that tend
to associate a small distance to a new test image x if x be-
longs to class C, and a large distance otherwise. A natural
way of learning the model is to adopt the latent SVM for-
mulation [11, 9] as follows:

min
{α,β,ξ}≥0

1

2
||θ||2 +

c

P

∑
pn

ξpn

s.t. Dθ(C,xn)−Dθ(C,xp) ≥ 1− ξpn,∀p, n. (7)

Note that each constraint in Eq. 7 constrains that the class-
to-image distance from class C to a negative image xn
should be larger than the distance to a positive image xp
by a large margin. ξpn is a slack variable to allow soft-
margin. With the constraints, the learned model can dis-
criminate positive and negative images for the class C.

The constrained optimization problem in Eq. 7 can be
equivalently written as an unconstrained problem:

min
{α,β}≥0

1

2
||θ||2+

c

P

∑
pn

(1+Dθ(C,xp)−Dθ(C,xn)). (8)

We use the non-convex bundle optimization (NRBM)
in [9] to solve Eq. 8. The key issue is to compute the
subgradient ∂θDθ(C,x) for a particular θ. Let (H∗,M∗)
be the optimal solution to the inference problem we have
solved in Section 4: min{H,M} θ

>Φ(O,H,M,x). Then
it can be shown that the subgradient can be calculated as
∂θDθ(C,x) = Φ(O,H∗,M∗,x). Note that to keep α and
β non-negative, we project the negative values in α and β
to zeros after each iteration of the NRBM learning.

It is also possible to learn our distance model by using
the ground-truth object bounding boxes annotated in the
training images without inferring the latent “hypothesized”
configurations. However, our experiments suggest that it
does not perform as well as the learning method defined in
Eq. 7. This is because the learning of Eq. 7 simulates the
testing process when unannotated test images are provided
for distance calculation.



6. Experiments
We evaluate the performance of our method on two im-

age datasets: PASCAL 07 [10] and SUN 09 [6]. We briefly
describe our experimental setup before reporting the exper-
imental results in Section 6.1.

PASCAL 07 dataset [10]: The PASCAL Visual Object
Challenge provides a standard platform for image classifi-
cation. We use the PASCAL 07 dataset for a comparison
with previous work. This dataset contains 9,963 annotated
images, 5,011 for training and 4,052 for testing. There are
20 image classes, each corresponds to an object category,
e.g. bus, table, person, etc. The goal is to predict the pres-
ence of an object category in a test image. A typical image
has around 3 object instances in 2 object categories. On av-
erage, an object category contains 783 object instances in
the training image set.

SUN 09 dataset [6]: This dataset consists of 12,000 an-
notated scene images. Similar to [6], we use 4,367 images
for training and 4,317 images for testing. There are 111 ob-
ject categories each containing at least 5 object instances.
We filter out small object instances sized less than 20 by
20 pixels, and finally, we have a training set of 4,356 im-
ages and a testing set of 4,305 images. A typical image has
around 11 object instances in 5 object categories. On av-
erage, there are 417 object instances per object category in
the training image set. We perform classification tasks on
58 scene classes each containing at least 10 training and 10
test images1. The other small scene classes are only consid-
ered as negative data in the experiments.

Note that, as a superset of SUN 09, the SUN dataset [34]
also provides a standard benchmark for image classifica-
tion. However, we choose SUN 09 for two reasons. First,
the number of object instances per category in SUN 09 is
significantly larger than that in SUN (417 as compared to
around 65). Second, our method requires ground-truth ob-
ject bounding boxes on the training set, but only one tenth
of the SUN images are annotated.

Local object features: We select or design several state-
of-the-art features that are potentially useful for represent-
ing object categories. We build color histograms in RGB
space. Our histograms have 11 bins in each channel. HoG
descriptors [7] provide excellent performance for object
recognition. We resize each object instance to 80×100 pix-
els (which is the average object size), and extract HoG on a
regular grid at steps of 8 pixels. In order to characterize
image textures, we further use two powerful texture fea-
tures: Texton [21] and LBP [24]. We construct a 128 en-
try texton dictionary by clustering the responses of a filter
bank with 8 orientations, 2 scales, and 2 elongations. A
128-dimensional texton histogram is built for each object

1We manually extract the scene labels for the SUN 09 images as they
are not included in the original release. The scene labels are available on
our website.

instance. LBP are computed using 8 sampling points on a
circle of radius 1 together with a uniform mapping of 59
patterns. In this way, we produce a 59-dimensional LBP
histogram for each object instance. To represent an object’s
absolute location in an image, we partition the image into
5×5 cells, and compute the area of the object instance in
each cell. We normalize all the histograms by l1 norm,
and use the histogram intersection distance (i.e. one minus
the histogram intersection) to measure the base distance on
each feature type.

