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Abstract

We present a discriminative part-based approach for human action recognition
from video sequences using motion features. Our model is based on the recently
proposed hidden conditional random field (hCRF) for object recognition. Similar
to hCREF for object recognition, we model a human action by a flexible constel-
lation of parts conditioned on image observations. Different from object recogni-
tion, our model combines both large-scale global features and local patch features
to distinguish various actions. Our experimental results show that our model is
comparable to other state-of-the-art approaches in action recognition. In partic-
ular, our experimental results demonstrate that combining large-scale global fea-
tures and local patch features performs significantly better than directly applying
hCREF on local patches alone.

1 Introduction

Recognizing human actions from videos is a task of obvious scientific and practical importance.
In this paper, we consider the problem of recognizing human actions from video sequences on a
frame-by-frame basis. We develop a discriminatively trained hidden part model to represent human
actions. Our model is inspired by the hidden conditional random field (hCRF) model [16] in object
recognition.

In object recognition, there are three major representations: global template (rigid, e.g. [3], or de-
formable, e.g. [1]), bag-of-words [18], and part-based [7, 6]. All three representations have been
shown to be effective on certain object recognition tasks. In particular, recent work [6] has shown
that part-based models outperform global templates and bag-of-words on challenging object recog-
nition tasks.

A lot of the ideas used in object recognition can also be found in action recognition. For example,
there is work [2] that treats actions as space-time shapes and reduces the problem of action recog-
nition to 3D object recognition. In action recognition, both global template [S] and bag-of-words
models [14, 4, 15] have been shown to be effective on certain tasks. Although conceptually ap-
pealing and promising, the merit of part-based models has not yet been widely recognized in action
recognition. The goal of this work is to address this gap.

Our work is partly inspired by a recent work in part-based event detection [10]. In that work,
template matching is combined with a pictorial structure model to detect and localize actions in
crowded videos. One limitation of that work is that one has to manually specify the parts. Unlike
Ke et al. [10], the parts in our model are initialized automatically.
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Figure 1: Construction of the motion descriptor. (a) original image; (b) optical flow; (c) z and y com-
ponents of optical flow vectors F,, F); (d) half-wave rectification of = and y components to obtain
4 separate channels F,", F,, F;,", F,"; (e) final blurry motion descriptors Fb)l, Fb,, b, Fb, .

The major contribution of this work is that we combine the flexibility of part-based approaches with
the global perspectives of large-scale template features in a discriminative model. We show that the
combination of part-based and large-scale template features improves the final results.

2  Our Model

The hidden conditional random field model [16] was originally proposed for object recognition
and has also been applied in sequence labeling [19]. Objects are modeled as flexible constella-
tions of parts conditioned on the appearances of local patches found by interest point operators.
The probability of the assignment of parts to local features is modeled by a conditional random
field (CRF) [11]. The advantage of the hCRF is that it relaxes the conditional independence as-
sumption commonly used in the bag-of-words approaches of object recognition.

Similarly, local patches can also be used to distinguish actions. Figure. 4(a) shows some examples
of human motion and the local patches that can be used to distinguish them. A bag-of-words repre-
sentation can be used to model these local patches for action recognition. However, it suffers from
the same restriction of conditional independence assumption that ignores the spatial structures of
the parts. In this work, we use a variant of hCRF to model the constellation of these local patches in
order to alleviate this restriction.

There are also some important differences between objects and actions. For objects, local patches
could carry enough information for recognition. But for actions, we believe local patches are not
sufficiently informative. In our approach, we modify the hCRF model to combine local patches and
large-scale global features. The large-scale global features are represented by a root model that takes
the frame as a whole. Another important difference with [16] is that we use the learned root model
to find discriminative local patches, rather than using a generic interest-point operator.

2.1 Motion features

Our model is built upon the optical flow features in [5]. This motion descriptor has been shown to
perform reliably with noisy image sequences, and has been applied in various tasks, such as action
classification, motion synthesis, etc.

To calculate the motion descriptor, we first need to track and stabilize the persons in a video se-
quence. Any reasonable tracking or human detection algorithm can be used, since the motion de-
scriptor we use is very robust to jitters introduced by the tracking. Given a stabilized video sequence
in which the person of interest appears in the center of the field of view, we compute the optical flow
at each frame using the Lucas-Kanade [12] algorithm. The optical flow vector field F' is then split
into two scalar fields F;, and F, corresponding to the & and y components of F. F; and F), are fur-
ther half-wave rectified into four non-negative channels F;", F.~, Fy+ , F,sothat F, = Ef —F;
and F, = sz — F, . These four non-negative channels are then blurred with a Gaussian kernel and

normalized to obtain the final four channels F' b;",F b, .F bz'}" ya sz (see Fig. 1).



