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Figure 1: Lifelong learning of image-conditioned generation. Encountering a new task, traditional training methods forget
how to perform previous tasks (Figure 1 (a)). Hyper-LifelongGAN is a scalable framework addressing catastrophic forgetting.
It can adapt to the new task with few additional parameters, while preserving the knowledge of previous tasks(Figure 1 (b)).

Abstract

Deep neural networks are susceptible to catastrophic
forgetting: when encountering a new task, they can only
remember the new task and fail to preserve its ability to ac-
complish previously learned tasks. In this paper, we study
the problem of lifelong learning for generative models and
propose a novel and generic continual learning framework
Hyper-LifelongGAN which is more scalable compared with
state-of-the-art approaches. Given a sequence of tasks, the
conventional convolutional filters are factorized into the dy-
namic base filters which are generated using task specific
filter generators, and deterministic weight matrix which lin-
early combines the base filters and is shared across different
tasks. Moreover, the shared weight matrix is multiplied by
task specific coefficients to introduce more flexibility in com-
bining task specific base filters differently for different tasks.

Attributed to the novel architecture, the proposed method
can preserve or even improve the generation quality at a
low cost of parameters. We validate Hyper-LifelongGAN on
diverse image-conditioned generation tasks, extensive ab-
lation studies and comparisons with state-of-the-art models
are carried out to show that the proposed approach can ad-
dress catastrophic forgetting effectively.

1. Introduction

The continuous learning ability is one of the hallmarks
of human intelligence. Humans are lifelong learners, we ac-
quire and accumulate knowledge throughout our lives. The
accumulation of knowledge in turn makes us more and more
knowledgeable, and better and better at learning when en-
countering new problems. In contrast to human learning,
modern deep neural networks are susceptible to catastrophic



forgetting [26]: when adapted to perform new tasks, they
often fail to generalize and cannot maintain their ability to
accomplish previously learned tasks (see Figure 1 (a)). Re-
cent approaches [35, 41, 40] have been proposed for life-
long learning for generative models, and how generative
models can continually learn a sequence of tasks was ex-
plored in these methods. Though progress has been made
towards lifelong learning for generative models, it remains
a challenging area.

The pioneer work addressing catastrophic forgetting in
the generative setting is memory replay [35], namely gener-
ating data of previous tasks using a trained model and treat-
ing these generated data as part of the training examples
in the new tasks. Although alleviating catastrophic forget-
ting by taking advantage of the generative setting, memory
replay is limited to label-conditioned generation scenarios:
when training data for only the current task is accessible, no
conditional image can be accessed and as a result no images
could be generated for replay. More generic continual learn-
ing frameworks [41, 40] have been proposed enabling life-
long learning of image-conditioned generation tasks. Life-
longGAN [41] continually adapts a single trained model to
later tasks, thus the whole model is shared across all tasks.
However, due to the intrinsic differences among tasks, it is
hard to adapt all parameters of a trained model to a new
task. As a result, LifelongGAN is not able to preserve the
generation quality of previous tasks while learning the new
task well. This performance degradation makes it not scal-
able in general. PiggybackGAN [40] addresses the perfor-
mance degradation problem by sacrificing memory storage.
Though it is more parameter efficient compared with train-
ing separate models for each task, the unconstrained filters
bring millions of additional parameters for each new task.
This storage requirement limits its scalability. Therefore,
a more scalable continual learning framework that can pre-
serve the generation quality with no or little sacrifice of stor-
age is valuable.

In this paper, we introduce a generic continual learning
framework Hyper-LifelongGAN (see Figure 1 (b)) that is
more scalable compared with state-of-the-art approaches.
Hypernetwork [13] and knowledge distillation [15] are em-
ployed to address catastrophic forgetting for generative
tasks. First, all the conventional convolutional and decon-
volutional filters in the generator are factorized into a set of
base filters and a weight matrix that linearly combines the
base filters. And instead of learning deterministic base fil-
ters, we learn to generate dynamic base filters from random
noises using hypernetworks. Given a sequence of tasks, dif-
ferent hypernetworks are trained to generate base filters for
different tasks (referred to as task specific filter generators);
while the weight matrix is deterministic, and shared across
all the tasks. Moreover, the shared weight matrix is multi-
plied by task specific coefficients to introduce more flexibil-

ity in combining task specific filters differently for different
tasks. The memory requirement is low since the base filters
in each layer can be generated with just few thousand pa-
rameters, and the weight matrix is shared across all tasks.
To keep the memory of previous tasks, knowledge is ex-
tracted from a previously trained model and distilled to the
model trained for the new task, encouraging the new model
to generate the same output as the previous model.