Global image features: For PASCAL 07, dense SIFT
with improved Fisher encoding [26] are shown to outper-
form the other encoding methods in a fair comparison [4].
We use the implementation of [4] with suggested parame-
ters to extract a 327,680-dimensional feature vector for each
image. To improve the learning efficiency, we pre-train 20
SVM classifiers for the 20 image classes based on a ker-
nel calculated from the high-dimensional feature vectors.
For an image, the output scores of the 20 SVM classifiers
are used to construct a 20-dimensional global appearance
feature vector. For SUN 09, we simply extract the 512-
dimensional GIST descriptors [25] with filters tuned to 8
orientations at 4 different scales.

Baselines: We design five baselines by considering dif-
ferent components of our Full model. The first one is
the Global model using Eq. 5 only. The second one
is our Unary model with Eq. 3. The third one is the
Unary+Pair model that incorporates Eqs. 3 and 4. We
further develop two unary models based on Eqs. 5 and 3:
Global+Unary, where object matchings are infered using
Eq. 6; and Global+Unary-Latent, where object matchings
are fixed by setting αit = 1 in Eq. 6. The two unary models
are designed to test the efficacy of latent object matchings.

For a fair comparison, we use the same solver for
learning all these methods. The learning parameter
c in Eq. 7 is selected as the best from the range
{10−2, 10−1, 100, 101, 102}. We perform one-vs-all clas-
sification for each image class. Following the PASCAL
challenge criterion, the classification performance on both
datasets is measured by average precision (AP) and mean
average precision over all classes (mAP).

6.1. Results
PASCAL 07: The classification results on PASCAL 07

are listed in Table 1. We first compare Full with several
state-of-the-art approaches. Our model has significant per-
formance gains over various methods, including similar ap-
proaches that operate on object-level representations and
explore contextual information in groups of objects [27], a
latent SVM model for region-based classification [35], the
winner of PASCAL VOC 2007 using multiple kernel learn-
ing on bag-of-word features [23], and the “dense SIFT +
Fisher encoding” approach which is shown to outperform
the other encoding methods [4]. Full is comparable with



plane bicycle bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP t-test

Rabinovich et al. [27] 63.0 22.0 18.0 28.0 43.0 46.0 62.0 32.0 37.0 19.0 30.0 32.0 12.0 31.0 43.0 33.0 41.0 37.0 29.0 62.0 36.0 4.1E-6
Yakhnenko et al. [35] 66.9 43.3 32.4 59.5 16.0 39.2 68.9 38.0 38.5 27.7 27.6 31.7 66.7 45.8 77.0 12.5 28.8 28.5 61.1 35.0 42.3 3.2E-10

OB+SVM 67.4 79.5 28.7 49.9 47.5 69.4 88.0 51.0 8.6 37.2 19.8 8.5 78.2 70.5 41.3 33.9 42.4 45.9 75.2 63.6 50.3 2.4E-3
Marszalek et al. [23] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4 1.5E-3
Chatfield et al. [4] 79.0 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6 58.4 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7 7.1E-4

Harzallah et al. [14] 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5 7.2E-1
Chen et al. [5] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7 5.1E-1

Full 79.2 69.9 48.9 73.2 36.0 75.6 83.7 63.8 55.4 50.0 64.7 43.7 82.9 74.2 86.3 31.5 52.1 62.2 83.6 64.4 64.1 N/A

Global 77.8 64.8 47.9 71.0 27.9 70.3 81.2 61.0 54.3 46.2 59.5 41.9 80.3 70.1 85.4 28.3 45.0 53.5 82.1 54.8 60.2 3.7E-6
Unary 62.6 74.9 17.4 34.2 44.3 68.0 86.8 45.6 46.7 39.4 47.3 22.0 77.0 66.8 90.3 31.0 43.8 43.8 68.9 57.8 53.4 8.7E-4

Unary+Pair 62.9 75.3 17.6 34.4 44.9 66.7 87.6 45.6 46.6 39.4 48.4 22.8 77.1 68.3 90.3 30.2 40.7 44.9 68.4 59.4 53.6 9.7E-4
Global+Unary-Latent 78.9 69.6 48.7 73.0 35.4 75.7 83.7 63.3 55.5 48.9 64.5 43.3 82.9 74.2 86.2 31.6 50.4 62.3 83.7 64.7 63.8 4.1E-2

