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Figure 1: Lifelong learning of conditional image generation. Traditional training methods suffer from catastrophic forget-
ting: when we add new tasks, the network forgets how to perform previous tasks. Our Lifelong GAN is a generic framework
for conditional image generation that applies to various types of conditional inputs (e.g. labels and images).

Abstract

Lifelong learning is challenging for deep neural net-
works due to their susceptibility to catastrophic forgetting.
Catastrophic forgetting occurs when a trained network is
not able to maintain its ability to accomplish previously
learned tasks when it is trained to perform new tasks. We
study the problem of lifelong learning for generative mod-
els, extending a trained network to new conditional genera-
tion tasks without forgetting previous tasks, while assuming
access to the training data for the current task only. In con-
trast to state-of-the-art memory replay based approaches
which are limited to label-conditioned image generation
tasks, a more generic framework for continual learning of
generative models under different conditional image gener-
ation settings is proposed in this paper. Lifelong GAN em-
ploys knowledge distillation to transfer learned knowledge
from previous networks to the new network. This makes it
possible to perform image-conditioned generation tasks in a
lifelong learning setting. We validate Lifelong GAN for both
image-conditioned and label-conditioned generation tasks,
and provide qualitative and quantitative results to show the
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generality and effectiveness of our method.

1. Introduction

Learning is a lifelong process for humans. We acquire
knowledge throughout our lives so that we become more ef-
ficient and versatile facing new tasks. The accumulation of
knowledge in turn accelerates our acquisition of new skills.
In contrast to human learning, lifelong learning remains an
open challenge for modern deep learning systems. It is
well known that deep neural networks are susceptible to a
phenomenon known as catastrophic forgetting [18]]. Catas-
trophic forgetting occurs when a trained neural network is
not able to maintain its ability to accomplish previously
learned tasks when it is adapted to perform new tasks.

Consider the example in Figure[T[} A generative model
is first trained on the task edges — shoes. Given a new
task segmentations — facades, a new model is initialized
from the previous one and fine-tuned for the new task. Af-
ter training, the model forgets about the previous task and
cannot generate shoe images given edge images as inputs.
One way to address this would be to combine the training
data for the current task with the training data for all pre-
vious tasks and then train the model using the joint data.
Unfortunately, this approach is not scalable in general: as



new tasks are added, the storage requirements and train-
ing time of the joint data grow without bound. In addition,
the models for previous tasks may be trained using private
or privileged data which is not accessible during the train-
ing of the current task. The challenge in lifelong learning
is therefore to extend the model to accomplish the current
task, without forgetting how to accomplish previous tasks
in scenarios where we are restricted to the training data for
only the current task. In this work, we work under the as-
sumption that we only have access to a model trained on
previous tasks without access to the previous data.

Recent efforts [24. 3, [7] have demonstrated how discrim-
inative models could be incrementally learnt for a sequence
of tasks. Despite the success of these efforts, lifelong learn-
ing in generative settings remains an open problem. Param-
eter regularization [23}, [13] has been adapted from discrim-
inative models to generative models, but poor performance
is observed [28]]. The state-of-the-art continual learning
generative frameworks [23] 28] are built on memory replay
which treats generated data from previous tasks as part of
the training examples in the new tasks. Although memory
replay has been shown to alleviate the catastrophic forget-
ting problem by taking advantage of the generative setting,
its applicability is limited to label-conditioned generation
tasks. In particular, replay based methods cannot be ex-
tended to image-conditioned generation. The reason lies in
that no conditional image can be accessed to generate replay
training pairs for previous tasks. Therefore, a more generic
continual learning framework that can enable various con-
ditional generation tasks is valuable.

In this paper, we introduce a generic continual learn-
ing framework Lifelong GAN that can be applied to both
image-conditioned and label-conditioned image genera-
tion. We employ knowledge distillation [9]] to address
catastrophic forgetting for conditional generative continual
learning tasks. Given a new task, Lifelong GAN learns to
perform this task, and to keep the memory of previous tasks,
information is extracted from a previously trained network
and distilled to the new network during training by encour-
aging the two networks to produce similar output values
or visual patterns. To the best of our knowledge, we are
the first to utilize the principle of knowledge distillation for
continual learning generative frameworks.

