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Abstract. In this paper, we address the problem of efficient human ac-
tion detection with only one template. We choose the standard sliding-
window approach to scan the template video against test videos, and
the template video is represented by patch-based motion features. Us-
ing generic knowledge learnt from previous training sets, we weight the
patches on the template video, by a transferable distance function. Based
on the patch weighting, we propose a cascade structure which can effi-
ciently scan the template video over test videos. Our method is evalu-
ated on a human action dataset with cluttered background, and a ballet
video with complex human actions. The experimental results show that
our cascade structure not only achieves very reliable detection, but also
can significantly improve the efficiency of patch-based human action de-
tection, with an order of magnitude improvement in efficiency.

1 Introduction

This paper considers the problem of human action detection. Given a template
video clip containing an actor performing a particular action, we would like
to localize similar actions in our test videos. A closely related problem is action
recognition, whose primary goal is to classify a video sequence into one of several
pre-defined categories. The goal of action detection is distinct from that of action
recognition — we would like to localize the specific position (in both time and
space) of the target action in a video, rather than getting a single class label. In
particular, we are interested in the scenario where the target action is specified
using a single video clip. This is a natural and realistic scenario in many real-
world applications, e.g., surveillance, video retrieval, etc.

There is a large literature on action recognition and detection. Moeslund et
al. [1] provide a survey of the literature on action recognition. We only give a brief
review of the closely related work here. Niebles et al. [2] run an interest point
detector over video sequences, then apply latent topic models to categorize and
localize human actions. Ke et al. [3] apply the AdaBoost learning framework
to the task of human action detection, and volumetric features are used for
efficient video analysis. Laptev and Pérez [4] use a similar boosted space-time
window classifier to localize human actions in movies. All these learning based



approaches heavily rely on a large number of training examples. However, in
many real-world applications, it is unrealistic to assume that we have access to
a large amount of training data. For example, in the context of example-based
video retrieval, we typically have only one short video clip submitted by the
user.

One example of action detection with only one template is the work of Shecht-
man and Irani [5]. They compute the distance between two videos by exhaus-
tively comparing patches centered around every space-time point. We use a sim-
ilar patch based matching method, but we weight patches by their saliency, lead-
ing to a more efficient algorithm. In [6], Ke et al. propose a template matching
scheme combined with a part based pictorial structure model to detect actions
in crowded scenes with only one template. The limitation of this work is that
one has to manually segment the parts (in space/time volumes), which can be
time-consuming.

In our previous work [7], a patch based matching scheme is used for action
recognition with a single clip as the template. We also propose a transferable dis-
tance function in [7] to weight those patches by their saliency. The transferable
distance function is learnt from previously training sets, and can be applied to
videos of new actions without further learning. The work presented here is based
on [7]. However, in this paper, our main goal is to address human action detec-
tion, which does not require the pre-processing human detection and tracking
step on test videos as [8,7]. The main contributions of this paper are two-fold, in
addressing the efficiency issues. First, we propose a variant of the motion feature
in Efros et al. [8] using a histogram representation. This feature representation
can be computed efficiently using integral images. Second, we propose a cas-
cade structure for action detection with only one template, which is based on
the transferable distance learning framework of [7], and significantly boosts the
efficiency of our approach.

2 Human Action Detection

Given a template action, the objective of human action detection is to localize
all similar actions in test videos. In this paper, we choose the standard sliding-
window approach, that is to slide the template action video clip T over all
locations on the test video V. The distance between T and V' at location [ is
denoted as D(T, L), where L is the video segment of V centered around location
[. An action is detected if the distance falls below a threshold. To compute
the distance D(T, L), we choose the patch-based action comparison approach
proposed in [7]. However, we represent the motion feature using a histogram of
four-channel motion flow, which enhances the efficiency of action detection.

2.1 Motion Feature

Our motion feature is a variant of the descriptor proposed by Efros et al. [§]
which has been widely used in action recognition. First, we compute the optical



flow at each frame, then split the optical flow vector field F into the horizontal
and vertical components, F,, and F,. They are further half-wave rectified into
four non-negative channels F, F,, FJ , I Then, those four channels are
blurred using a Gaussian kernel.

One of the limitations of this four-channel descriptor is its large size. For
a small 20 x 20 patch, the dimensionality of the four-channel descriptor is 4 x
20 x 20 = 1600. The distance between two feature vectors cannot be computed
efficiently with such a high dimensional feature. In this paper, we break the
patch into 4 x 4 cells. Each cell is represented by a four-bin histogram, where
each bin corresponds to one channel in the four-channel motion descriptor [8].
The value of each bin is the accumulation of the weighted votes of all pixels in
the cell. In the end, we will obtain a feature vector with dimensionality only 4 x
4 x 4 = 64. This motion feature is closely related to the histogram of optical flow
used in [4]. The similarity between two feature vectors can be computed using
normalized correlation or Euclidean distance. Moreover, to efficiently compute
feature vectors, the integral image representation [9] is used for each histogram
bin.