Global+Unary 78.9 69.7 48.9 72.7 35.8 75.5 83.7 63.3 55.7 49.1 64.7 43.3 82.9 74.2 86.3 31.7 50.7 62.4 83.7 64.5 63.9 5.5E-2
Table 1. Classification results (AP and mAP in %) on PASCAL 07. The figures boldfaced are the best performance among Full and
state-of-the-art methods. Paired t-tests are also conducted on the AP values to examine Full agnist all the other methods. We list the
returned p-values in the last column, where the boldfaced figures indicate no significance between Full and the compared methods under
5% significance level.

bedroom skyscraper street building snowy mtn. kitchen highway field bathroom livingroom forest coast mountain office airport mAP t-test

OB+SVM 41.6 50.6 59.1 24.5 55.3 46.1 63.2 40.7 51.7 19.7 60.0 27.6 9.7 10.0 3.8 13.9 1.4E-6
GIST+SVM 24.9 71.9 74.7 30.1 43.5 17.8 78.0 39.3 22.0 3.9 76.4 17.0 11.6 6.0 10.8 14.2 3.6E-4

Full 38.0 67.8 82.3 42.9 54.8 44.8 78.9 54.4 50.2 18.9 74.1 31.5 15.7 7.9 9.1 19.2 N/A

Global 26.7 71.8 76.7 29.0 46.5 23.6 73.3 43.7 23.1 4.1 78.4 28.7 20.4 6.5 7.6 15.3 2.9E-3
Unary 30.8 12.0 51.8 23.6 43.1 28.3 66.3 40.2 29.4 11.8 17.9 28.0 17.5 6.4 4.3 11.5 1.3E-5

Unary+Pair 31.4 15.2 53.3 30.8 46.2 34.6 64.5 50.8 34.9 15.2 20.7 31.1 17.3 6.6 4.4 13.0 2.0E-4
Global+Unary-Latent 38.0 65.4 73.4 27.4 50.0 40.3 74.9 47.2 48.0 13.7 69.1 30.6 19.6 7.0 6.6 17.1 2.7E-4

Global+Unary 37.0 64.6 73.6 32.1 47.7 41.1 74.5 47.3 46.4 19.4 70.2 32.3 22.4 7.5 8.1 17.6 3.6E-3
Table 2. Classification results (AP and mAP in %) on SUN 09. We only report AP on the 15 largest scene classes due to space limitations.
The mAP results are averaged over all 58 classes. See the caption of Table 1 for more details.

[14] which combines detection and classification into a uni-
fied learning framework, and [5] which is a recent top result
on PASCAL 07. We also build our own object bank repre-
sentations for PASCAL 07. For an image, the representa-
tion is a 20-dimensional feature vector, where each dimen-
sion corresponds to an object category in PASCAL 07, and
its value is the maximum response of an object detector. We
train linear SVMs based on the object bank features, leading
to OB+SVM in Table 1. Our model significantly improves
(by 14% mAP) over this method. These results validate the
effectiveness of the proposed method.

We compare Full with Global, Unary and Unary+Pair.
Table 1 shows that, as a simple combination of these
models, Full significantly outperforms Global, Unary and
Unary+Pair by 4% mAP, 10% mAP and 10% mAP, respec-
tively. This demonstrates that the object matchings learned
by local object models (i.e. Unary and Unary+Pair) pro-
vide complementary information to the global image fea-
tures, and our full model can effectively combine these two
sources to build stronger classifiers.

Now we consider Global+Unary-Latent, Global+Unary
and Full to evaluate the efficacy of latent object matchings.
As shown in Table 1, the two latent models (i.e. Full and
Global+Unary) only perform slightly better than the non-
latent model Global+Unary-Latent, indicating that the la-
tent object matching method does not contribute much to
classification, when the latent variables are inferred by ei-
ther the unary object distance or the combination of unary
and pairwise object distance. This is reasonable since the
goal of PASCAL 07 classification is to decide the presence
of an object category in a given test image. Once the object

detector fires on the test image, matching the detected object
to a particular object in the class does not significantly af-
fect the overall classification performance. The next dataset,
SUN 09, has scenes with multiple objects, for which this
ambiguity is more important.