To summarize, our contributions are as follows. First,
we propose a novel and generic continual learning frame-
work Hyper-LifelongGAN that is more scalable. Second, we
propose to factorize conventional convolutional filters into
dynamic task specific base filters and deterministic task in-
dependent weight matrix. This design enables the proposed
model to preserve or even improve the generation quality of
a sequence of tasks at a low cost of parameters. Third, ex-
tensive ablation studies and comparisons with state-of-the-
art models are carried out across diverse data domains, qual-
itative and quantitative results are provided to illustrate the
capability of our framework to learn new generation tasks
without the catastrophic forgetting of previous tasks.

2. Related Work
Lifelong Learning. For discriminative tasks e.g. clas-

sification, recent efforts [29, 8, 3, 4] have achieved great
success towards continual learning of a sequence of tasks.
Regularization-based approaches were proposed addressing
catastrophic forgetting by regularizing the network param-
eters when learning new tasks [21, 39, 7] or regularizing
the discrepancy between the output of the old and new net-
work using a distillation loss [22, 30, 29, 6]. Modular com-
positional approaches [4, 11, 12] continually learn multi-
ple tasks by combining different submodules, and each task
is solved by a corresponding submodule. Memory buffer
based approaches [25, 8] store a subset of training examples
of previous tasks, thus requiring extra memory at training
time.

For generative tasks, on the other hand, relatively less
work is proposed addressing the problem of catastrophic
forgetting and lifelong learning remains an under-explored
area. Memory replay based approaches [35] form a joint
training set by combining images generated from a model
trained on previous tasks with the training images for the
current task. However, memory replay is limited to label-
conditioned image generation and is not applicable for
image-conditioned generation scenarios since without pre-
vious conditional images, no images could be generated for
replay. LifelongGAN [41] is a generic generative lifelong
learning method regularizing the outputs of the model us-
ing knowledge distillation. However, the proposed auxiliary
data generation techniques cannot fully address the conflicts
caused by sharing the whole model across all tasks, result-
ing in degraded performance of either previous tasks or the



new task. PiggybackGAN [40] constructs filters of the new
task by making use of filters from previously trained model,
which remain freezed during the learning of the new task.
To allow for more flexibility, unconstrained filters are also
introduced for each new task, which largely increased the
memory requirement. These prior work are not scalable due
to either degraded performance or high storage requirement.

Hypernetworks. There has been increasing interest in
generating parameters of neural networks using hypernet-
works [13, 10, 5, 23, 37]. This idea has been applied to
applications in different research fields such as few shot
learning [27, 33], image segmentation [2, 36] and genera-
tive models [28, 18, 16], which is the focus of our paper.
Producing the entire set of weights of a target generative
model through hypernetworks would be computation and
memory extensive. Therefore, most approaches would only
predict the filters of certain layers. For instance, for U-Net
generator [17], only the decoder would be dynamic, param-
eterized as hypernetworks while the encoder remains deter-
ministic [24]; for Resnet generator [19, 42], there would
be a fixed sub-model while only last few layers are parame-
terized as hypernetworks [34]. Oswald, Henning and Sacra-
mento et al. [32] extend hypernetworks to the setting of life-
long learning. However, their approach is not applicable to
image-conditioned generation and has the following draw-
backs. First, their approach stores the previous task embed-
dings to generate different sets of parameters for different
tasks. Second, their approach generates all parameters in a
layer by using chunk embedding and network partitioning.
As a result, compared with Hyper-LifelongGAN, the output
size of their approach increases a hundredfold. Most impor-
tantly, their approach is not applicable to image-conditioned
generation as memory replay is adopted to continually learn
a sequence of generation tasks.

