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Abstract

Understanding the simultaneously very diverse and in-
tricately fine-grained set of possible human actions is a
critical open problem in computer vision. Manually label-
ing training videos is feasible for some action classes but
doesn’t scale to the full long-tailed distribution of actions. A
promising way to address this is to leverage noisy data from
web queries to learn new actions, using semi-supervised or
“webly-supervised” approaches. However, these methods
typically do not learn domain-specific knowledge, or rely on
iterative hand-tuned data labeling policies. In this work, we
instead propose a reinforcement learning-based formula-
tion for selecting the right examples for training a classifier
from noisy web search results. Our method uses Q-learning
to learn a data labeling policy on a small labeled training
dataset, and then uses this to automatically label noisy web
data for new visual concepts. Experiments on the challeng-
ing Sports-1M action recognition benchmark as well as on
additional fine-grained and newly emerging action classes
demonstrate that our method is able to learn good labeling
policies for noisy data and use this to learn accurate visual
concept classifiers.

1. Introduction
Humans are a central part of many visual scenes, and un-

derstanding human actions in videos is an important prob-
lem in computer vision. However, a key challenge in action
recognition is scaling to the long tail of actions. In many
practical applications, we would like to quickly and cheaply
learn classifiers for new target actions where annotations are
scarce, e.g. fine-grained, rare or niche classes. Manually
annotating data for every new action becomes impossible,
so there is a need for methods that can automatically learn
from readily available albeit noisy data sources.

A promising approach is to leverage noisy data from web
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Figure 1: Our model uses a set of annotated data to learn a
policy for how to label data for new, unseen classes. This
enables learning domain-specific knowledge and how to se-
lect diverse exemplars while avoiding semantic drift. For
example, it can learn from training data that human motion
cues are important for actions involving animals (e.g. “rid-
ing animals”) while animal appearance is not. This knowl-
edge can be applied at test time to label noisy data for new
classes such as “feeding animals”, while traditional semi-
supervised methods would label based on visual similarity.

queries. Training models for new classes using the data re-
turned by web queries has been proposed as an alternative
to expensive manual annotation [7, 8, 19, 28]. Methods
for automated labeling of new classes include traditional
semi-supervised learning approaches [14, 33, 34] as well
as webly-supervised approaches [7, 8, 19]. However, these
methods typically rely on iterative hand-tuned data label-
ing policies. This makes it difficult to dynamically manage
the risk trade-off between exemplar diversity and semantic
drift. Going further, as a result these methods typically can-
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not learn domain-specific knowledge. For example, when
learning an action recognition model from a set of videos
returned by YouTube queries, videos prominently featuring
humans are more likely to be positives while those with-
out are more likely to be noise; this intuition is difficult to
manually quantify and encode. Even more, when learning
an animal-related action such as “feeding animals”, videos
containing the action with different animals are likely to be
useful positives even though their visual appearance may be
different (Fig. 1). Such diverse class-conditional data selec-
tion policies are impossible to manually encode. This in-
tuition inspires our work on learning data selection policies
for noisy web search results.

Our key insight is that good data labeling policies can
be learned from existing manually annotated datasets. In-
tuitively, a good policy labels noisy data in a way where a
classifier trained on the labels would achieve high classifi-
cation accuracy on a manually annotated held-out set. Al-
though data labeling is a non-differentiable action, this can
be naturally achieved in a reinforcement learning setting,
where actions correspond to labeling of examples and the
reward is the effect on downstream classifier accuracy.

Concretely, we introduce a joint formulation of a Q-
learning agent [29] and a class recognition model. In con-
trast to related webly-supervised approaches [7, 19], the
data collection and classifier training steps are not disjoint
but rather integrated into a single unified framework. The
agent selects web search examples to label as positives,
which are then used to train the recognition model. A sig-
nificant challenge is the choice of the state representation,
and we introduce a novel representation based on the distri-
bution of classifier scores output by the recognition model.
At training time, the model uses a dataset of labeled train-
ing classes to learn a data labeling policy, and at test time
the model can use this policy to label noisy web data for
new unseen classes.