SUN 09: We summarize the classification results on
SUN 09 in Table 2. For comparison, we implement two
state-of-the-art scene classification methods. The first is
OB+SVM, which is the exactly same as the one designed
for PASCAL 07. The only difference is that here we em-
ploy a 111-dimensional object bank representation, where
each dimension corresponds to an object category in SUN
09. We also extract 512-dimensional GSIT descriptors [25]
and train a linear SVM for each scene class, i.e. GIST+SVM.
Our Full model significantly outperforms the two methods,
and is effective for scene classification. It is worth noting
that our Global model operates on the same GIST features
as GIST+SVM, but achieves better performance by targeting
on distance function learning.

Similar to PASCAL 07, our Full model significantly out-
performs Global, Unary and Unary+Pair, by 4%, 8% and
6% respectively. This result again validates that we can
build a strong Full model by taking advantage of both global
image appearance and local object matchings.

Now we evaluate the efficacy of latent object match-
ings. Recall that Global+Unary-Latent uses fixed ob-
ject matchings, Global+Unary uses latent object matchings
based on the unary object distance, and our Full model
uses latent object matchings inferred by the combination
of unary and pairwise object distance. Although we do
not see a big performance leap from Global+Unary-Latent



airport highway bedroom kitchen

Color airplane, sky, person, truck, streetlight sky, road, sign, car, tree bed, wall, curtain, drawer, television cupboard, stove, cabinet, oven, microwave
HoG sky, airplane, road, van, door sky, road, car, sign, tree wall, bed, floor, curtain, table wall, stove, cupboard, floor, oven

Texton tree, door, streetlight, truck, van sign, car, tree, road, building bed, drawer, curtain, television, flowers stove, oven, cabinet, countertop, refrigerator
LBP door, truck, streetlight, window, van sign, car, building, bus, fence drawer, bed, television, flowers, bottle stove, oven, cabinet, countertop, microwave

Location tree, truck, van, window, person sign, car, tree, sky, building bed, wall, drawer, television, microwave stove, cupboard, oven, countertop, cabinet

airplane-below-sky tree-ontop-car bottle-nextto-bed cupboard-above-floor
Spatial person-ontop-road car-ontop-building television-ontop-wall stove-ontop-wall

relations truck-ontop-road car-ontop-fence bed-ontop-wall wall-above-floor
van-ontop-road bus-ontop-car table-ontop-wall cabinet-ontop-wall
tree-ontop-sky sky-above-road microwave-ontop-floor refrigerator-ontop-wall

Table 3. We list the five most discriminative object categories (i.e. highly weighed by α) with respect to each local object feature on sample
scene classes. We also provide the five most discriminative spatial relations (i.e. highly weighed by β) among these object categories.
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Figure 2. (Best viewed in color.) Sample classification results using our Full model. Each row corresponds to a scene class, and we show
the top four ranked positive images and the top two ranked negative images. The title of an image includes the scene class label and a
figure indicating the rank of the image according to our learned distance: the smaller the rank, the smaller the distance. For an image, we
plot up to four discriminative objects (as listed in Table 3) together with the predicted locations. The color of the bounding box shows the
relative importance of the objects in distance calculation (sorted by the unary object distance): red > blue > green > yellow.

to Global+Unary, our Full model does perform signifi-
cantly better than Global+Unary-Latent. This shows the
efficacy of our latent object matching method on scene clas-
sification. Moreover, Full also significantly outperforms
Global+Unary, by exploiting pairwise spatial relations.

As compared to object classification on PASCAL 07,
where the class label is purely determined by one object in
the image, scene classification on SUN 09 is more com-
plicated because we need to consider a collection of ob-
jects and their correlations to correctly classify a test image.

To this end, our model explores object-level representations
and various contextual information among objects, and the
experimental results show that our model is highly effective.

Visualization: We select four scene classes in SUN 09,
and view the learned Full model in Table 3. Sample clas-
sification results are visualized in Figure 2. Please refer to
the captions for more details.

7. Conclusion
We have presented a discriminative model to learn class-

to-image distances for image classification by considering



the object matchings between a test image and a set of train-
ing images from one class. The model integrates three types
of complementary distance including the unary object dis-
tance, the pairwise object distance and the global image ap-
pearance distance. We formulate a latent variable frame-
work and have proposed efficient inference and effective
learning methods. Our experiments validates the efficacy
of our model in object classification and scene classifica-
tion tasks. We believe our solution is general enough to be
applied in other applications with elementary “object”-level
representations, e.g. image retrieval with object matchings
or video classification/retrieval with action matchings.
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