To summarize, our contributions are as follows. First, we
propose a generic framework for continual learning of con-
ditional image generation models. Second, we validate the
effectiveness of our approach for two different types of con-
ditional inputs: (1) image-conditioned generation, and (2)
label-conditioned generation, and provide qualitative and
quantitative results to illustrate the capability of our GAN
framework to learn new generation tasks without the catas-
trophic forgetting of previous tasks. Third, we illustrate the
generality of our framework by performing continual learn-

ing across diverse data domains.

2. Related Work

Conditional GANs. Image generation has achieved great
success since the introduction of GANs [8]]. There also has
been rapid progress in the field of conditional image gener-
ation [19]]. Conditional image generation tasks can be typ-
ically categorized as image-conditioned image generation
and label-conditioned image generation.

Recent image-conditioned models have shown promis-
ing results for numerous image-to-image translation tasks
such as maps — satellite images, sketches — photos, la-
bels — images [[10} 35| [34], future frame prediction [26],
superresolution [15]], and inpainting [30]. Moreover, im-
ages can be stylized by disentangling the style and the con-
tent [[L1,16] or by encoding styles into a stylebank (set of
convolution filters) [4]]. Models [|32}17] for rendering a per-
son’s appearance onto a given pose have shown to be effec-
tive for person re-identification. Label-conditioned mod-
els [5 6] have also been explored for generating images for
specific categories.

Knowledge Distillation. Proposed by Hinton et al. [9],
knowledge distillation is designed for transferring knowl-
edge from a teacher classifier to a student classifier. The
teacher classifier normally would have more privileged in-
formation [25] compared with the student classifier. The
privileged information includes two aspects. The first as-
pect is referred to as the learning power, namely the size
of the neural networks. A student classifier could have a
more compact network structure compared with the teacher
classifier, and by distilling knowledge from the teacher clas-
sifier to student classifier, the student classifier would have
similar or even better classification performance than the
teacher network. Relevant applications include network
compression [21]] and network training acceleration [27].
The second aspect is the learning resources, namely the
amount of input data. The teacher classifier could have
more learning resources and see more data that the student
cannot see. Compared with the first aspect, this aspect is
relatively unexplored and is the focus of our work.

Continual Learning. Many techniques have been recently
proposed for solving continuous learning problems in com-
puter vision [24, 3] and robotics [7] in both discriminative
and generative settings.

For discriminative settings, Shmelkov et al. [24] employ
a distillation loss that measures the discrepancy between the
output of the old and new network for distilling knowledge
learnt by the old network. In addition, Castro et al. [3]
propose to use a few exemplar images from previous tasks
and perform knowledge distillation using new features from
previous classification layers followed by a modified acti-
vation layer. For generative settings, continual learning has



been primarily achieved using memory replay based meth-
ods. Replay was first proposed by Seff et al. [23], where the
images for previous tasks are generated and combined to-
gether with the data for the new task to form a joint dataset,
and a new model is trained on the joint dataset. A similar
idea is also adopted by Wu et al. [28] for label-conditioned
image generation. Approaches based on elastic weight con-
solidation [[13]] have also been explored for the task of label-
conditioned image generation [28]], but they have limited ca-
pability to remember previous categories and generate high
quality images.

In this paper, we introduce knowledge distillation within
continual generative model learning, which has not been ex-
plored before. Our approach can be applied to both image-
conditioned generation, for which the replay mechanism is
not applicable, and label-conditioned image generation.