2.2 Hidden conditional random field(hCRF)

Now we describe how we model a frame I in a video sequence. Let x be the motion feature of
this frame, and y be the corresponding class label of this frame, ranging over a finite label alphabet
Y. Our task is to learn a mapping from x to y. We assume each image I contains a set of salient
patches {11, I, ..., Iy, }. we will describe how to find these salient patches in Sec. 3. Our training set
consists of labeled images (x‘,y") (as a notation convention, we use superscripts to index training
images and subscripts to index patches) for t = 1,2, ...,n, where y* € Y and x! = (z!,z5..., 2L ).
xt = x!(I}) is the feature vector extracted from the global motion feature x* at the location of the
patch I!. For each image I = {I, I, ..., I, }, we assume there exists a vector of hidden “part”
variables h = {hq, ha, ..., by, }, where each h; takes values from a finite set H of possible parts.
Intuitively, each h; assigns a part label to the patch I;, where ¢ = 1,2, ..., m. For example, for the
action “waving-two-hands”, these parts may be used to characterize the movement patterns of the
left and right arms. The values of h are not observed in the training set, and will become the hidden

variables of the model.

We assume there are certain constraints between some pairs of (%, hy). For example, in the case of
“waving-two-hands”, two patches h; and hy, at the left hand might have the constraint that they tend
to have the same part label, since both of them are characterized by the movement of the left hand. If
we consider h;(i = 1,2, ...,m) to be vertices in a graph G = (E, V), the constraint between h; and
hy; is denoted by an edge (j, k) € E. See Fig. 2 for an illustration of our model. Note that the graph
structure can be different for different images. We will describe how to find the graph structure £ in
Sec. 3.
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Figure 2: Illustration of the model. Each circle corresponds to a variable, and each square corre-
sponds to a factor in the model.

Given the motion feature x of an image /, its corresponding class label y, and part labels h, a hidden

conditional random field is defined as p(y, h|x;0) = = ze:»fp('lf(y,x;)}(lﬁg; -
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model parameter, and ¥(y, h, x;0) € R is a potential function parameterized by 6. It follows that
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where ¢(-) and ¢(-) are feature vectors depending on unary h;’s, 1)(-) is a feature vector depending
on pairs of (h;, hi), w(-) is a feature vector that does not depend on the values of hidden variables.
The details of these feature vectors are described in the following.

Unary potential o " - ¢(x;,h;) : This potential function models the compatibility between z; and
the part label h;, i.e., how hkely the patch z; is labeled as part h;. It is parameterized as

T d) IJ? Z Qe l{hj:c} : [fa(g:j) fs(xj)} (3)
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where we use [f®(z;) f*(z;)] to denote the concatenation of two vectors f*(x;) and f*(x;).
f*(x;) is a feature vector describing the appearance of the patch x;. In our case, f%(x;) is
simply the concatenation of four channels of the motion features at patch z;, ie., f*(z;) =
[Ff () Fby (25) Fbl (25) Fb, (x;)]. f°(x;) is a feature vector describing the spatial location
of the patch x;. We discretize the whole image locations into { bins, and f*(z;) is a length [ vector
of all zeros with a single one for the bin occupied by x;. The parameter «.. can be interpreted as
the measurement of compatibility between feature vector [f*(z;) f*(x;)] and the part label h; = c.
The parameter « is simply the concatenation of «,. for all ¢ € H.

Unary potential 57 - ¢(y, h;) : This potential function models the compatibility between class label
y and part label h;, i.e., how likely an image with class label y contains a patch with part label h;.
It is parameterized as

BT oy hy) = Z Z Bab - Liy=a} " Lin;=b} 4)

acY beH
where 3, indicates the compatibility between y = a and h; = b.

Pairwise potential v - ¢ (y, h], hi): This pairwise potentlal function models the compatibility
between class label y and a pair of part labels (h;, hy), i.e., how likely an image with class label y
contains a pair of patches with part labels h; and hy, where (j, k) € E corresponds to an edge in
the graph. It is parameterized as

vy, by hi) = ZZZ%M Loy—ay " L=} " Linp=c) 5)

a€y beH ceH
where 7, 1. indicates the compatibility of y = a, h; = b and hy, = ¢ for the edge (j, k) € E.

Root model 17" - w(y,x): The root model is a potential function that models the compatibility of
class label y and the large-scale global feature of the whole image. It is parameterized as

X) =Y 04 - Ly=a} - 9(x) (6)
acy

where g(x) is a feature vector describing the appearance of the whole image. In our case, g(x)
is the concatenation of all the four channels of the motion features in the image, i.e., g(x) =
[Fbf Fb, Fb} Fb,]. n, can be interpreted as a root filter that measures the compatibility be-
tween the appearance of an image g(x) and a class label y = a. And 7 is simply the concatenation
of n, forall a € ).