In summary, our main contribution is a principled formu-
lation for learning how to label noisy web data, using a re-
inforcement learning framework. To enable this, we also in-
troduce a novel state representation in terms of the classifier
score distributions from a jointly trained recognition model.
We demonstrate our approach first in the controlled setting
of MNIST, then on the large-scale Sports-1M video bench-
mark [16]. Finally, we show that our method can be used for
labeling newly emerging and fine-grained categories where
annotated data is scarce.

2. Related work
The difficulty of building large-scale annotated datasets

has inspired methods such as [5, 7, 6, 12, 19, 8, 28, 21]
which attempts to learn visual (or text [4]) models from
noisy web-search results. Such methods usually focus on it-
eratively gathering examples and using them to improve the

visual classifier. Often specific constraints or hand-tuned
rules are used for data collection, and successive iterations
can cause the model to deviate from the initial concept. We
overcome these limitations by automatically learning robust
data collection policies resulting in accurate classifiers.

The task of semi-supervised learning also works with
limited annotated examples. Popular approaches like trans-
ductive SVM [14], label spreading [33] and label propaga-
tion [34] induce labels for unannotated examples to explain
their distribution. Recent approaches [17, 20, 24, 25, 26, 30]
learn an embedding space which captures this distribu-
tion. However, these methods do not learn domain-specific
knowledge which can help in pruning noisy examples or
understanding the multiple subcategories within a class. In
contrast, our learned policies adjust for such biases in web-
examples of a specific domain.

Approaches like co-segmentation [2, 15], multiple in-
stance learning [1] and zero-shot learning [11, 23, 27, 31]
do incorporate domain-specific knowledge. However, un-
like our method they do not utilize the large amount of web-
search data available for test classes.

Our setup is similar in spirit to meta-learning [3, 10],
which attempts to identify both the correct learning algo-
rithm and the parameters required for high accuracy. How-
ever, we target a unique goal of building a good dataset for a
given class from a large set of noisy web-search examples.

Our key insight is that we can learn policies to directly
optimize our goal of choosing a positive set (nondifferen-
tiable actions) leading to an accurate visual classifier, by
formulating it in a reinforcement learning setup. We lever-
age recent advances that enable the use of deep neural net-
works as function approximators in deep Q-learning [22],
and which has shown successful performance in learning
policies for game-playing [22], large-scale control prob-
lems [9], and simple algorithms [32].

3. Method
The goal of our method is to automatically learn an ac-

curate classifier of a visual concept directly from noisy web
search results. We refer to these noisy search results as the
candidate set Dcand = {D1, . . . , DK}, and wish to select
a good subset of positives from Dcand. Such weakly super-
vised data typically contains diverse subclasses, and the key
challenge is to capture this diversity without succumbing to
semantic drift. These properties are difficult to objectively
quantify. Hence, we want a model which can learn them
from existing labeled datasets. One way to achieve this is
through an iterative strategy for positive selection, where
the model is aware of the positives chosen so far, so that
it can promote diversity in future selections. On the other
hand, it also needs to avoid semantic drift by being aware
of the remaining candidates and learning to estimate long-
term change in classifier accuracy. This can be elegantly
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Figure 2: Overview of our model. We learn a classifier for a given visual concept using a candidate set of examples obtained from web
search. At each time step t we use the Q-learning agent to select examples, e.g., DK , to add to our existing set of positive examples Dt−1

pos .
The examples are then used to train a visual classifier. The classifier both updates the agent’s state st+1 and provides a reward rt. At test
time the trained agent can be used to automatically select positive examples from web search results for any new visual concept.

achieved through a Q-learning formulation.
Hence, our model consists of two components as shown

in Fig. 2: (1) a classifier model trained using selected posi-
tive examples from the candidate set, and (2) a Q-learning
agent which repeatedly selects the positives from the candi-
date set to train the classifier model.