3. Approach

Our proposed Lifelong GAN addresses catastrophic for-
getting using knowledge distillation and, in contrast to re-
play based methods, can be applied to continually learn both
label-conditioned and image-conditioned generation tasks.
In this paper, we build our model on the state-of-the-art Bi-
cycleGAN [35] model. Our overall approach for continual
learning for a generative model is illustrated in Figure [2]
Given data from the current task, Lifelong GAN learns to
perform this task, and to keep the memory of previous tasks,
knowledge distillation is adopted to distill information from
a previously trained network to the current network by en-
couraging the two networks to produce similar output val-
ues or patterns given the same input. To avoid “conflicts”
that arise when having two desired outputs (current train-
ing goal and outputs from previous model) given the same
input, we generate auxiliary data for distillation from the
current data via two operations Montage and Swap.

3.1. Background: BicycleGAN

We first introduce the state-of-the-art BicycleGAN [335]]
on which our model is built. Let the encoder be E, genera-
tor be GG and discriminator be D. Denote the training set as
S = {(A",B")|A? € A, B’ € B} where A and B stand for
the set of conditional and ground-truth images. For simplic-
ity, we use the notations A, B for an instance from the re-
spective domain. The Bicycle-GAN model consists of two
cycles and resembles two GAN models: cVAE-GAN and
cLR-GAN. Now, we describe the two cycles in detail.

¢VAE-GAN. The first model is cVAE-GAN, which first en-
codes ground truth image B to latent code z using the en-
coder E, then reconstructs the ground truth image as B
given the conditional image A and encoded latent code z.
The loss of cVAE-GAN consists of three terms: £]7%¢ =
Ea B~p(A,B)z~E®)|||B — G(A,z)|[1] which encourages

the output of the generator to match the input; Lk =
Eg~ps) KL(E(B)||NV(0,I))] which encourages the en-
coded latent distribution to be close to a standard Gaus-
sian to enable sampling at inference time; and L&A, the
standard adversarial loss which encourages the generator to
generate images that are not distinguishable from real im-
ages by the discriminator. The objective function of the
cVAE-GAN is:

— i VAE image
LVAE-CGAN = min max LEAN + ALY + Ak LKL,
(D

where A and Ak, are loss weights for encoding and image
reconstruction, respectively.

cLR-GAN. The second model is cLR-GAN, which first gen-
erates a image B given the conditional data A and latent
code z, then reconstructs the latent code as z to enforce the
latent code z is used.

The loss of cLR-GAN consists of two terms: L£tent =
EA~p(A)z~pz)||zZ — E(G(A,z))|[1] which encourages
utilization of the latent code via reconstruction; and L&,
the standard adversarial loss which encourages the genera-
tor to generate images that are not distinguishable from real
images by the discriminator. The objective function of the
cLR-GAN is:

Lllatent

)

- LR
LAR-CAN = min max LEAN + Matent

where Ajatent 1S the loss weight for recovering the latent
code.

BicycleGAN is proposed to take advantage of both cy-
cles, hence the objective function is:

LBicycleGAN = Iélllgl max LAE-GAN + LLR—-GAN-
(3)
3.2. Lifelong GAN with Knowledge Distillation

To perform continual learning of conditional generation
tasks, the proposed Lifelong GAN is built on top of Bicycle
GAN with the adoption of knowledge distillation. We first
introduce the problem formulation, followed by a detailed
description of our model, then discuss our strategy to tackle
the conflicting objectives in training.

Problem Formulation. During training of the ' task,
we are given a dataset of Ny paired instances S; =
{(Ai,t7Bi,t)|Ai,t € At>Bi,t S Bt}g\gl where At and
B; denote the domain of conditional images and ground
truth images respectively. For simplicity, we use the no-
tations A, B, for an instance from the respective domain.
The goal is to train a model M; which can generate im-
ages of current task B, <« (A4, z), without forgetting
how to generate images of previous tasks B; « (A4, 2),
i=1,2,...,(t—1).
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Figure 2: Overview of Lifelong GAN. Given training data for the ¢*" task, model M; is trained to learn this current task.
To avoid forgetting previous tasks, knowledge distillation is adopted to distill information from model M;_; to model M, by
encouraging the two networks to produce similar output values or patterns given the auxiliary data as inputs.