Hyper-LifelongGAN is a generic and scalable genera-
tive lifelong learning framework, enabling various genera-
tion tasks across different data domains. The architecture
designs of the task specific base filter generators, shared
weight matrix and task specific coefficients contribute to
the high generation quality and low memory requirement,
which make a clear difference from prior works.

3. Method

The goal of lifelong learning is to learn a model perform-
ing a sequence of generation tasks while assuming that the
model is restricted to the training data for only the current
task. We proposed Hyper-LifelongGAN addressing catas-
trophic forgetting for generative models. The overall archi-
tecture is illustrated in Figure 2. Given a sequence of tasks,
Hyper-LifelongGAN decomposes the conventional convo-
lutional and deconvolutional filters into dynamic base fil-
ters, which are generated by task specific filter generators,

and deterministic weight matrix, which is shared across dif-
ferent tasks and linearly combines the generated base filters.
To allow for more flexibility, the shared weight matrix is
multiplied by task specific coefficients to combine the task
specific filters in different ways for different tasks. The pro-
posed Hyper-LifelongGAN is trained using knowledge dis-
tillation: knowledge is extracted from a previously trained
model and distilled to the model trained for the new task,
encouraging the new model to generate the same output as
the previous model.

3.1. Hyper-LifelongGAN

When the tth task Tt comes, the goal is to train a model
Mt that could perform all tasks from task T1 till task Tt
while model Mt is restricted to the training data of the cur-
rent task Tt. A naive approach to continually learn a se-
quence of tasks would be training a separate model for each
task. However this approach is not scalable in general since
the memory requirement increases drastically as new tasks
are added. LifelongGAN [41], on the other hand, learns
a sequence of tasks by sharing the whole model across all
tasks. Due to the intrinsic differences among tasks, it is hard
to adapt all parameters of a trained model to a new task, re-
sulting in degraded performance in either previous tasks or
the new task. Therefore, we propose to factorize the con-
ventional convolutional and deconvolutional filters into a set
of base filters and a weight matrix that linearly combines the
base filters. And as new task comes, new set of base filters
are learned while the weight matrix is not task conditional
and is shared across all tasks. In this way, certain flexibility
is granted to each task and at the meantime, extra parame-
ters introduced for each task are largely reduced. Now we
introduce the details of the filter factorization.

Convolutional filter factorization. Let the generator
and discriminator be Gt and D in the model Mt. As-
sume the generator Gt consists of L layers of filters {F `

t ∈
Rs`w×s`h×c`in×c`out}L`=1 where ` denotes the index of layers,
s`w is the the kernel width, s`h is the the kernel height, c`in
is the number of input channels, and c`out is the number of
output channels. For simplicity, notation ` is dropped, we
denote the filters using notation Ft. Then Ft is factorized
into a set of base filters Bt ∈ R(sw×sh)×K and a weight
matrixWt ∈ RK×(cin×cout). As a result,

Ft = R(Bt ∗ Wt), (1)

whereR is the reshaping operation that reshapes the output
to 4D tensor.

To allow for greater flexibility in learning each task, Mt

maintains different sets of base filters {Bit}ti=1 for tasks
from task T1 till task Tt. And to make the model param-
eter efficient, weight matrix Wt is shared across all tasks
from task T1 till task Tt. By multiplying base filters by the
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Figure 2: Hyper-LifelongGAN. Our method factorizes conventional convolutional filters into dynamic base filters, which are
generated by task specific filter generators, and deterministic weight matrix, which is shared across all tasks. Moreover, task
specific coefficients are adopted to introduce more flexibility in combining base filters differently for each task. To prevent
the model from catastrophic forgetting, knowledge distillation is adopted to encourage the two networks to produce similar
outputs.

shared weight matrix,Mt would have different sets of filters
{F i

t }ti=1 for different tasks, namely

F i
t = R(Bit ∗ Wt). (2)

Task specific filter generator. The above mentioned fil-
ter factorization though grants greater flexibility in learning
different tasks, largely reduces the number filters learned
without constraints (K filters and K is often very small to
reduce the number of parameters). To address this problem,
we propose to generate base filters {Bit}ti=1 from random
noise z using task specific filter generators {Hi

t}ti=1 for all
tasks from T1 till task Tt, and Hi

t is the base filter generator
of model Mt for the task Ti. Specifically,

Bit = Hi
t(z). (3)

By using filter generators, the number of base filters are
no longer fixed and confined to K. Many more sets of
base filters could be sampled from the vast parameter space
by sampling different z from some pre-defined distribution,
e.g. N (0, 1).