Note that the visual classes used for training and testing
our method are disjoint. For every visual class used during
training, in addition to the candidate set, we are also pro-
vided a reward set, which is a set of examples annotated
with the presence or absence of the target class. The reward
set is used to evaluate our model’s ability to produce a good
classifier from the candidate set. At test time, we are given
just the candidate set for new visual classes.

3.1. Classifier model

The classifier model corresponds to the current visual
class considered during a data collection episode and is
trained simultaneously with the agent’s data collection pol-
icy. At the beginning of an episode, the classifier is
seeded with a small set of S positive examples Dseed =
{x1, ..., xS}, as well as a set of negative examples Dneg =
{x1, ..., xN}. In the case of a video search-engine, we as-
sume that the top few retrieved examples are of high enough
quality to serve as the seed positives. A random collection
of videos from multiple unrelated searches are used to con-
struct the negative set. At each time step t, the Q-learning
agent makes a selection at corresponding to examples Dat

to be removed from the candidate set Dcand and added to
the positive training set. The classifier is then trained to dis-
tinguish between Dpos = {Dseed ∪ Da1

∪ ... ∪ Dat
} and

Dneg . The classifier is treated as a black box by the agent;
in our experiments, we use a multi-layer perceptron.

3.2. Q-learning agent

The core of our model is a Q-learning agent. Each
episode observed by the agent corresponds to data collec-
tion for a specific class. At each timestep t, the agent ob-
serves the current state st, and selects an action at from a
discrete set of actions A = {1, ...,K}. The action updates
the classifier as in Sec. 3.1, and the agent receives a reward
rt and the next state observation st+1. The agent’s goal
at each timestep is to choose the action that maximizes the
future discounted reward Rt =

∑T
t′=t γ

t′−trt′ , where an
episode terminates at time T and γ is the discount factor.

There are several key decisions: (1) How to encode the
current state of the agent? (2) How to translate this state
to a Q-value which can inform the agent’s action? (3) How
to formulate a reward function that incentivizes the agent to
select optimal examples from the candidate set?
State representation. Our insight in formulating the state
representation is that in order to improve the visual classi-
fier, the best examples to use may not be the ones that are
the strongest positives according to the current classifier. In-
stead, it may be better to add some examples with diversity
that increase entropy in the positive set. However, too much
diversity will cause semantic drift. In order to reason about
this, the agent needs to fully understand the distribution of
data in the previously selected positive examples Dpos, in
the negative setDneg , and in the remaining noisy setDcand.

We therefore formulate the agent’s state using the distri-
bution of the classifier scores. Concretely, the state repre-
sentation is s = {Hpos, Hneg, {HD1 , ...,HDK

}, P} where
Hpos, Hneg, {HD1

, ...,HDK
} are histograms of classifier

scores for the positive set, the negative set, and each can-
didate subset, respectively. P is the proportion of desired
number of positives already obtained. The histograms cap-
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Figure 3: The Q-network, which at each time-step chooses
a subset of examples from D1, . . . , DK . The state repre-
sentation is s = {Hpos, Hneg, {HD1 , ..., HDK}, P} where
Hpos, Hneg, {HD1 , ..., HDK} are histograms of classifier scores
for the positive set, the negative set, and each candidate subset. P
is the proportion of desired number of positives already obtained.

Generally correct and similar Generally correct and dissimilar

Generally incorrect and similar Generally incorrect and dissimilar

Figure 4: Histograms of classifiers scores for several query buck-
ets with different characteristics, for an example class “Netball”.
Example videos from each query are also shown. Buckets with
correct vs. incorrect videos have high vs. low scores, while ap-
pearance diversity is reflected in histogram peakiness.

ture the diversity and “prototypicality” of each set (Fig. 4).
Q-network. The agent takes an action at at time t us-
ing a policy at = maxaQ(st, a), where st is the state
representation above. The Q-value Q(st, a) is determined
by a neural network as illustrated in Fig. 3. Concretely,
αa = φ (Hpos, Hneg, HDa

; θ) where φ(.) is a multi-layer
perceptron. We use Q(s, a) = softmax(αa; τ) where τ is a
temperature parameter and helped performance in practice.
Reward function. The agent is incentivized to select the
optimal examples from Dcand for training a good classifier.
We capture this intuition by setting the reward at time t to
be the change in the classifier’s accuracy after updating its
positive set with the newly chosen examplesDat . Accuracy
is computed on the held-out annotated data Dreward. This
reward is only available during training.