Let M; be the t** model trained, and M;_; be the
(t — 1) model trained. Both M;_; and M, contain two
cycles (cVAE-GAN and cLR-GAN) as described in Sec-
tion 3.1} Inspired by continual learning methods for dis-
criminative models, we prevent the current model M, from
forgetting the knowledge learned by the previous model
M;_; by inputting the data of the current task S; to both
M; and M;_1, and distilling the knowledge from M;_; to
M, by encouraging the outputs of M;_; and M, to be sim-
ilar. We describe the process of knowledge distillation for
both cycles as follows.

c¢VAE-GAN. Recall from Section 3.1] that cVAE-GAN has
two outputs: the encoded latent code z and the recon-
structed ground truth image B. Given ground truth image
B, the encoders E; and E,_; are encouraged to encode it
in the same way and produce the same output; given en-
coded latent code z and conditional image A, the genera-
tors Gy and G;_1 are encouraged to reconstruct the ground
truth images in the same way. Therefore, we define the loss
for the cVAE-GAN cycle with knowledge distillation as:

ﬁt _ ﬁt

VAE-DL = LivAE—GAN

+ BEA, B,~p(A.,By) [1E:(Bt) — Er—1(By)|[1 4
+ |G (A, Ee(By)) — Gi—1(Ay, Er—1(By))| 1],

where (3 is the loss weight for knowledge distillation.

cLR-GAN. Recall from Section[3.]that cLR-GAN also has
two outputs: the generated image B and the reconstructed
latent code z. Given the latent code z and conditional image

A,, the generators G; and G;_1 are encouraged to generate
images in the same way; given the generated image B, the
encoders E; and E,_; are encouraged to encode the gener-
ated images in the same way. Therefore, we define the loss
for the cLR-GAN cycle as:

L‘f:LRfDL = L"(t:LRfGAN
+ BEA, ~p(AL) z~p(z) |Gt (At 2) — Gi1(Ay, 2) |1 (5)
+ [Ee(Gi(A,2)) — Er1(Ge-1(Ay, 2))[1].

The distillation losses can be defined in several ways,
e.g. the Lo loss [2, 24], KL divergence [9] or cross-
entropy [9, 3]]. In our approach, we use L; instead of Lo
to avoid blurriness in the generated images.

Lifelong GAN is proposed to adopt knowledge distilla-
tion in both cycles, hence the overall loss function is:

t _ t t
Ll itelong—caN = Levap-pr T LeLr—DL- (6)

Conflict Removal with Auxiliary Data. Note that Equa-
tion [ contains conflicting objectives. The first term en-
courages the model to reconstruct the inputs of the current
task, while the third term encourages the model to gener-
ate the same images as the outputs of the old model. In
addition, the first term encourages the model to encode the
input images to normal distributions, while the second term
encourages the model to encode the input images to a distri-
bution learned from the old model. Similar conflicting ob-
jectives exist in Equation[5] To sum up, the conflicts appear



when the model is required to produce two different out-
puts, namely mimicking the performance of the old model
and accomplishing the new goal, given the same inputs.

To address these conflicting objectives, we propose to
use auxiliary data for distilling knowledge from the old
model M;_; to model M,;. The use of auxiliary data for
distillation removes these conflicts. It is important that
new auxiliary data should be used for each task, otherwise
the network could potentially implicitly encode them when
learning previous tasks. We describe approaches for doing
so without requiring external data sources in Sec.[3.3]

The auxiliary data S = {(A#}, BIY)[ANY €
AP BYY € B2} N consist of N2" training pairs
where A" and B$"* denote the domain of auxiliary condi-
tional data and ground truth data respectively. For simplic-
ity, we use the notations A{"*, B#"* for an instance from
the respective domain.