Since the weight matrix Wt is shared across all tasks,
different base filters of different tasks are combined in the

same way. It is more desirable to combine the base filters
of each task differently. However, different from base fil-
ters, having a separate weight matrix for each task would
be memory extensive. The reason is that the base filters
in each layer could be generated with just a few thousand
of parameters, while extra millions of parameters are need
for each task to maintain task specific weight matrices.
Therefore, we introduce the deterministic task specific co-
efficients {Cit ∈ RK×K}ti=1, multiplying with the shared
weight matrix to allow for different combinations of base
filters for different tasks. Specifically,

Wi
t = Cit ∗ Wt

F i
t = R(Bit ∗ Wi

t).
(4)

As a result, Gt can be viewed as a generator consisting of
t sub-generators {Gi

t}ti=1, where the sub-generator Gi
t gen-

erates image for task Ti at the tth time step.

3.2. Learning Hyper-LifelongGAN

In this paper, we explore two conditional generation sce-
narios: (1) Paired image generation, in which the training
set for task Tt is St = {(Ai,t,Bi,t)|Ai,t ∈ At,Bi,t ∈
Bt}Nt

i=1 where Nt is the number of training instances in the



training set, and At and Bt denote the domain of condi-
tional images and ground truth images respectively. For
each conditional image Ai,t, its corresponding ground-
truth image Bi,t is provided. (2) Unpaired image gen-
eration, in which the training set for task Tt is St =

{({Ai,t}
Na

t
i=1, {Bi,t}

Nb
t

i=1)|Ai,t ∈ At,Bi,t ∈ Bt}. Differ-
ent from paired image generation, the correspondence be-
tween Ai,t and Bi,t does not exist. For simplicity, notations
At,Bt are used referring to an instance from the respective
domain.

Let Mt−1 be the model trained for task Tt−1. Given the
new task Tt, to prevent the current model Mt from forget-
ting previous tasks, the data of current task St is inputted
to both Mt and Mt−1, and knowledge distillation loss is
adopted to distill knowledge from Mt−1 to Mt, encourag-
ing the outputs of Mt−1 and Mt to be the same. First, the
outputs of the sub-generators of model Mt−1 are computed
as:

B̃1
t−1 = G1

t−1(At, z), ..., B̃
i
t−1 = Gi

t−1(At, z),

..., B̃t−1
t−1 = Gt−1

t−1(At, z).
(5)

And the corresponding t − 1 outputs of the sub-
generators of model Mt are computed as:

B̃1
t = G1

t (At, z), ..., B̃
i
t = Gi

t(At, z),

..., B̃t−1
t = Gt−1

t (At, z).
(6)

Given these outputs, the knowledge distillation loss is
defined as:

Lt
distill =

t−1∑
i=1

||B̃i
t−1 − B̃i

t||1. (7)

Moreover, St is also inputted to Mt to minimize the loss
Ltask

1 related with current task Tt, namely

B̃t
t = Gt

t(At, z),

Lt
task = Ltask(At, B

t
t, B̃

t
t).

(8)

And the total loss of Hyper-LifelongGAN at the tth time
step is defined as:

Lt
total = Lt

task + βLt
distill, (9)

where β is the loss weight for knowledge distillation.
Data for Knowledge Distillation. There are conflicts

in Equation 9: given the same input (At, z), there are two

1For example, if the tth task is conditional image generation based on
Pix2Pix [17], Lt

task = LcGAN(Gt
t, D) + αLL1(G

t
t), which is the exact

loss used in Pix2Pix.

training goals Lt
task and Lt

distill. Lt
task would encourage

the model to produce an output belonging to domain Bt,
while Lt

distill encourages the model to produce an output
belonging to previous domains, e.g. Bt−1. Though the
task specific base filters could alleviate the conflicts, it still
would be beneficial to use different inputs for the two losses.
Therefore, we propose to use real image Bt as input for
knowledge distillation Lt

distill, while the input remains At

for learning the new task Lt
task. In other words, the con-

ditional and real images are swapped for the two training
losses (see Figure 2):