3.3. Training and testing

We train the agent using Q-learning [29], a standard re-
inforcement learning algorithm that can be used to learn
policies for an agent interacting with an environment. In
our case the environment is the visual classifier model.
Each episode during training corresponds to a specific vi-
sual class, where the agent selects the positive examples of

the class from a collection of web-search videos.
The Q-network parameters θ are learned by optimizing:

Li(θi) = Es,a

[
(V (θi−1)−Q(s, a; θi))

2] , (1)

where i is an iteration of optimization and

V (θi−1) = Es′

[
r + γmax

a′
Q(s′, a′; θi−1)|s, a

]
. (2)

We optimize it using stochastic gradient descent and ex-
perience replay, with random minibatches of past experi-
ence (st, at, rt, st+1) sampled for training.

The agent is trained to learn data collection policies
which can generalize to unseen visual classes. At test time,
the agent and the classifier are again run simultaneously on
Dcand for a new class, but without access to any labeled ex-
amplesDreward. The agent selects videos using the learned
greedy policy: at = maxaQ(st, a; θ).

4. Experiments
We evaluate our method in three settings: (1) Noisy

MNIST digit classification, where we add noise and diver-
sity to MNIST [18] to study our method in a controlled set-
ting, (2) challenging Sports-1M [16] action classification
for videos in the wild, and (3) newly emerging and fine-
grained classes where annotated data is scarce.
Setup. We evaluate our model on test classes unseen dur-
ing training. For every test class, the model selects posi-
tive examples from Dcand and uses them to train a 1-vs-all
classifier. We report the mean average precision (mAP) of
this classifier on a manually annotated test set. We con-
sider three scenarios, where the maximum number of pos-
itive examples chosen from Dcand is limited to 60, 80 and
100 respectively. This allows us to measure performance
trade-offs at different budgets. Classifiers are initialized
with Dseed containing the first 10 web-search results.
Baselines. We compare our model with multiple baselines:

1. Seed. Support vector machine (SVM) learned only
from the positive Dseed.

2. Label propagation. Semi-supervised model from [34]
used in an inductive setting to learn from the test
Dcand and classify the labeled test set.

3. Label spreading. Semi-supervised model from [33] in
an inductive setting.

4. TSVM. Transductive support vector machine from
[14], which learns a classifier fromDcand of test class,
and cross-validated using Dreward.

5. Greedy classifier. An iterative model similar in spirit
to [7, 19] that alternates between greedily selecting
queries with the highest-scoring contents according to
a classifier, and updating the classifier with the newly
labeled examples. We use the same classifier model as
in our method. On Sports-1M we compare with two



Figure 5: Ten sample query subsets in Noisy MNIST for the digit 7. Top row. Different translation and rotation transformations. Bottom
row. The two leftmost queries have different amounts of noise, the center one is a mixture bucket, and the rightmost two are different digits.
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Figure 6: Positive query subsets selected using our method versus the greedy classifier baseline. Subsets chosen by each method are
shown from left to right. Top example. The greedy classifier chooses queries with very similar content that would not be useful additional
positives, whereas our model chooses diverse queries representing different subconcepts of translation and rotation. Bottom example.
The greedy classifier chooses subsets for the positive digit 9 that include increasingly more noise, and eventually chooses a subset with
similar-looking 7s that causes it to begin selecting digit 7 subsets instead. In contrast, our model learns policies that are robust to semantic
drift.

additional variants: Greedy-Clustering, which explic-
itly achieves diversity by clustering labeled positives
and ensuring all clusters are represented in new se-
lections; and Greedy-KL which balances diversity and
drift by selecting queries whose classifier score distri-
bution most closely achieves a ratio of 0.6 (determined
through cross-validation) for KL-divergence with the
classifier score distribution of Dpos vs. of Dneg .