2.2 Patch based Action Comparison

For the task of action detection, when using only one template, generalization
is normally very difficult because of the intra-class variation among actors. In
order to alleviate the effect of this variation, Ke et al. [6] manually break the
template model into several parts over space and time. Instead, we use a simple
patch-based approach that requires no manual interaction.

Following the work of [7], we compute distance D(T, L) by comparing the
patches from two video segments T and L. Each frame is decomposed into a
number of 20 x 20 patches automatically, then D(T, L) is computed as follows:
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where t;s denotes the s-th patch on the template frame i, and ¢; denotes the r-
th patch on the test frame i. Ry is the corresponding search region of s-th patch.
M is the number of frames in a video segment. S is the total number of patches
on each frame. d(-, ) refers to the distance between two patches. For simplicity,
we ignore the action speed variation between people, and directly correspond
the frames from 7" to L in sequence. One could also apply dynamic program-
ming based approaches to find the frame correspondence and thus alleviate the
variation in speed.

3 Cascade Structure

As in most object detection tasks, e.g. face detection and car detection, hu-
man action detection is a rare event detection. Hence, when using a window-
scanning approach, it is important to efficiently reject the majority of negative



sub-windows. Viola and Jones [9] proposed a cascade structure in the AdaBoost
learning framework. Most of the negative sub-windows are rejected by simpler
detectors efficiently, and then more complex detectors are applied to achieve low
false positive rates. However, the training of boosted detectors requires a large
number of both positive and negative training samples. In the case of human
action detection, it is difficult and even impossible to collect such a large train-
ing set for any given action. In particular, in our scenario, only one template is
available for each action category.

In order to build a cascade structure with only one template, we use the
transferable distance function learning proposed in [7]. We first define the termi-
nology we will use. The source training set denotes the large dataset we already
have at hand, for example a standard benchmark dataset (e.g. KTH). The tem-
plate denotes the video we use to detect an action in test videos. Note that the
source training set does not contain the same action as the template. In this
section, we will review the learning of the transferable distance function, then
introduce the construction of the cascade structure.

3.1 Transferable Distance Function

This idea of knowledge transfer has been exploited in the context of object
recognition and identification [10,11]. In particular, Ferencz et al. [10] propose
to predict a patch’s saliency for object identification by its visual feature called
a hyper-feature. In human action recognition, we conjecture that there also ex-
ists a certain generic relationship between the saliency and the appearance of a
patch [7]. For example, “stretched-arm-like” and “stretched-leg-like” patches are
more likely to be salient than other patches. This generic relationship is “trans-
ferable”, and we can employ this knowledge for patch weighting of unknown
actions. In [7], we proposed the learning of a transferable distance function,
which can extract generic knowledge of patch weighting from previous training
sets, e.g. benchmark action datasets. When it is applied to unknown actions, the
algorithm will look for salient patches and assign them high weights, that are
also the parameters of the distance function for matching based recognition.

Given a patch i, the weight assigned to this patch is w;, and we represent the
hyper-feature of this patch as a |V]-dimensional vector f; based on a codebook
approach, where |V| is the codebook size. The j-th element of f; is set according
to the distance between the feature vector of this patch and the j-th visual
word. The feature vector of each patch consists of histogram of oriented gradient
(HOG) [12] and patch positions. Please refer to [7] for more details. We assume
that f; and w; have a linear relationship via the parameter P:

w; = (P - f;) (2)

Then we will have w = PTF, where each column of F denotes the hyper-feature
vector of a patch, Each element of w denotes the weight of a patch. The objective
is to learn P from the source training set. After the training, given any new action
video, even if its action does not exist in the source training set, we can compute
the weight of each patch of this video by Eqn. 2.



The learning of P follows the focal learning framework in [13]. The distance
function obtained by w = PTF will satisfy the constraints that the distance
between dissimilar actions is larger than similar actions by the margin 1, that is
(w; - (dy; —dix)) > 1, (PTFl- -(d;j —dsr)) > 1, where d;, is the distance vector
between the similar action 7 and k, and d;; is the distance vector between the
dissimilar action ¢ and j. The weights are enforced to be non-negative, (P-f,,) >
0. For simplicity, we replace d;; — djr as x;;;. The max-margin optimization
problem can be formulated as
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where ;1 is the slack variable and C' is the trade-off parameter, similar to those
in SVM. See [7] for more details about the solving of this optimization problem.