Lt
total = Ltask(At, B

t
t, G

t
t(At, z))

+ β

t−1∑
i=1

||Gi
t−1(Bt, z)−Gi

t(Bt, z)||1.
(10)

4. Experiments
We evaluate Hyper-LifelongGAN under two settings: (1)

paired image generation, and (2) unpaired image genera-
tion. First, ablation studies on the number of base filters
K, different types of input data for knowledge distillation
and model components are conducted. Then we compare
our model with 5 baselines, including the state-of-the-art
approaches LifelongGAN [41] and PiggybackGAN [40].

Training Details. All the generative models are trained on
images of size 128×128. We use the Tensorflow [1] frame-
work with Adam optimizer [20]. The loss weight for knowl-
edge distillation β is set to 100.0 for all experiments. For
Hyper-LifelongGAN and all baseline methods, we use the
Resnet generator [19, 42] with 6 residual blocks. The length
of random noise z is set to 64, the task specific filter genera-
tor is a MLP with hidden layer of size 64 in all experiments.

Baseline Models. We compare Hyper-LifelongGAN to the
following baseline models: (a) Hyper-Full: The model is
trained on single task, the generator is decomposed into the
base filter generator and the weight matrix. (b) Full: The
model is trained on single task, and the generator consists
of conventional convolutional filters. (c) Sequential Fine-
tuning (SFT): The model is fine-tuned in a sequential man-
ner, with parameters initialized from the model trained/fine-
tuned on the previous task. (d) PiggybackGAN: We trained
PiggybackGAN [40] with λ = 0.5 in all experiments.
(d) LifelongGAN++: We propose an improved Lifelong-
GAN [41] baseline, using task-conditional instance normal-
ization as Hyper-LifelongGAN for more fair comparisons.

Quantitative Metrics. Two metrics Acc and Frchet Incep-
tion Distance (FID) [14] are used to evaluate the generation
quality. Acc is the classification accuracy of the classifier
trained on real images and evaluated on generated images
(higher Acc indicates better generation results). FID is an
extensively used metric to compare the statistics of gener-



ated images to the ground-truth images (lower FID indicates
higher generation quality).

4.1. Paired Image-conditioned Generation

We first demonstrate the effectiveness of Hyper-
LifelongGAN on a sequence of 4 paired image generation
tasks on challenging datasets with large variations across
different modalities [9, 17, 31, 38]. The first task is segmen-
tations → street photos, the second task is maps → aerial
photos, the third task is semantic labels→ facades, and the
fourth task is edges→ handbag photos.

Ablation study on the base filter size K. First we con-
duct an ablation study on the choice of different values of
K, which determines the number of additional parameters
needed for each subsequent task. As observed from the
quantitative result in Table 1, the model performs best when
K = 7. Therefore, K is set to 7 in all later experiments.

K=3 K=5 K=7

Acc 66.00 76.60 75.40
FID 72.96 72.25 57.58

Table 1: Ablation study on K. Different models are trained
and evaluated on the initial tasks cityscapes, and corre-
sponding Acc and FID are reported.

Ablation study on the data for knowledge distillation.
We explored three types of inputs for computing the knowl-
edge distillation loss Lt

distill, which are listed below.
(1) Unswap. Conditional image At is inputted to the

model for computing both the distillation loss Lt
distill and

the current task loss Lt
task.

(2) Swap. When computing the losses Lt
distill and Lt

task,
conditional image and real image are swapped. Namely real
image Bt is used as input for computing the distillation loss
Lt
distill and conditional image At is used as input for com-

puting the current task loss Lt
task.

(3) Random noise. Random noise is sampled and in-
putted to the model for computing the distillation loss
Lt
distill, and conditional image At is used as input for com-

puting the current task loss Lt
task.

It is observed from Table 2 that swapping conditional im-
age and real image for computing the two losses Lt

distill and
Lt
task provides best results as it avoids the conflicting train-

ing objectives. And unlike random noise, it provides inputs
with variations across different modalities, which could be
beneficial for lifelong learning. In all later experiments, we
adopt the swapping strategy.