The losses Liyap_pr, and LY g _py, are re-written as:

L:t _ L:t

cVAE—DL = LcVAE—GAN

+ BE paux Bawxp(asux Bauwxy [[| B (BE™) — B 1(By™)|1

+ [|Ge(AF™, Ey(BE™)) — Gi—1(AF™, Er—1(BE™))| 1],
(7N

t _ prt
‘CCLR—DL - ‘CCLR—GAN

+ BE Az p(Azx) zrp(z) [[|GE (AT, 2) — Gio1 (AT, 2) |1

+ B (G (AT, 2)) — Er1 (G (A, 2))[[1],
®)

where (3 is the loss weight for knowledge distillation.

Lifelong GAN can be used for continual learning of both
image-conditioned and label-conditioned generation tasks.
The auxiliary images for knowledge distillation for both set-
tings can be generated using the Montage and Swap opera-
tions described in Section[3.3] For label-conditioned gener-
ation, we can simply use the categorical codes from previ-
ous tasks.

3.3. Auxiliary Data Generation

We now discuss the generation of auxiliary data. Recall
from Section that we use auxiliary data to address the
conflicting objectives in Equations ] and [3]

The auxiliary images do not require labels, and can in
principle be sourced from online image repositories. How-
ever, this solution may not be scalable as it requires a new
set of auxiliary images to be collected when learning each
new task. A more desirable alternative may be to gener-
ate auxiliary data by using the current data in a way that
avoids the over-fitting problem. We propose two operations
for generating auxiliary data from the current task data:

1. Montage: Randomly sample small image patches from
current input images and montage them together to
produce auxiliary images for distillation.

2. Swap: Swap the conditional image A, and the ground
truth image B, for distillation. Namely the encoder
receives the conditional image A; and encodes it to a
latent code z, and the generator is conditioned on the
ground truth image B;.

Both operations are used in image-conditioned generation;
in label-conditioned generation, since there is no condi-
tional image, only the montage operation is applicable.
Other alternatives may be possible. Essentially, the aux-
iliary data generation needs to provide out-of-task samples
that can be used to preserve the knowledge learned by the
old model. The knowledge is preserved using the distil-
lation losses, which encourage the old and new models to
produce similar responses on the out-of-task samples.

4. Experiments

We evaluate Lifelong GAN for two settings: (1) image-
conditioned image generation, and (2) label-conditioned
image generation. We are the first to explore continual
learning for image-conditioned image generation; no exist-
ing approaches are applicable for comparison. Addition-
ally, we compare our model with the memory replay based
approach which is the state-of-the-art for label-conditioned
image generation.

Training Details. All the sequential digit generation mod-
els are trained on images of size 64 x 64 and all other models
are trained on images of size 128 x 128. We use the Tensor-
flow [1]] framework with Adam Optimizer [12] and a learn-
ing rate of 0.0001. We set the parameters Ajatent = 0.5,
Akr, = 0.01, and 8 = 5.0 for all experiments. The weights
of generator and encoder in cVAE-GAN and cLR-GAN are
shared. Extra training iterations on the generator and en-
coder using only distillation loss are used for models trained
on images of size 128 x 128 for better remembering previ-
ous tasks.

Baseline Models. We compare Lifelong GAN to the fol-
lowing baseline models: (a) Memory Replay (MR): Images
generated by a generator trained on previous tasks are com-
bined with the training images for the current task to form
a hybrid training set. (b) Sequential Fine-tuning (SFT): The
model is fine-tuned in a sequential manner, with parameters
initialized from the model trained/fine-tuned on the previ-
ous task. (c) Joint Learning (JL): The model is trained uti-
lizing data from all tasks.

Note that for image-conditioned image generation, we
only compare with joint learning and sequential fine-tuning
methods, as memory replay based approaches are not appli-
cable without any ground-truth conditional input.

Quantitative Metrics. We use different metrics to evalu-
ate different aspects of the generation. In this work, we use
Acc, r-Acc and LPIPS to validate the quality of the gen-
erated data. Acc is the accuracy of the classifier network
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Figure 3: Comparison among different approaches for con-
tinual learning of MNIST digit segmentations. Lifelong
GAN can learn the current task without forgetting the pre-

vious ones.