The parameterization of W(y, h, x) is similar to that used in object recognition [16]. But there are
two important differences. First of all, our definition of the unary potential function ¢(-) encodes
both appearance and spatial information of the patches. Secondly, we have a potential function w(-)
describing the large scale appearance of the whole image. The representation in Quattoni et al. [16]
only models local patches extracted from the image. This may be appropriate for object recognition.
But for human action recognition, it is not clear that local patches can be sufficiently informative.
We will demonstrate this experimentally in Sec. 4.

3 Learning and Inference

The model parameters 6 are learned by maximizing the conditional log-likelihood on the training
images:

* _ _ ot g) — ¢ ‘.
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The objective function L(6) in Quattoni et al.[16] also has a regularization term 5%||0||*. In our
experiments, we find that the regularization does not seem to have much effect on the final results,
so we will use the un-regularized version. Different from conditional random field (CRF) [11], the
objective function L(6) of hCRF is not concave, due to the hidden variables h. But we can still use



gradient ascent to find 6 that is locally optimal. The gradient of the log-likelihood with respect to
the ¢-th training image (x!, y*) can be calculated as:
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Assuming the edges E form a tree, the expectations in Eq. 8 can be calculated in O(|Y||E||H|?)
time using belief propagation.

Now we describe several details about how the above ideas are implemented.

Learning root filter 7): Given a set of training images (x!,y"), we firstly learn the root filter n by
solving the following optimization problem:

exp (- w(y',x"))
n* =argmax » log L(y'|x";n) = argmax » log 9)
m Xt: Whsm) " Zt: >y exp(n - wly,xh))

In other words, n* is learned by only considering the feature vector w(-). We then use n* as the
starting point for 7 in the gradient ascent (Eq. 8). Other parameters «, 3, y are initialized randomly.

Patch initialization: We use a simple heuristic similar to that used in [6] to initialize ten salient
patches on every training image from the root filter n* trained above. For each training image I with
class label a, we apply the root filter 7, on I, then select an rectangle region of size 5 x 5 in the
image that has the most positive energy. We zero out the weights in this region and repeat until ten
patches are selected. Figure 4(a) shows examples of the patches found in some images. The tree
G = (V, E) is formed by running a minimum spanning tree algorithm over the ten patches.

Inference: During testing, we do not know the class label of a given test image, so we cannot use the
patch initialization described above to initialize the patches, since we do not know which root filter
to use. Instead, we run root filters from all the classes on a test image, then calculate the probabilities
of all possible instantiations of patches under our learned model, and classify the image by picking
the class label that gives the maximum of the these probabilities. In other words, for a testing image
with motion descriptor x, we first obtain |)| instances {x("),x() ... x(I¥D1 where each x(*) is
obtained by initializing the patches on x using the root filter 1. The final class label y* of x is
obtained as y* = arg max,, [max{p(y[x(V);0), p(y|x?;0), ..., p(y[xD;0)}].

4 Experiments

We test our algorithm on two publicly available datasets that have been widely used in action recog-
nition: Weizmann human action dataset [2], and KTH human motion dataset [17]. Performance on
these benchmarks is saturating — state-of-the-art approaches achieve near-perfect results. We show
our method achieves results comparable to the state-of-the-art, and more importantly that our ex-
tended hCRF model significantly outperforms a direct application of the original hCRF model [16].

Weizmann dataset: The Weizmann human action dataset contains 83 video sequences show-
ing nine different people, each performing nine different actions: running, walking, jumping-
jack, jumping-forward-on-two-legs,jumping-in-place-on-two-legs, galloping-sideways, waving-
two-hands, waving-one-hand, bending. We track and stabilize the figures using the background
subtraction masks that come with this dataset.

We randomly choose videos of five subjects as training set, and the videos in the remaining four
subjects as test set. We learn three hCRF models with different sizes of possible part labels, |H| =
6,10,20. Our model classifies every frame in a video sequence (i.e., per-frame classification), but
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Figure 3: Confusion matrices of classification results on Weizmann dataset. Horizontal rows are
ground truths, and vertical columns are predictions.

local hCRF our approach
method | root model | — TR = 10 [ TRT=20 [ THT=6 [ [ = 10 [ [H[ =20
per-frame | 0.7470 | 05722 | 0.6656 | 0.6383 | 0.8682 | 0.9020 | 0.8557
per-video | 0.8889 | 0.5556 | 0.6944 | 0.6111 | 09167 | 09722 | 09444

Table 1: Comparison of two baseline systems with our approach on Weizmann dataset.

we can also obtain the class label for the whole video sequence by the majority voting of the labels
of its frames (i.e., per-video classification). We show the confusion matrix with || = 10 for both
per-frame and per-video classification in Fig. 3.