Ablation study on the model components. We also
conduct an ablation study on the model components as
shown in Table 3, to test whether each component of
our model is necessary. Task specific base filters denotes

random
noise

unswap
(At)

swap
(Bt)

Acc 91.92 91.27 92.55
FID 110.84 118.98 101.43

Table 2: Ablation study on the data for knowledge distilla-
tion. Different models are trained and evaluated on all tasks,
average Acc and FID score over all 4 tasks are reported.

whether there is a separate set of base filters for each task.
Dynamic base filters denotes whether the base filters are
dynamic (generated by filter generators). Coeff denotes
whether task specific coefficients are used. For instance, the
first row in Table 3 refers to the baseline that the base filters
are generated using hypernetworks and are shared across all
tasks, and coefficients are not adopted.

dynamic
base filters

task specific
base filters coeff Acc FID

7 7 7 89.58 137.99
3 7 7 89.60 114.73
3 3 7 91.77 105.42
3 3 3 92.55 101.43

Table 3: Ablation study on model components. Different
models are trained and evaluated on all tasks, average Acc
and FID score over all 4 tasks are reported.

Comparison with SOTA methods and baselines. We
compare Hyper-LifelongGAN with two most recent state-
of-the-art approaches PiggybackGAN [40] and an improved
version of LifelongGAN [41], and three baselines Hyper-
Full, Full, and Sequential Fine-tuning (SFT). Baseline Full
is provided since it serves as the “upper bound” approach
for LifelongGAN++ and PiggybackGAN, both of which
are built on the conventional convolutional filters as in
Pix2Pix [17] as the Full model.

The visualization of images generated from all ap-
proaches are shown in Figure 3 and the quantitative eval-
uations of all approaches are summarized in Table 4. It
is observed that the sequentially fine-tuned model suffers
catastrophic forgetting: after the final task is learned, it
completely forgets all previous tasks and can only generate
images with edges2handbags-like patterns. Both Lifelong-
GAN++ and PiggybackGAN can remember previous tasks
while learning the new task. However, LifelongGAN++
cannot learn the new task well while preserving the per-
formance of previous tasks, and the performance of previ-
ous tasks may degrade while adapting the model to the new
task. Though PiggybackGAN achieves a performance on
par with the Full model, it introduces millions of additional
parameters for each new task. While Hyper-LifelongGAN
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Figure 3: Visualizations of images generated from different approaches for paired image-conditioned generation. Sequential
Fine-tuning suffers from catastrophic forgetting: when we add new tasks, the network forgets how to perform previous
tasks. Hyper-LifelongGAN generates high quality images for both previous tasks and the new task. It can well preserve the
knowledge from previous tasks while learning the current task well at a low memory requirement.

Hyper
Full

Hyper
LifelongGAN SFT

Acc 90.30 92.55 25.46
FID 100.53 101.43 250.37

Full LifelongGAN++ PiggybackGAN

Acc 89.42 89.58 88.53
FID 126.01 137.99 128.23

Table 4: Quantitative evaluation among different ap-
proaches for continual learning of paired image-conditioned
generation tasks. Different models are trained and evaluated
on all tasks, average Acc and FID score over all 4 tasks are
reported.

can better preserve or even increase the generation quality
of given tasks (e.g. cityscapes and maps) at a low memory
requirement: for most layers in Hyper-LifelongGAN (be-
sides the first and the last layer), ∼8k parameters are intro-
duced for each new task.

4.2. Unpaired Image-conditioned Generation

We also apply Hyper-LifelongGAN to another challeng-
ing scenario: unpaired image-conditioned generation, trans-
lating images from domain A to domain B and the corre-
spondence between domain A and domain B does not exist.

We explored a special situation where two tasks in a

given sequence share the same input domain but have dif-
ferent output domains, e.g. T1 is Photo→ Monet Paintings
and T2 is Photo→ Ukiyo-e Paintings. The training goals of
the two tasks completely conflicts each other: the inputs are
exactly the same while output are different. The goal is to
verify whether Hyper-LifelongGAN is generic and power-
ful enough to handle this special case well.