3.2 Construction of Cascade Structure

A key feature of the cascade structure is to use simpler but efficient detectors
at the early stage to reject most negative sub-windows. The learnt distance
function provides us a useful tool to obtain such a simple detector. After the
learning on the source training set, we are able to compute the weights (i.e.
saliency) of the patches on any given template action through Eqn. 2, and rank
these patches by their saliency. At the early stage of the cascade structure, for
the matching task, we can use only a subset of patches with high weights on the
template video. For example, we can choose only two patches from each template
frame with top-2 high wights at the first stage of the cascade structure. For a
template video with 25 frames, only 50 patches are used at the first stage, so
it could be very efficiently matched with all the sub-windows in test videos.
The majority of negative sub-windows can be discarded after this stage. For the
following stages, we can incrementally increase the number of patches utilized
in the template video, and all patches will be used at the final stage in order
to achieve an accurate matching. At the k-th stage of our cascade structure,
distance D*(T, L) is computed as:
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where EF is the set of effective patches on the i-th frame at the k-th stage, and
w;s is the weight assigned to the template patch ;.

In the cascade structure of [9], the detection and false positive rates of each
stage can be controlled using training and validation sets. However, in our sce-
nario, only one template video is available for each action category, and there is
no training dataset containing the same action as the template. Here we choose



a rather simple way to control the performance of each stage. The detection
threshold of a stage is set so that a certain number of sub-windows with high
matching distances will be discarded. The remaining sub-windows will be eval-
uated by the next stage of the cascade structure. An example of the cascade
structure is given in Fig. 1. Note that it is possible that early stages of the
cascade structure may have high false negative rates and thus decrease the per-
formance of whole structure. However, the experimental results in Section 4.2
demonstrate our cascade structure achieves similar results to the direct scanning
method without using a cascade, which implies the early stages of our cascade
structure can reliably keep the true positive sub-windows.
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Fig. 1. An example of the cascade structure. The red patches are the effective patches
on template frames. At the C1 stage, the top-2 patches of each frame with high weights
are used to match with the input sub-windows. At the C2 stage, top-5 patches are used
for matching. At the final stage, all patches are used.

4 Experiments

We evaluate our method on the cluttered human action dataset collected by Ke
et al. [6], and a ballet video sequence. We first review the human action datasets,
then present the experimental results.

4.1 Datasets

Weizmann Dataset [14]: The Weizmann human action dataset is a standard
benchmark human action dataset. It contains 93 sequences of nine actors per-
forming ten different actions. There are about 40—120 frames for each sequences.
This dataset is used as the source training set, so we choose the same figure-
centric representation as [7]. After computing the motion feature, we crop each
frame to 90 x 60 and put the human figure in the center of the frame.

Cluttered Human Action Dataset [6]: The cluttered human action dataset
contains not only cluttered static backgrounds, but also cluttered dynamic back-
grounds, such as moving cars and walking people. There are 48 videos containing
110 actions of interest. Each video contains approximately 300 — 800 frames with
resolution 120 x 160. Five types of actions are labeled: one-hand waving, two-
hand waving, picking-up, pushing an elevator button, and jumping-jacks.



4.2 Experiments on the cluttered action dataset

For human action detection on the cluttered dataset, we first choose one template
video for each labeled action event. Except for the action of pushing an elevator
button, we use the sequences of the actor ido from the Weizmann dataset as
templates. For the action of pushing an elevator button, we choose the template
provided by Ke et al. [6]. Note that this selection of template videos increases
the difficulty of the task since the template and test videos are captured under
different instructions. All template videos contains only 20—25 frames, i.e. 1—1.5
complete action cycles.

The figure-centric representation is applied to template videos and all tem-
plate frames are normalized to 90 x 60. Representative frames of template videos
are shown in Fig. 2. After computing motion features, each frame is decomposed
into 40 patches. The size of a patch is 20 x 20 and the length of the stride is 10.

Templates Example Detections
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Fig. 2. Action detection examples on the cluttered action dataset. Representative
frames of the template videos and the visualization of learnt weights are shown on
the left. The left bottom corner shows the color bar for the visualization. Correct
detection examples are shown on the right.