SF JL Ours

Acc  58.02 9425 9590
r-Acc  61.56 96.79 96.14
LPIPS - 0.150 0.157

Acc 3972 99.26 98.93
r-Acc  49.88 9898 99.37
LPIPS - 0.442 0417

MNIST

Image-to-Image

Table 1: Quantitative evaluation for image-conditioned gen-
eration. For MNIST digit generation, LPIPS for real images
is 0.154. For image-to-image translation, LPIPS for real im-
ages is 0.472.

trained on real images and evaluated on generated images
(higher indicates better generation quality). r-Acc is the ac-
curacy of the classifier network trained on generated images
and evaluated on real images (higher indicates better gener-
ation quality). LPIPS [33] is used to quantitatively evaluate
the diversity as used in BicycleGAN [35]. Higher LPIPS
indicates higher diversity. Furthermore, LPIPS closer to the
ones of real images indicates more realistic generation.

4.1. Image-conditioned Image Generation

Digit Generation. We divide the digits in MNIST [14]
into 3 groups: {0,1,2}, {3,4,5}, and {6,7,8,9 The dig-
its in each group are dyed with a signature color as shown
in Figure [3] Given a dyed image, the task is to generate a
foreground segmentation mask for the digit (i.e. generate a
foreground segmentation given a dyed image as condition).
The three groups give us three tasks for sequential learning.

Generated images from the last task for all approaches
are shown in Figure 3] We can see that sequential fine-
tuning suffers from catastrophic forgetting (it is unable to
segment digits 0-5 from the previous tasks), while our ap-
proach can learn to generate segmentation masks for the
current task without forgetting the previous tasks.

lgroup {a,b,c} contains digits with label a, b and c. This applies to all
experiments on MNIST.

SFT JL MR  Ours
Acc 2159 98.08 9754 97.52

MNIST r-Acc 21.21 87.72 8557 87.77
LPIPS - 0.125 0.120 0.119
Acc 20.0 96.4 87.6 98.4
Flower r-Acc 19.6 83.6 60.4 85.6

LPIPS - 0413 0319 0.399

Table 2: Quantitative evaluation for label-conditioned im-
age generation tasks. For MNIST digit generation, LPIPS
for real images is 0.155. For flower image generation,
LPIPS for real images is 0.479.

Image-to-image Translation. We also apply Lifelong
GAN to more challenging domains and datasets with large
variation for higher resolution images. The first task is
image-to-image translation of edges — shoes photos [31,
29]. The second task is image-to-image translation of seg-
mentations — facades [22]. The goal of this experiment
is to learn the task of semantic segmentations — facades
without forgetting the task edges — shoe photos. We sam-
ple|~20000 image pairs for the first task and use all images
for the second task.

Generated images for all approaches are shown in Fig-
ure @] For both Lifelong GAN and sequential fine-tuning,
the model of Task2 is initialized from the same model
trained on Taskl. We show the generation results of each
task for Lifelong GAN. For sequential fine-tuning, we show
the generation results of the last task. It is clear that the se-
quentially fine-tuned model completely forgets the previous
task and can only generate incoherent facade-like patterns.
In contrast, Lifelong GAN learns the current generative task
while remembering the previous task. It is also observed
that Lifelong GAN is capable of maintaining the diversity
of generated images of the previous task.

4.2. Label-conditioned Image Generation

Digit Generation. We divide the MNIST [14]] digits into
4 groups, {0,1,2}, {3,4}, {5,6,7} and {8,9}, resulting in
four tasks for sequential learning. Each task is to generate
binary MNIST digits given labels (one-hot encoded labels)
as conditional inputs.

