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Abstract

Detecting objects such as humans or vehicles is a
central problem in video surveillance. Myriad stan-
dard approaches exist for this problem. At their core,
approaches consider either the appearance of people,
patterns of their motion, or differences from the back-
ground. In this paper we build on dense trajectories, a
state-of-the-art approach for describing spatio-temporal
patterns in video sequences. We demonstrate an ap-
plication of dense trajectories to object detection in
surveillance video, showing that they can be used to
both regress estimates of object locations and accurately
classify objects.

1 Introduction
Object detection is a crucial first step in numerous

visual surveillance applications. High-level human ac-
tivity analysis typically builds upon this step. As such,
robust solutions for detecting and classifying objects in
videos is a well-studied problem. Standard approaches
to the problem include background subtraction, mov-
ing point trajectory analysis, and appearance-based
methods.

All of these methods have long histories in the com-
puter vision literature. Appearance-based methods
are exemplified by the histogram of oriented gradi-
ents (HOG) detector [1] and its variants. Background
subtraction-based methods (e.g. [2]) find contiguous
foreground regions and further classify them into ob-
ject types. Point trajectory [3] or moving region [4]
methods are related, finding groups of points mov-
ing together or containing a motion different from the
background.

Each of these methods has its shortcomings.
Appearance-based methods are sensitive to highly tex-
tured background regions and need to handle sub-
stantial intra-class variation. Background subtraction
methods and moving point/region methods are sensi-
tive to moving clutter regions. Further, there is often
ambiguity when distinguishing foreground from back-
ground due to pixel-wise similarities between objects
and the background.

In this paper we present an application of the re-
cently developed dense trajectories approach [5] for
combining both moving trajectories and discriminative
(moving) appearance-based classification for object de-
tection in surveillance video. The dense trajectories
approach has been shown to obtain state-of-the-art
performance on standard benchmarks for human activ-
ity recognition, particularly for unconstrained internet
videos. Here we demonstrate their effectiveness for the
tasks of human and vehicle detection in surveillance
videos. We focus on detecting only moving objects –
note that while stationary objects can be of interest, in
a surveillance context objects generally move at some

point, and a tracker or scene entry/exit point knowl-
edge can be used to fill temporal gaps.

The contribution of this paper is the application of
these descriptors to the problem of object detection in
surveillance video. Our method utilizes dense trajec-
tories in two steps. First, we detect moving regions
and estimate object locations by regressing from dense
trajectory descriptors to object locations. After form-
ing candidate detections, we then score them by train-
ing classifiers upon a dense trajectory bag-of-words
representation. We demonstrate empirically that this
method can be effective for human and vehicle detec-
tion in surveillance video.

2 Previous Work
As noted above, object detection in surveillance

video is a well-studied problem. Turaga et al. [6] pro-
vide a survey of this literature. Classic approaches
mentioned above include appearance histogram-based
methods [1]. More recent methods based on refined
Haar-like features [7] and deep learning [8] have shown
impressive results for single image person detection.

In this paper we focus on surveillance video. An-
alyzing the temporal domain should lead to more ro-
bust detection algorithms for this static camera set-
ting. Classic methods such as grouping moving feature
points exist [3]. Similar methods have been explored
in the context of crowded videos of people [9]. The
aforementioned appearance-based methods have been
extended to video, e.g. [10, 11]. However, relatively
fewer recent methods that focus on motion patterns
exist. The main focus of this paper is revisiting the
idea of trajectory-based object detection and classifi-
cation based on state-of-the-art trajectory descriptors.

3 Motion-based Detection Model
A high-level overview of our method is shown in

Fig. 1. First, we follow the dense trajectory pipeline
of finding and tracking moving points over short time
scales. From these we use regression to predict the
positions of objects. We then agglomerate nearby pre-
dictions by clustering and generate bounding boxes.
Finally classifiers are trained to discriminate objects
of interest from other regions. In the following subsec-
tions we provide details of each of these steps.

3.1 Trajctory-aligned Motion Features

We develop an algorithm for detecting moving ob-
jects in surveillance video. The first step of our algo-
rithm is to generate a set of candidate object locations.
Analagous to Hough transform-type voting methods
(e.g.. [12]) we will do this by generating an initial set
of points that can vote for possible object centers via
a regression step.

A key consideration is that we would like a large
number of such points. In constrast, approaches such



Figure 1. Overview of detection procedure. Our method first computes dense trajectories from an input
video. Each dense trajectory votes for an object center via a learned regression model. These votes are
aggregated using mean-shift clustering. Finally, bounding boxes are generated from the clusters and then
scored using a classifier on dense trajectory features.

as Harris interest points are sparse and will have dif-
ficulty covering objects, especially given noise in the
subsequent regression step. Our approach is to ex-
tract dense moving points from a given video, and use
these points to vote for possible object centers. We use
the dense trajectory algorithm from Wang et al. [5].
In that algorithm, dense trajectories are obtained by
tracking densely sampled image points through mul-
tiple frames using optical flow, HOG descriptors are
extracted around each point along a trajectory and
normalized to produce a feature vector for correspond-
ing trajectories. Features extracted from a trajectory
are shown to be more robust compared to features ex-
tracted from single points.