Comparison with SOTA methods and baselines.
Same as paired image-conditioned generation, we compare
Hyper-LifelongGAN with two most recent state-of-the-art
approaches PiggybackGAN [40] and an improved version
of LifelongGAN [41], and three baselines Hyper-Full, Full,
and Sequential Fine-tuning (SFT). Baseline Full is provided
since it serves as the “upper bound” approach for Lifelong-
GAN++ and PiggybackGAN, both of which are built on the
conventional convolutional filters as in CycleGAN [42] as
the Full model.

The visualization of images generated from all ap-
proaches are shown in Figure 4 and the quantitative eval-
uations of all approaches are summarized in Table 6. Since
the two tasks share the same input space, though SFT can
generate realistic images depicting the correct contents, it
can only generate images with Ukiyoe style and completely
forgets the Monet style learned in the initial task. Both
LifelongGAN++ and PiggybackGAN can generating im-
ages with Monet and Ukiyoe styles. However, the smaller
gap between Hyper-LifelongGAN and Hyper-Full indicates
that Hyper-LifelongGAN can better preserve knowledge ac-



Hyper-Full
Hyper-

LifelongGAN Full
Lifelong-
GAN++

Piggyback-
GAN SFT

Task 1 6.27M 6.27M 7.84M 7.84M 7.84M 6.27M

Task 2 12.54M 6.46M 15.68M 7.85M 12.22M 6.27M

Additional 6.27M 0.19M 7.84M 0.01M 4.38M 0M

Table 5: The number of parameters of each model. This table shows the size of the generator for unpaired generation.
Additional parameters needed for each subsequent task of each model are shown in the last row.

Hyper Full Full SFTGround-truth
domain B generated images generated images generated images
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PiggybackGAN
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Figure 4: Visualizations of images generated from different approaches for unpaired image-conditioned generation. Sequen-
tial Fine-tuning suffers from catastrophic forgetting: when learning the Ukiyoe style, it forgets the Monet style. Hyper-
LifelongGAN generates high quality images depicting correct styles for both tasks. It can well preserve the knowledge from
previous tasks while learning the current task well at a low memory requirement.

Hyper
Full

Hyper
LifelongGAN SFT

Acc 72.90 73.30 50.00
FID 98.95 96.79 139.03

Full LifelongGAN++ PiggybackGAN

Acc 72.30 70.17 70.51
FID 102.95 110.60 104.51

Table 6: Quantitative evaluation among different ap-
proaches for continual learning of unpaired image-
conditioned generation tasks. Different models are trained
and evaluated on all tasks, average Acc and FID score over
all 2 tasks are reported.

quired from previous tasks and learn the current task well.
With a freezed weights of previous task, PiggybackGAN is
able to maintain the exact performance for previous tasks.
However, as observed from Table 6, it is possible for Hyper-
LifelongGAN to improve the generation quality compared
with separate models trained for each task.

Parameter efficiency. The parameter efficiency of dif-
ferent models for unpaired generation are shown in Table 5.
Hyper-LifelongGAN requires additional 0.19M parameters
for each new task. When computing distillation loss, restor-

ing previous model also requires additional 0.19M param-
eters. However, once the model is learned, previous model
can be discarded. Hyper-LifelongGAN is more scalable
since it can best maintain the generation quality at a low
cost of parameters.

5. Conclusion
A generic and scalable lifelong learning algorithm

Hyper-LifelongGAN for generative models is proposed in
this paper. It decomposes the conventional convolutional
filters into the dynamic task specific base filters and a de-
terministic generic weight matrix. Attributed to the novel
architecture, fine details in each task can be well captured
and learned, and information in previous tasks can be well
preserved. Moreover, since the weight matrix is shared
across all tasks and dynamic base filters in each layer can
be generated with just few thousand parameters, the mem-
ory requirement of Hyper-LifelongGAN is low. As a re-
sult, compared with previous state-of-the-art approaches,
Hyper-LifelongGAN is more scalable as it can generate
high quality images for all tasks at a low cost of parame-
ters. The proposed approach is validated on various image-
conditioned generation tasks across different domains, and
the qualitative and quantitative results are provided to show
that Hyper-LifelongGAN addresses catastrophic forgetting
effectively and efficiently.
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