Visual results for all methods are shown in Figure [3
where we also include outputs of the generator after each
task for our approach and memory replay. Sequential fine-
tuning results in catastrophic forgetting, as shown by this
baseline’s inability to generate digits from any previous
tasks; when given a previous label, it will either generate
something similar to the current task or simply unrecog-
nizable patterns. Meanwhile, both our approach and mem-
ory replay are visually similar to joint training results, in-
dicating that both are able to address the forgetting issue in
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Figure 5: Comparison among different approaches for continual learning of MNIST digit generation conditioned on label.
We demonstrate some intermediate results during different tasks of continual learning for our distillation based approach and
memory replay. Sequential fine-tuning suffers from severe forgetting issues while other methods give visually similar results

compared to the joint learning results.

this task. Quantitatively, our method achieves comparable
classification accuracy to memory replay, and outperforms
memory replay in terms of reverse classification accuracy.

Flower Generation. We also demonstrate Lifelong GAN
on a more challenging dataset, which contains higher
resolution images from five categories of the Flower
dataset [20]. The experiment consists of a sequence of five
tasks in the order of sunflower, daisy, iris, daffodil, pansy.
Each task involves learning a new category.

Generated images for all approaches are shown in Fig-

ure[6] We show the generation results of each task for both
Lifelong GAN and memory replay to better analyze these
two methods. For sequential fine-tuning, we show the gen-
eration results of the last task which is enough to show that
the model suffers from catastrophic forgetting.

Figure [6] gives useful insights into the comparison be-
tween Lifelong GAN and memory replay. Both methods
can learn to generate images for new tasks while remember-
ing previous ones. However, memory replay is more sen-
sitive to generation artifacts appearing in the intermediate



Ve

~\

Task 1 Task 2 Task 3 Task 4 Task 5 Task 5
WG] e I % |
el T
& , &7
SR
iris
daffodil
pansy
\
(a) Lifelong GAN (c) Sequential Fine-tuning
-
Task 1 Task 2 Task 3 Task 4 Task 5 Single Task
sunflower 1z E* %
daisy i i g
E_JL
iris E ‘
(.4
daffodil A;{z“ <
L3

(b) Memory Replay

(d) Joint Learning

Figure 6: Comparison among different approaches for continual learning of flower image generation tasks. Given the same
model trained for category sunflower, we train Lifelong GAN, memory replay and sequential fine-tuning model for other
tasks. Sequential fine-tuning suffers from severe catastrophic forgetting, while both Lifelong GAN and memory replay can
learn to perform the current task while remembering the old tasks. Lifelong GAN is more robust to artifacts in the generated
images of the middle tasks, while memory replay is much more sensitive and all later tasks are severely impacted by these

artifacts.

tasks of sequential learning. While training Task3 (category
iris), both Lifelong GAN and memory replay show some
artifacts in the generated images. For memory replay, the
artifacts are reinforced during the training of later tasks and
gradually spread over all categories. In contrast, Lifelong
GAN is more robust to the artifacts and later tasks are much
less sensitive to intermediate tasks. Lifelong GAN treats
previous tasks and current tasks separately, trying to learn
the distribution of new tasks while mimicking the distribu-
tion of the old tasks.

Table 2] shows the quantitative results. Lifelong GAN
outperforms memory replay by 10% in terms of classifica-
tion accuracy and 25% in terms of reverse classification ac-
curacy. We also observed visually and quantitatively that
memory replay tends to lose diversity during the sequential
learning, and generates images with little diversity for the
final task.

5. Conclusion

We study the problem of lifelong learning for generative
networks and propose a distillation based continual learn-
ing framework enabling a single network to be extended to
new tasks without forgetting previous tasks with only su-
pervision for the current task. Unlike previous methods
that adopt memory replay to generate images from pre-
vious tasks as training data, we employ knowledge dis-
tillation to transfer learned knowledge from previous net-
works to the new network. Our generic framework en-
ables a broader range of generation tasks including image-
to-image translation, which is not possible using memory
replay based methods. We validate Lifelong GAN for both
image-conditioned and label-conditioned generation tasks,
and both qualitative and quantitative results illustrate the
generality and effectiveness of our method.
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