We use these densely sampled trajectory points and
their descriptors as inputs to regress object positions,
as described next.

3.2 Center Prediction Based on Regression
In this section, we describe how possible object cen-

ter locations are predicted using a regression model and
how to detect objects given these predicted centers.

Let the number of trajectories be N and the length
of each trajectory be L. Our goal is to predict the
locations of object centers, given a feature vector si
extracted along a trajectory where {i = 1, 2, ..., N}. A
regression model is learned and the output of the re-
gression model is the offset vector oi = (xi, yi) starting
from points pij = (xij , yij) on a trajectory pointing to
possible centers cij = (uij , vij) where {j = 1, 2, ..., L}.
We assume all points on a trajectory should share ex-
actly the same offset vector. Thus, the inputs of the
regression model are features si and the outputs are
oi. The center prediction can be computed as:

cij = pij + oi (1)

Many objects have internal symmetries. For exam-
ple, a car has two front lights and four wheels, thus
local features sometimes can be very similar but offset
vectors are quite different. This requires the model to
have the capability that given one feature vector the
output should not be only one offset vector but several
possible offset vectors. Suppose we want to produce
M outputs given one input. Intuitively we can achieve
this goal by clustering the input feature space into M
subspaces, train a regression model for each subspace,
and finally get M outputs given one input. The prob-
lem of doing so is that we cannot capture the relations
between pairs of outputs. Sometimes more accurate
results can be generated if the relations between out-
puts are also modelled. To achieve this goal, we use
the dependent gaussian process model [13] where the
relations between the outputs are modelled by adding
a noise source which influences all outputs.

Suppose we want to produce M offset outputs Yk(s)
where s ∈ Rp is a dense trajectory feature and k =
{1, 2, ...,M}, and for each output we have Nk training

observations. Given M datasets Dk = {ski, oki}Mk
i=1, we

want to learn a model from the combined data D =
{D1, D2, ..., DM} to predict (Y1(s′), Y2(s′), ..., YM (s′)
for input s′ ∈ Rp. Each output is modelled as a sum of
three gaussian processes U , V , and W . V is unique to
each output, U shares the same noise source to ensure
the outputs are not independent, and W is additive
noise. Thus we have Yk(s) = Uk(s) + Vk(s) + Wk(s).
Let the covariance matrix be CovY , then we have
CovY = CovU + CovV + σ2. Following [13]:

CovUkk(d) =
π

p
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Where r, w, A, and B are parameters of gaussian
kernels, and d are separation between two inputs si
and si′ . Given CovYkk′ , the covariance matrix C is con-
structed as below: CovY11 . . . CovY1M

...
. . .

...
CovYM1 . . . CovYMM

 (5)

Now we can compute the log-likelihood:

L = −1

2
log|C| − 1

2
~oTC−1~o− N

2
log(2π) (6)

where C is a function of parameters {r, w,A,B, σ}.
And the mean µ of gaussian kernel is set to ~0 in our
algorithm. Learning a model corresponds to maximiz-
ing log-likelihood L, in our algorithm, the parameters
are learned with gradient descent. The predictive dis-
tribution at the kth output is a gaussian with mean
µ̂ = ~qTC−1~o and variance σ̂ = κ − ~qTC−1~q, where
κ = CovYkk(0) and ~q = {CY

k1(s′ − s11), ..., CY
kN1

(s′ −
s1N1

), ..., CY
kNM

(s′ − sNM1), ..., CY
kNM

(s′ − sNMNM
)}.

3.3 Detection Based on Center Prediction

Given a set of predicted center locations, mean-shift
clustering is used to generate object hypotheses. Sup-
pose we have K object hypotheses returned by mean-
shift clustering, each moving point is then assigned to



(a) Traffic Dataset

(b) VIRAT Dataset
Figure 2. Precision Recall Curves. “Moving peo-
ple” is evaluation only on ground-truth people
who are moving, “all people” is the entire set
(moving and stationary).

the nearest cluster center. Possible foreground regions
of theK objects are the convex hulls of theseK clusters
and these convex hulls are the initial object proposals.

As is often the case, objects have shadows and points
belonging to shadows also move together with objects.
Beyond this, the generation of moving points may be
noisy – e.g. a few points far from real moving regions
may be generated. Thus the convex hulls may also
cover certain areas of the background. To shrink the
convex hull, we compute tight bounding boxes which
enclose the convex hulls and grid the bounding boxes.
Grid cells are pruned if there are too few moving points
inside. The convex hull of the remaining grids cells is
used as the final bounding box.

3.4 Classification
Given all candidate bounding boxes produced by our

method, the final step is to score them according to
whether they contain an object of interest. For exam-
ple, we might be interested in detecting the people in a
scene or the vehicles in a scene. We do this by training
a classifier based on dense trajectory features.