To meet the requirement of the transfer learning scenario, in our experiments,
the source training set does not contain the action of the template video. For ex-
ample, in the experimental step of jumping-jacks action, we remove the action of
jumping-jacks from the Weizmann dataset. Then the remaining sequences form
the source training set. After the training, we first compute hyper-features of
the template video. Then, we can obtain the distance function of the template
video through Eqn. 2. The detection of other actions follows the same experi-
mental setup. Note that for the experiment of each action, the source training
set does not contain the same action as template. The weights of the distance



function are visualized in Fig. 2. As we can see, the high weights (red patches)
are assigned to the salient parts, such as the stretched-arm, and bent-back.

After training, we can build the cascade structure based on the learnt distance
function. In the experiments, the cascade structure consists of four stages. At the
first stage, there are only two effective patches on each template frame. At this
stage, the template video is scanned across the test video. Subsequent locations
are obtained by shifting the template video either 5 pixels along the x or y axis,
or 5 frames along the time axis. Similar to [6], the template videos are matched
with the test video under a fixed scale. The speed of this stage is 20 times faster
than using all patches on the template video. After the first stage, 90% of the
sub-windows are set to be rejected. The second stage has five effective patches
on each frame, and 80% of the remaining sub-windows from last stage will be
rejected. For the third stage, ten patches on each frame are effective and 80%
of the sub-windows will be kept at this stage. All patches on the template video
are effective at the final stage. These parameters of the cascade structure are all
the same for the experiments of each action.
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Fig. 3. Precision-Recall curves of the action detection on the cluttered action dataset.

Similar to [6], we project the obtained three-dimensional distance map to
a one-dimensional vector of score. Only the best detection is kept for each
test frame. The Precision-Recall curves are generated by changing the detec-
tion threshold, as shown in Fig. 3. Since we choose a different way to scan the
template over test videos, our results are not directly comparable with [6]. We
admit this dataset is very difficult because of the cluttered background. How-
ever, by only using the motion cue, our method is still able to achieve very good
performance for jumping-jacks, two-hand waving, and pushing an elevator but-
ton. Due to the large intra-class variation of actors performing the picking-up
action, our method achieves very low detection rates on this action. One-hand
waving is often confused with the two-hand waving and jumping-jacks and thus
has a higher false positive rate. Example detections are shown in Fig. 2.

We give an example with more details in Fig. 4 about the detection of
jumping-jacks in a video which contains some confusing actions, such as one-
hand waving and two-hand waving. It is interesting to note that in the projected
matching distance, the confusing actions cause very low matching distances but
they are still much higher than the jumping-jacks action.

We also compare the results of using the distance function with and without
thee cascade structure. As shown in Fig. 3, except for the action of pushing
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Fig. 4. (a) Projected matching distance of the detection of jumping-jacks. (b) Example
detections. The true positives are highlighted in Frame #607, where the left corner is
the matching distance. The rest frames are all true negatives.

an elevator button, our cascade structure achieves better accuracy. Moreover,
the cascade structure is much more efficient. The methods are implemented in
Matlab/MEX. With a 2.40GHz Intel processor, to scan a template video with
25 frames over a test video with 800 frames, the cascade structure only takes
30.3 seconds, but it takes 348.2 seconds without using the cascade. There is an
order of magnitude improvement in efficiency by using the cascade structure.

4.3 Experiment on the ballet video

We apply our method to detect “spin” actions in a ballet video. Although this
ballet video is very “clean”, it contains more complex actions and two actors
are performing the same actions in each frame. In addition, the actress wears a
skirt and the appearance is very different to the template, which might cause
difficulty for shape-based methods (e.g. [6]).
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Fig. 5. (a) Representative frames of the template videos, and the visualization of learnt
weights. (b) Projected matching distance. (¢) Example detections. The true positives
are highlighted in Frame #157, and the rest frames are all true negatives.



The Weizmann dataset serves as the source training set. The learnt weights
on the template video are visualized in Fig. 5(a). Note that the actions in the
Weizmann dataset are distinctly different from the “spin” action of ballet. Our
transferable distance function is still able to assign high weights onto the salient
parts such as the stretched-arms and legs. After training, we scan the template
over the test video using the cascade structure. The matching distances of correct
detections for the actor and actress are 2.31 and 5.81 respectively. Although the
matching distance for the actress is higher than the actor because of the clothing,
these distances are still much lower than any other portion of the video.

5 Conclusion

In this paper, we have presented an efficient human action detection approach
using only one template video. We have developed a histogram representation of
the four-channel motion descriptors [8], which can be efficiently computed using
integral images. Based on the learning of a transferable distance function [7], a
cascade structure has been proposed. Experimental results show that our cascade
structure achieves reliable detection results and improves the efficiency of the
patch based action detection method significantly.
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