Implementation Details. Our Q-network maps 10-d input
histograms in the state representation to a common embed-
ding space of 5 dimensions, with a further hidden layer of
64 units on top. Each episode begins with a seed set of 10
labeled examples, and at training time the network chooses
a maximum of 100 total labeled examples needed to train a
classifier. The classifier model is a 3-layer multi-layer per-
ceptron with 256 units in each hidden layer, on top of 1000-
d ResNet [13] features extracted and then pooled from 10
uniformly sampled frames per video for Sports1M, and on
top of raw 784-d pixels for Noisy MNIST. Training con-
sists of 500 episodes for Sports1M, and 200 episodes for
Noisy MNIST. The Q-network is trained using experience
replay, with mini-batch size 64 and base learning rate 0.01.
A learning update for the agent is taken every 4 iterations,
and the target network is softly updated every iteration. A
temperature of τ = 100 was used in the Q-network.

Digit Bud-
get

Seed Label
prop.

Label
spread.

TSVM Greedy Ours

60 42.6 37.9 41.1 39.5 43.1 60.9
6 80 42.6 40.8 45.6 44.4 43.2 61.3

100 42.6 42.2 46.7 46.2 42.4 71.4

60 48.4 51.1 48.6 46.1 49.7 55.1
7 80 48.4 48.8 48.5 42.6 48.5 57.6

100 48.4 48.1 46.6 39.7 47.4 55.7

60 39.1 35.0 35.2 41.2 38.3 56.2
8 80 39.1 40.0 34.1 39.6 39.6 55.6

100 39.1 42.0 30.2 40.8 38.0 55.5

60 37.9 37.5 36.5 41.4 52.4 52.4
9 80 37.9 37.9 37.4 38.9 53.5 53.5

100 37.9 38.0 37.6 39.5 55.7 55.7

60 42.0 40.4 40.3 42.1 43.4 56.1
All 80 42.0 41.9 41.4 41.4 43.4 57.0

100 42.0 42.6 40.3 41.5 42.3 59.5

Table 1: AP on Noisy MNIST, with budgets of 60, 80 and 100
corresponding to the numbers of positives selected from Dcand.

4.1. Noisy MNIST digit classification

We first evaluate our model in a simulation environment
on MNIST digit classification [18], where we can introduce
noise and subconcept diversity in a controlled manner. The
policies for digit selection are learned from the images of
six digits 0− 5 and tested on the other four digits 6− 9.



Setup. For every digit class, example images are randomly
split into two sets Sc and Sr of 500 images each. The
Dcand set is constructed using Sc by simulating both the
sub-concept variation and the noise present in web search
results. Concretely, the Sc examples are further split into
10 different query subsets, each containing 5 sets of 10 im-
ages each. Controlled noise is then added to each query
subset: either a specific transformation of the digit (trans-
lation and/or rotation), noise from mixed digits, or a dif-
ferent digit. Examples of query subsets for Dcand for the
digit 7 are shown in Fig. 5. The Dreward set for a digit
is constructed from Sr by applying translation and/or rota-
tion similar to Dcand, combined with 1000 negative images
sampled from other digits.
Training. Policies were learned on the Dcand set of the
training digits to optimize classifier accuracy on the anno-
tated Dreward examples. Each episode during training re-
quires the model to pick the best 10 query subsets from 100
randomly sampled query subsets of the corresponding can-
didate set. Dneg is constructed by randomly sampling 500
negative examples of other digits. The model parameters
were selected by 3-fold cross validation on training digits.
Testing. The Q-network is used to select a set of 60, 80
or 100 examples from the Dcand set of the test digits. The
classifier is trained with the selected positives and a set of
negatives sampled from Dcand of other digits. The same
Dcand examples are used by all baseline methods as well.
Classifier accuracy is evaluated on the annotated test set.
Results. Table 1 shows quantitative results from our
method compared to the baselines, at varying quantities of
positive examples chosen by the methods. Our method out-
performs all other baselines at all levels by at least 12.7%
mAP. Interestingly, as more positive examples are collected
(from 60 to 100), baselines typically improve only slightly
or even drop in accuracy, whereas our model consistently
improves. Traditional semi-supervised methods such as
TSVM, label propagation and spreading are designed to se-
lect examples similar to the seed set and thus are unable to
cope with the large subclass variations.