We consider all dense trajectory features that pass
through a candidate bounding box in one frame. Fol-
low the standard approach, we vector quantize dense
trajectory features into a bag of words representation
using 100 words. A discriminative classifier (SVM) is
trained from a labeled training data set to classify each
candidate bounding box as containing an object of in-
terest or not.

4 Experiments

We test our model on two object detection problems
in surveillance video: vehicle detection and human de-
tection.

4.1 Traffic Dataset
Our model is first tested on a traffic dataset, where

the focus is on detecting vehicles. Example frames can
be seen in Fig. 3(top). The training set contains 500
frames of size 480×704 pixels. The test set contains
2258 frames with 2501 vehicles; ground-truth is ob-
tained via manual labeling.

For training the regression model, all features ex-
tracted from the training set are clustered into 10 sub-
sets to generate 10 outputs. 50 trajectories from each
cluster that pass through ground truth bounding boxes
are randomly picked to form the inputs of the regres-
sion model.

In testing, we mark a region of interest correspond-
ing to regions of the video frame where vehicles are
of sufficient size. For this dataset, the scale changes
are very large: 250 pixels diagonal to 20 pixels diag-
onal. It is difficult to find a perfect bandwidth for
entire images: if the bandwidth is too small, vehi-
cles in larger scale will be over-segmented and if the
bandwidth is too large, vehicles in smaller scale will
be grouped into one cluster. To address this problem,
the image coordinates are manually divided into two
regions. For near-field regions, the vehicles have rela-
tively large scale and thus mean-shift clustering is per-
formed in world coordinates with bandwidth 3.5. For
far-field regions, mean-shift clustering is performed in
image coordinates with bandwidth 20. Note that in
a fixed-camera surveillance setting, these parameters
could be obtained with camera calibration.

To further improve the quality of the bounding
boxes, we refine bounding boxes in two steps. We
merge spatially nearby clusters constructed from dense
trajectory points moving in the same direction, and
learn a simple model to adjust bounding box sizes
based on their image coordinates. For the merging
step, we compute the average length of vehicles in the
world coordinates, which is 20, and if two blobs are
close enough and both lengths are less than 10, these
two blobs will be merged into one blob. Given the
dense trajectories points and features, training takes
4 hours to converge and during test time, every 10K
trajectories take 23 minutes to process.

We compare every step of our method with a baseline
which is background subtraction plus the same classi-
fier used in our approach. We summarize the compar-
ison of our model with the baseline in precision-recall
curves shown in Fig. 2(a). The red curve corresponds
to our final detection result and the blue curve corre-
sponds to the result of background subtraction.

4.2 VIRAT Dataset
The second dataset we use is the VIRAT

dataset [14]. We focus on detecting moving people in
the video sequences. The VIRAT dataset contains a
large amount of static surveillance camera video. We
use Scene 0000, a parking lot scene containing people
along moving background clutter such as vehicles.

We define a training set containing 500 frames with
frame size 1080×1920 pixels. Again, for regression all



Figure 3. Visualization of detection results. Top row shows vehicle detection results on the Traffic dataset,
bottom row shows human detection results on the VIRAT dataset. The green bounding boxes are true
positives and the red bounding boxes are false positives. For the second row, the first 4 examples are top
scoring true positives, the last four examples are the top scoring false positives.

features extracted from the training set are clustered
into 10 subsets to generate 10 outputs. 50 trajectories
of 5 people from each cluster going through ground
truth bounding boxes are randomly picked to form the
inputs of the regression model.

Our test set contains 1900 frames and has 1571 man-
ually labelled ground truth person locations. The im-
age coordinates are manually divided into two regions,
mean-shift clustering is performed in these two regions
separately. The bandwidth of the near-field and far-
field regions are 50 and 25, respectively. Detections
with size smaller than a threshold are removed. The
two verification steps used in traffic dataset are not
used on this dataset. We compare our method to base-
lines of DPM [15], trained on the same positive data
and including hard negative mining, and background
subtraction. We consider performance both on all peo-
ple in the test set (“all people”) and only those that are
moving (“moving people”). The comparisons of final
detection results with baselines are shown in Fig. 2 (b),
using the standard i/u > 0.5 criterion. Note that our
methods (red and blue curves) achieve higher preci-
sion than the baselines. As expected, the static-person
DPM detector achieves higher recall for the “all peo-
ple” setting.

5 Conclusion
A detection algorithm based on multi-output gaus-

sian process regression using dense trajectories is pro-
posed in this paper. The regression method can gener-
ate candidate detection bounding boxes superior to a
baseline based on background subtraction. This is pos-
sible because regression from moving points to possible
centers are advantageous in that moving points densely
cover the moving objects. Another factor to the suc-
cess of our method is that the features extracted from
trajectory are quite stable. Limitations to our method
include that since it is based on motion, only moving
objects can be detected. Objects covering few pixels
or overlapping in the image plane also present chal-
lenges. In summary, our method demonstrates that
dense trajectories are effective for object detection in
surveillance video.
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