We compare our system to two baseline methods. The first baseline (root model) only uses the root
filter n " - w(y, x), which is simply a discriminative version of Efros et al. [5]. The second baseline
(local hCRF) is a direct application of the original hCRF model [16]. It is similar to our model, but
without the root filter " - w(y, x), i.e., local hCRF only uses the root filter to initialize the salient
patches, but does not use it in the final model. The comparative results are shown in Table 1. Our
approach significantly outperforms the two baseline methods. We also compare our results(with
|H| = 10) with previous work in Table 2. Note [2] classifies space-time cubes. It is not clear how it
can be compared with other methods that classify frames or videos. Our result is significantly better
than [13], and comparable to [8]. Although we accept the fact that the comparison is not completely
fair, since [13] does not use any tracking or background subtraction.

We visualize the learned parts in Fig. 4(a). Each patch is represented by a color that corresponds to
the most likely part label of that patch. We also visualize the root filters applied on these images in
Fig. 4(b).

KTH dataset: The KTH human motion dataset contains six types of human actions (walking,
jogging, running, boxing, hand waving and hand clapping) performed several times by 25 subjects
in four different scenarios: outdoors, outdoors with scale variation, outdoors with different clothes
and indoors. We first run an automatic preprocessing step to track and stabilize the video sequences,
so that all the figures appear in the center of the field of view.

We split the videos roughly equally into training/test sets and randomly sample 10 frames from each
video. The confusion matrices (with || = 10) for both per-frame and per-video classification are

[ | per-frame(%) [ per-video(%) | per-cube(%) |

Our method 90.3 97.2 N/A
Jhuang et al. [8] N/A 98.8 N/A
Niebles & Fei-Fei [13] 55 72.8 N/A
Blank et al. [2] N/A N/A 99.64

Table 2: Comparison of classification accuracy with previous work on the Weizmann dataset.
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Figure 4: (a) Visualization of the learned parts. Patches are colored according to their most likely
part labels. Each color corresponds to a part label. Some interesting observations can be made.
For example, the part label represented by red seems to correspond to the “moving down” patterns
mostly observed in the “bending” action. The part label represented by green seems to correspond
to the motion patterns distinctive of “hand-waving” actions; (b) Visualization of root filters applied
on these images. For each image with class label ¢, we apply the root filter 7.. The results show the
filter responses aggregated over four motion descriptor channels. Bright areas correspond to positive
energies, i.e., areas that are discriminative for this class.
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Figure 5: Confusion matrices of classification results on KTH dataset. Horizontal rows are ground
truths, and vertical columns are predictions.

shown in Fig. 5. The comparison with the two baseline algorithms is summarized in Table 3. Again,
our approach outperforms the two baselines systems.

The comparison with other approaches is summarized in Table 4. We should emphasize that we do
not attempt a direct comparison, since different methods listed in Table 4 have all sorts of variations
in their experiments (e.g., different split of training/test data, whether temporal smoothing is used,
whether per-frame classification can be performed, whether tracking/background subtraction is used,
whether the whole dataset is used etc.), which make it impossible to directly compare them. We
provide the results only to show that our approach is comparable to the state-of-the-art.

local hCRF our approach
method | root model |\ — =10 T TRT=20 [ THI=6 [ [R] =10 | [H[=20
perframe | 05377 | 04740 | 04452 | 04282 | 0.6633 | 0.6698 | 0.6444
pervideo | 07339 | 0.5607 | 0.5814 | 05504 | 07855 | 0.8760 | 0.7512

Table 3: Comparison of two baseline systems with our approach on KTH dataset.




[ methods [[ accuracy(%) |

Our method 87.60
Jhuang et al. [§8] 91.70
Nowozin et al. [15] 87.04
Niebles et al. [14] 81.50
Dollar et al. [4] 81.17
Schuldt et al. [17] 71.72
Ke et al. [9] 62.96

Table 4: Comparison of per-video classification accuracy with previous approaches on KTH dataset.

5 Conclusion

We have presented a discriminatively learned part model for human action recognition. Unlike
previous work [10], our model does not require manual specification of the parts. Instead, the parts
are initialized by a learned root filter. Our model combines both large-scale features used in global
templates and local patch features used in bag-of-words models. Our experimental results show that
our model is quite effective in recognizing actions. The results are comparable to the state-of-the-
art approaches. In particular, we show that the combination of large-scale features and local patch
features performs significantly better than using either of them alone.
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