Qualitative comparison of our method with the strongest
greedy classifier baseline is shown in Fig. 6. It illustrates
two major pitfalls of greedy methods: (1) in the first exam-
ple of the digit 6, the greedy classifier selects images overly
similar to the seed-set, to the point of including noise, and
(2) in the second example of the digit 9, it gets carried away
by semantic drift. Our method is more robust, opting for
a diverse selection of subconcepts. It is able to learn that
rotations and translations are useful positives for the do-
main of digits. Interestingly, it tends to gradually expand
its understanding of subconcepts, selecting subtle transfor-
mations first before more extreme ones. This flexibility to
trade-off variety with intra-class similarity allows our model
to outperform other methods.

Method Budget-60 Budget-80 Budget-100

Seed 64.3 64.3 64.3
Label propagation 65.4 65.4 67.2
Label spreading 65.4 66.6 67.3
TSVM 71.6 72.7 73.6
Greedy 71.7 73.8 74.8
Greedy-clustering 72.3 73.2 74.3
Greedy-KL 74.1 74.7 74.7

Ours 75.4 76.2 77.0

Table 2: mAP on Sports-1M with different budgets for the num-
ber of selected positive examples.

4.2. Sports-1M action recognition

We evaluate our method in a real-world setting where
we want to classify the 487 human actions in the Sports-
1M video dataset [16]. Collecting high-quality video ex-
amples for human actions can be very laborious and ex-
pensive. Hence, we wish to learn classifiers using only the
videos returned by a web search engine without the need for
human annotation. The classifiers are trained on noisy ex-
amples from YouTube and tested on Sports-1M test videos
with ground-truth annotations. We remove any overlapping
videos between Sports-1M and YouTube search results to
avoid mixing of training and test data. Throughout this sec-
tion, we ignore the Sports-1M training videos.

We use 300 classes for training, 105 classes for test-
ing and the remaining classes for validation, and note that
this task is fundamentally different from standard 487-way
Sports-1M classification. There is no intersection between
the training, testing and validation classes.
Setup. The videos returned by YouTube query search were
used to construct the candidate sets for both training and test
classes. We constructed 30 different query expansions for
each class using the YouTube query suggestion feature. The
top 30 videos returned from each query were then split into
6 different pages of 5 videos each. 20 queries are sampled
for each episode during training, resulting in candidate sets
of 600 videos per action class split into 120 different sub-
sets. The annotated Sports-1M videos of the training classes
serve as reward sets used to train the Q-network. Sports-1M
videos of test classes are used for evaluation.
Training. In each training episode, the Q-network policies
select 20 subsets (100 videos) from the 120 different query
splits of the candidate-set. At each iteration of the episode,
the selected positive examples are combined with 500 ran-
dom examples from other classes to update the classifier.
Testing and validation. The model parameters were cho-
sen by cross-validation on the validation classes. The final
policies are used to select positive examples of test classes
from the corresponding YouTube search results. These
videos are used to train separate 1-vs-all classifiers for each
test class. Each classifier is then evaluated on the annotated
positive examples of the corresponding class and 1000 neg-
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Figure 7: Comparison of positive query subsets selected using our method versus the greedy classifier baseline, for two Sports-1M test
classes. Rather than show all 100 selected videos, we highlight interesting differences and show the remaining in Appendix. Each row
shows a selected query subset (query phrase and corresponding 5 videos), with the numerical position of the selection out of 100. The
first row shows seed videos. Top example. The greedy classifier chooses many similar-looking examples, while our method learns that
examples of the action in different environments are useful positives. Bottom example. The greedy classifier drifts from bobsleigh to video
games, while our method is robust to semantic drift and selects useful subcategories of bobsleigh videos such as crashes and pov.

ative examples sampled from videos of other classes.

Results. Table 2 compares our model with baselines. Our
model outperforms at all budgets, and at Budget-100 by
2.2% mAP. The margin over the Greedy baseline is higher
at smaller budgets, indicating that our model more quickly
selects the best positive examples. While Greedy-clustering
and Greedy-KL improve over Greedy at small budgets, they
perform worse at Budget-100. This illustrates that while
using heuristics to explicitly balance diversity and drift can
help early on, it is hard to ultimately avoid noise.

Fig. 7 shows positive examples selected by our method
compared to the greedy classifier. In the top example of net-
ball, the greedy classifier is overly conservative and selects
positives very similar to existing positives, which does not
improve classifier accuracy. On the other hand, our model
learns domain-specific knowledge that examples of the tar-

get action in visually different environments are useful. In
the bottom example of bobsleigh, the greedy classifier suf-
fers from the opposite problem: after the classifier selects
some queries containing video games, it drifts to queries
with more and more video games. In contrast, our model is
more robust and returns to clean bobsleigh videos with min-
imal drift. Furthermore, it selects different subcategories of
bobsleigh videos: crash videos, and pov videos, which are
useful for training a classifier.

4.3. Long-tail action labeling

We show examples of the policy we learned for Sports-
1M on new action classes for which annotated data does
not exist in Fig. 8. We compare our learned policy vs. the
greedy classifier, for a recent societal-concept: “Taking a
selfie”, and a fine-grained class: “Olympic gymnastics”.
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Figure 8: Comparison of positive query subsets selected using our method versus the greedy classifier baseline, for two long-tail classes.
See Fig. 7 caption for figure format. Top example. The greedy classifier selects many similar-looking examples of taking a selfie, while
our method learns domain-specific knowledge that positives in different environments are more useful, e.g. with a tornado or underwater.
Bottom example. The greedy classifier selects similar examples of gymnastics, whereas our method selects visually distinct subcategories.

The videos selected in Fig. 8 for “Taking a selfie” show
that the policy again utilizes domain-specific knowledge
that an action in different environments is useful for posi-
tive examples: e.g. in front of a volcano, and underwater,
even though these have diverse visual appearance. In con-
trast, the greedy classifier tends to select videos that look
very similar to the seed videos. The videos selected for
“Olympic gymnastics” demonstrate that the policy selects
visually different subcategories: gymnastics with hoops,
and gymnastics with acrobatics.

Table 3 measures the diversity and correctness of our
model versus the greedy model. Query recall is the num-
ber of correct queries which contributed to the selected pos-
itives. The correct queries were manually annotated. Our
model selects positives from more queries promoting higher
diversity. Similarly, our model also avoids noisy exam-
ples as seen from video recall: the number of true-positive
videos included in the 100 videos selected by each model.

Query recall Video recall

Class Greedy Ours Greedy Ours

Taking a selfie 6/16 9/16 75% 90%
Olympic gymnastics 7/18 10/18 76% 82%

Table 3: Query and video recall of positive videos for two long-
tail classes, for our method vs. the greedy classifier. Our method
has higher recall of true-positive queries and videos, showing that
it selects diverse subconcepts while avoiding semantic drift.

5. Conclusion

In conclusion, we have introduced a principled, rein-
forcement learning-based formulation for learning how to
label noisy web data. We show that our method is able
to learn domain-specific knowledge, and label data for new
classes in a way that achieves diversity while avoiding se-
mantic drift. We demonstrate our method first in the con-
trolled setting of MNIST, then on large-scale Sports-1M,
and finally on newly emerging and fine-grained classes.
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